Vincentqyw commited on
Commit
0b05049
·
1 Parent(s): b864970

add app queue

Browse files
app.py CHANGED
@@ -278,7 +278,7 @@ def run(config):
278
  matcher_info,
279
  ]
280
  button_reset.click(fn=ui_reset_state, inputs=inputs, outputs=reset_outputs)
281
-
282
  app.launch(share=False)
283
 
284
 
 
278
  matcher_info,
279
  ]
280
  button_reset.click(fn=ui_reset_state, inputs=inputs, outputs=reset_outputs)
281
+ app.queue()
282
  app.launch(share=False)
283
 
284
 
hloc/extractors/dedode.py CHANGED
@@ -64,8 +64,8 @@ class DeDoDe(BaseModel):
64
  # load the model
65
  weights_detector = torch.load(model_detector_path, map_location="cpu")
66
  weights_descriptor = torch.load(model_descriptor_path, map_location="cpu")
67
- self.detector = dedode_detector_L(weights=weights_detector, device = device)
68
- self.descriptor = dedode_descriptor_B(weights=weights_descriptor, device = device)
69
 
70
  logger.info(f"Load DeDoDe model done.")
71
 
 
64
  # load the model
65
  weights_detector = torch.load(model_detector_path, map_location="cpu")
66
  weights_descriptor = torch.load(model_descriptor_path, map_location="cpu")
67
+ self.detector = dedode_detector_L(weights=weights_detector, device=device)
68
+ self.descriptor = dedode_descriptor_B(weights=weights_descriptor, device=device)
69
 
70
  logger.info(f"Load DeDoDe model done.")
71
 
third_party/ASpanFormer/src/ASpanFormer/aspan_module/attention.py CHANGED
@@ -6,6 +6,7 @@ from torch.nn import functional as F
6
 
7
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
 
 
9
  class layernorm2d(nn.Module):
10
  def __init__(self, dim):
11
  super().__init__()
@@ -177,7 +178,8 @@ class HierachicalAttention(Module):
177
  offset_sample = self.sample_offset[None, None] * span_scale
178
  sample_pixel = offset[:, :, None] + offset_sample # B*G*r^2*2
179
  sample_norm = (
180
- sample_pixel / torch.tensor([wk / 2, hk / 2]).to(device)[None, None, None] - 1
 
181
  )
182
 
183
  q = (
 
6
 
7
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
 
9
+
10
  class layernorm2d(nn.Module):
11
  def __init__(self, dim):
12
  super().__init__()
 
178
  offset_sample = self.sample_offset[None, None] * span_scale
179
  sample_pixel = offset[:, :, None] + offset_sample # B*G*r^2*2
180
  sample_norm = (
181
+ sample_pixel / torch.tensor([wk / 2, hk / 2]).to(device)[None, None, None]
182
+ - 1
183
  )
184
 
185
  q = (
third_party/DeDoDe/DeDoDe/utils.py CHANGED
@@ -13,6 +13,7 @@ from time import perf_counter
13
 
14
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
 
 
16
  def recover_pose(E, kpts0, kpts1, K0, K1, mask):
17
  best_num_inliers = 0
18
  K0inv = np.linalg.inv(K0[:2, :2])
 
13
 
14
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
 
16
+
17
  def recover_pose(E, kpts0, kpts1, K0, K1, mask):
18
  best_num_inliers = 0
19
  K0inv = np.linalg.inv(K0[:2, :2])
third_party/SGMNet/sgmnet/match_model.py CHANGED
@@ -5,6 +5,7 @@ eps = 1e-8
5
 
6
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
 
 
8
  def sinkhorn(M, r, c, iteration):
9
  p = torch.softmax(M, dim=-1)
10
  u = torch.ones_like(r)
 
5
 
6
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
 
8
+
9
  def sinkhorn(M, r, c, iteration):
10
  p = torch.softmax(M, dim=-1)
11
  u = torch.ones_like(r)