Vincentqyw commited on
Commit
16ac7db
·
1 Parent(s): 5da9dd4
hloc/extractors/dedode.py CHANGED
@@ -64,8 +64,8 @@ class DeDoDe(BaseModel):
64
  # load the model
65
  weights_detector = torch.load(model_detector_path, map_location="cpu")
66
  weights_descriptor = torch.load(model_descriptor_path, map_location="cpu")
67
- self.detector = dedode_detector_L(weights=weights_detector, device = device)
68
- self.descriptor = dedode_descriptor_B(weights=weights_descriptor, device = device)
69
  logger.info(f"Load DeDoDe model done.")
70
 
71
  def _forward(self, data):
 
64
  # load the model
65
  weights_detector = torch.load(model_detector_path, map_location="cpu")
66
  weights_descriptor = torch.load(model_descriptor_path, map_location="cpu")
67
+ self.detector = dedode_detector_L(weights=weights_detector, device=device)
68
+ self.descriptor = dedode_descriptor_B(weights=weights_descriptor, device=device)
69
  logger.info(f"Load DeDoDe model done.")
70
 
71
  def _forward(self, data):
third_party/ASpanFormer/src/ASpanFormer/aspan_module/transformer.py CHANGED
@@ -6,6 +6,7 @@ from .attention import FullAttention, HierachicalAttention, layernorm2d
6
 
7
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
 
 
9
  class messageLayer_ini(nn.Module):
10
  def __init__(self, d_model, d_flow, d_value, nhead):
11
  super().__init__()
 
6
 
7
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
 
9
+
10
  class messageLayer_ini(nn.Module):
11
  def __init__(self, d_model, d_flow, d_value, nhead):
12
  super().__init__()
third_party/ASpanFormer/src/ASpanFormer/aspanformer.py CHANGED
@@ -15,6 +15,7 @@ from .utils.fine_matching import FineMatching
15
 
16
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
 
 
18
  class ASpanFormer(nn.Module):
19
  def __init__(self, config):
20
  super().__init__()
@@ -160,7 +161,7 @@ class ASpanFormer(nn.Module):
160
  train_res_h / data["image1"].shape[2],
161
  train_res_w / data["image1"].shape[3],
162
  ]
163
-
164
  data["online_resize_scale0"], data["online_resize_scale1"] = (
165
  torch.tensor([w0 / data["image0"].shape[3], h0 / data["image0"].shape[2]])[
166
  None
 
15
 
16
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
 
18
+
19
  class ASpanFormer(nn.Module):
20
  def __init__(self, config):
21
  super().__init__()
 
161
  train_res_h / data["image1"].shape[2],
162
  train_res_w / data["image1"].shape[3],
163
  ]
164
+
165
  data["online_resize_scale0"], data["online_resize_scale1"] = (
166
  torch.tensor([w0 / data["image0"].shape[3], h0 / data["image0"].shape[2]])[
167
  None
third_party/SGMNet/sgmnet/match_model.py CHANGED
@@ -5,6 +5,7 @@ eps = 1e-8
5
 
6
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
 
 
8
  def sinkhorn(M, r, c, iteration):
9
  p = torch.softmax(M, dim=-1)
10
  u = torch.ones_like(r)
 
5
 
6
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
 
8
+
9
  def sinkhorn(M, r, c, iteration):
10
  p = torch.softmax(M, dim=-1)
11
  u = torch.ones_like(r)