Spaces:
Running
Running
Realcat
commited on
Commit
·
31375c0
1
Parent(s):
6a2ee03
update: re-match using warped pair
Browse files- common/app_class.py +47 -23
- common/utils.py +28 -8
common/app_class.py
CHANGED
@@ -10,6 +10,7 @@ from common.utils import (
|
|
10 |
get_matcher_zoo,
|
11 |
run_matching,
|
12 |
run_ransac,
|
|
|
13 |
gen_examples,
|
14 |
GRADIO_VERSION,
|
15 |
ROOT,
|
@@ -212,32 +213,44 @@ class ImageMatchingApp:
|
|
212 |
# Add some examples
|
213 |
with gr.Row():
|
214 |
# Example inputs
|
215 |
-
gr.
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
226 |
with gr.Accordion("Supported Algorithms", open=False):
|
227 |
# add a table of supported algorithms
|
228 |
self.display_supported_algorithms()
|
229 |
|
230 |
with gr.Column():
|
231 |
-
|
232 |
-
|
233 |
-
)
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
with gr.Accordion(
|
242 |
"Open for More: Matches Statistics", open=False
|
243 |
):
|
@@ -247,11 +260,16 @@ class ImageMatchingApp:
|
|
247 |
matcher_info = gr.JSON(label="Match info")
|
248 |
|
249 |
with gr.Accordion(
|
250 |
-
"Open for More: Warped Image", open=
|
251 |
):
|
252 |
output_wrapped = gr.Image(
|
253 |
label="Wrapped Pair", type="numpy"
|
254 |
)
|
|
|
|
|
|
|
|
|
|
|
255 |
with gr.Accordion(
|
256 |
"Open for More: Geometry info", open=False
|
257 |
):
|
@@ -286,7 +304,6 @@ class ImageMatchingApp:
|
|
286 |
button_run.click(
|
287 |
fn=run_matching, inputs=inputs, outputs=outputs
|
288 |
)
|
289 |
-
|
290 |
# Reset images
|
291 |
reset_outputs = [
|
292 |
input_image0,
|
@@ -335,6 +352,13 @@ class ImageMatchingApp:
|
|
335 |
],
|
336 |
)
|
337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
# estimate geo
|
339 |
choice_geometry_type.change(
|
340 |
fn=generate_warp_images,
|
|
|
10 |
get_matcher_zoo,
|
11 |
run_matching,
|
12 |
run_ransac,
|
13 |
+
send_to_match,
|
14 |
gen_examples,
|
15 |
GRADIO_VERSION,
|
16 |
ROOT,
|
|
|
213 |
# Add some examples
|
214 |
with gr.Row():
|
215 |
# Example inputs
|
216 |
+
with gr.Accordion(
|
217 |
+
"Open for More: Examples", open=True
|
218 |
+
):
|
219 |
+
gr.Examples(
|
220 |
+
examples=gen_examples(),
|
221 |
+
inputs=inputs,
|
222 |
+
outputs=[],
|
223 |
+
fn=run_matching,
|
224 |
+
cache_examples=False,
|
225 |
+
label=(
|
226 |
+
"Examples (click one of the images below to Run"
|
227 |
+
" Match). Thx: WxBS"
|
228 |
+
),
|
229 |
+
)
|
230 |
with gr.Accordion("Supported Algorithms", open=False):
|
231 |
# add a table of supported algorithms
|
232 |
self.display_supported_algorithms()
|
233 |
|
234 |
with gr.Column():
|
235 |
+
with gr.Accordion(
|
236 |
+
"Open for More: Keypoints", open=True
|
237 |
+
):
|
238 |
+
output_keypoints = gr.Image(
|
239 |
+
label="Keypoints", type="numpy"
|
240 |
+
)
|
241 |
+
with gr.Accordion(
|
242 |
+
"Open for More: Raw Matches", open=False
|
243 |
+
):
|
244 |
+
output_matches_raw = gr.Image(
|
245 |
+
label="Raw Matches",
|
246 |
+
type="numpy",
|
247 |
+
)
|
248 |
+
with gr.Accordion(
|
249 |
+
"Open for More: RANSAC Matches", open=True
|
250 |
+
):
|
251 |
+
output_matches_ransac = gr.Image(
|
252 |
+
label="Ransac Matches", type="numpy"
|
253 |
+
)
|
254 |
with gr.Accordion(
|
255 |
"Open for More: Matches Statistics", open=False
|
256 |
):
|
|
|
260 |
matcher_info = gr.JSON(label="Match info")
|
261 |
|
262 |
with gr.Accordion(
|
263 |
+
"Open for More: Warped Image", open=True
|
264 |
):
|
265 |
output_wrapped = gr.Image(
|
266 |
label="Wrapped Pair", type="numpy"
|
267 |
)
|
268 |
+
# send to input
|
269 |
+
button_rerun = gr.Button(
|
270 |
+
value="Send to Input Match Pair",
|
271 |
+
variant="primary",
|
272 |
+
)
|
273 |
with gr.Accordion(
|
274 |
"Open for More: Geometry info", open=False
|
275 |
):
|
|
|
304 |
button_run.click(
|
305 |
fn=run_matching, inputs=inputs, outputs=outputs
|
306 |
)
|
|
|
307 |
# Reset images
|
308 |
reset_outputs = [
|
309 |
input_image0,
|
|
|
352 |
],
|
353 |
)
|
354 |
|
355 |
+
# send warped image to match
|
356 |
+
button_rerun.click(
|
357 |
+
fn=send_to_match,
|
358 |
+
inputs=[state_cache],
|
359 |
+
outputs=[input_image0, input_image1],
|
360 |
+
)
|
361 |
+
|
362 |
# estimate geo
|
363 |
choice_geometry_type.change(
|
364 |
fn=generate_warp_images,
|
common/utils.py
CHANGED
@@ -649,8 +649,7 @@ def wrap_images(
|
|
649 |
title,
|
650 |
dpi=300,
|
651 |
)
|
652 |
-
|
653 |
-
return fig2im(fig), dictionary
|
654 |
else:
|
655 |
return None, None
|
656 |
|
@@ -660,7 +659,7 @@ def generate_warp_images(
|
|
660 |
input_image1: np.ndarray,
|
661 |
matches_info: Dict[str, Any],
|
662 |
choice: str,
|
663 |
-
) -> Tuple[Optional[np.ndarray], Optional[
|
664 |
"""
|
665 |
Changes the estimate of the geometric transformation used to align the images.
|
666 |
|
@@ -671,7 +670,7 @@ def generate_warp_images(
|
|
671 |
choice: Type of geometric transformation to use ('Homography' or 'Fundamental') or 'No' to disable.
|
672 |
|
673 |
Returns:
|
674 |
-
A tuple containing the updated images and the
|
675 |
"""
|
676 |
if (
|
677 |
matches_info is None
|
@@ -682,10 +681,29 @@ def generate_warp_images(
|
|
682 |
geom_info = matches_info["geom_info"]
|
683 |
wrapped_images = None
|
684 |
if choice != "No":
|
685 |
-
|
686 |
input_image0, input_image1, geom_info, choice
|
687 |
)
|
688 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
689 |
else:
|
690 |
return None, None
|
691 |
|
@@ -745,7 +763,7 @@ def run_ransac(
|
|
745 |
t1 = time.time()
|
746 |
|
747 |
# compute warp images
|
748 |
-
output_wrapped,
|
749 |
state_cache["image0_orig"],
|
750 |
state_cache["image1_orig"],
|
751 |
state_cache,
|
@@ -754,6 +772,7 @@ def run_ransac(
|
|
754 |
plt.close("all")
|
755 |
|
756 |
num_matches_raw = state_cache["num_matches_raw"]
|
|
|
757 |
return (
|
758 |
output_matches_ransac,
|
759 |
{
|
@@ -927,7 +946,7 @@ def run_matching(
|
|
927 |
|
928 |
t1 = time.time()
|
929 |
# plot wrapped images
|
930 |
-
output_wrapped,
|
931 |
pred["image0_orig"],
|
932 |
pred["image1_orig"],
|
933 |
pred,
|
@@ -940,6 +959,7 @@ def run_matching(
|
|
940 |
state_cache = pred
|
941 |
state_cache["num_matches_raw"] = num_matches_raw
|
942 |
state_cache["num_matches_ransac"] = num_matches_ransac
|
|
|
943 |
return (
|
944 |
output_keypoints,
|
945 |
output_matches_raw,
|
|
|
649 |
title,
|
650 |
dpi=300,
|
651 |
)
|
652 |
+
return fig2im(fig), rectified_image1
|
|
|
653 |
else:
|
654 |
return None, None
|
655 |
|
|
|
659 |
input_image1: np.ndarray,
|
660 |
matches_info: Dict[str, Any],
|
661 |
choice: str,
|
662 |
+
) -> Tuple[Optional[np.ndarray], Optional[np.ndarray]]:
|
663 |
"""
|
664 |
Changes the estimate of the geometric transformation used to align the images.
|
665 |
|
|
|
670 |
choice: Type of geometric transformation to use ('Homography' or 'Fundamental') or 'No' to disable.
|
671 |
|
672 |
Returns:
|
673 |
+
A tuple containing the updated images and the warpped images.
|
674 |
"""
|
675 |
if (
|
676 |
matches_info is None
|
|
|
681 |
geom_info = matches_info["geom_info"]
|
682 |
wrapped_images = None
|
683 |
if choice != "No":
|
684 |
+
wrapped_image_pair, warped_image = wrap_images(
|
685 |
input_image0, input_image1, geom_info, choice
|
686 |
)
|
687 |
+
return wrapped_image_pair, warped_image
|
688 |
+
else:
|
689 |
+
return None, None
|
690 |
+
|
691 |
+
|
692 |
+
def send_to_match(state_cache: Dict[str, Any]):
|
693 |
+
"""
|
694 |
+
Send the state cache to the match function.
|
695 |
+
|
696 |
+
Args:
|
697 |
+
state_cache (Dict[str, Any]): Current state of the app.
|
698 |
+
|
699 |
+
Returns:
|
700 |
+
None
|
701 |
+
"""
|
702 |
+
if state_cache:
|
703 |
+
return (
|
704 |
+
state_cache["image0_orig"],
|
705 |
+
state_cache["wrapped_image"],
|
706 |
+
)
|
707 |
else:
|
708 |
return None, None
|
709 |
|
|
|
763 |
t1 = time.time()
|
764 |
|
765 |
# compute warp images
|
766 |
+
output_wrapped, warped_image = generate_warp_images(
|
767 |
state_cache["image0_orig"],
|
768 |
state_cache["image1_orig"],
|
769 |
state_cache,
|
|
|
772 |
plt.close("all")
|
773 |
|
774 |
num_matches_raw = state_cache["num_matches_raw"]
|
775 |
+
state_cache["wrapped_image"] = warped_image
|
776 |
return (
|
777 |
output_matches_ransac,
|
778 |
{
|
|
|
946 |
|
947 |
t1 = time.time()
|
948 |
# plot wrapped images
|
949 |
+
output_wrapped, warped_image = generate_warp_images(
|
950 |
pred["image0_orig"],
|
951 |
pred["image1_orig"],
|
952 |
pred,
|
|
|
959 |
state_cache = pred
|
960 |
state_cache["num_matches_raw"] = num_matches_raw
|
961 |
state_cache["num_matches_ransac"] = num_matches_ransac
|
962 |
+
state_cache["wrapped_image"] = warped_image
|
963 |
return (
|
964 |
output_keypoints,
|
965 |
output_matches_raw,
|