Realcat commited on
Commit
381af73
·
1 Parent(s): 7f50a52

add: xfeat(dense)

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ license: mit
16
  [![Issues][issues-shield]][issues-url]
17
 
18
  <p align="center">
19
- <h1 align="center"><br><ins>Image Matching WebUI</ins><br>find matches between 2 images</h1>
20
  </p>
21
 
22
  ## Description
@@ -24,13 +24,22 @@ license: mit
24
  This simple tool efficiently matches image pairs using multiple famous image matching algorithms. The tool features a Graphical User Interface (GUI) designed using [gradio](https://gradio.app/). You can effortlessly select two images and a matching algorithm and obtain a precise matching result.
25
  **Note**: the images source can be either local images or webcam images.
26
 
 
 
 
 
 
27
  Here is a demo of the tool:
28
 
29
  ![demo](assets/demo.gif)
30
 
31
  The tool currently supports various popular image matching algorithms, namely:
 
 
 
 
 
32
  - [x] [LightGlue](https://github.com/cvg/LightGlue), ICCV 2023
33
- - [x] [DeDoDe](https://github.com/Parskatt/DeDoDe), ArXiv 2023
34
  - [x] [DarkFeat](https://github.com/THU-LYJ-Lab/DarkFeat), AAAI 2023
35
  - [ ] [ASTR](https://github.com/ASTR2023/ASTR), CVPR 2023
36
  - [ ] [SEM](https://github.com/SEM2023/SEM), CVPR 2023
@@ -40,7 +49,6 @@ The tool currently supports various popular image matching algorithms, namely:
40
  - [x] [SOLD2](https://github.com/cvg/SOLD2), CVPR 2021
41
  - [ ] [LineTR](https://github.com/yosungho/LineTR), RA-L 2021
42
  - [x] [DKM](https://github.com/Parskatt/DKM), CVPR 2023
43
- - [x] [RoMa](https://github.com/Vincentqyw/RoMa), Arxiv 2023
44
  - [ ] [NCMNet](https://github.com/xinliu29/NCMNet), CVPR 2023
45
  - [x] [TopicFM](https://github.com/Vincentqyw/TopicFM), AAAI 2023
46
  - [x] [AspanFormer](https://github.com/Vincentqyw/ml-aspanformer), ECCV 2022
@@ -48,6 +56,7 @@ The tool currently supports various popular image matching algorithms, namely:
48
  - [ ] [LISRD](https://github.com/rpautrat/LISRD), ECCV 2022
49
  - [ ] [REKD](https://github.com/bluedream1121/REKD), CVPR 2022
50
  - [x] [ALIKE](https://github.com/Shiaoming/ALIKE), ArXiv 2022
 
51
  - [x] [SGMNet](https://github.com/vdvchen/SGMNet), ICCV 2021
52
  - [x] [SuperPoint](https://github.com/magicleap/SuperPointPretrainedNetwork), CVPRW 2018
53
  - [x] [SuperGlue](https://github.com/magicleap/SuperGluePretrainedNetwork), CVPR 2020
@@ -59,11 +68,15 @@ The tool currently supports various popular image matching algorithms, namely:
59
  - [ ] [SOSNet](https://github.com/scape-research/SOSNet), CVPR 2019
60
  - [x] [SIFT](https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html), IJCV 2004
61
 
 
62
  ## How to use
63
 
64
- ### HuggingFace
65
 
66
- Just try it on HF <a href='https://huggingface.co/spaces/Realcat/image-matching-webui'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'> [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)](https://openxlab.org.cn/apps/detail/Realcat/image-matching-webui)
 
 
 
67
 
68
  or deploy it locally following the instructions below.
69
 
@@ -74,8 +87,15 @@ cd image-matching-webui
74
  conda env create -f environment.yaml
75
  conda activate imw
76
  ```
 
 
 
 
 
 
 
77
 
78
- ### run demo
79
  ``` bash
80
  python3 ./app.py
81
  ```
@@ -85,7 +105,7 @@ then open http://localhost:7860 in your browser.
85
 
86
  ### Add your own feature / matcher
87
 
88
- I provide an example to add local feature in [hloc/extractors/example.py](hloc/extractors/example.py). Then add feature settings in `confs` in file [hloc/extract_features.py](hloc/extract_features.py). Last step is adding some settings to `model_zoo` in file [extra_utils/utils.py](extra_utils/utils.py).
89
 
90
  ## Contributions welcome!
91
 
 
16
  [![Issues][issues-shield]][issues-url]
17
 
18
  <p align="center">
19
+ <h1 align="center"><br><ins>Image Matching WebUI</ins><br>Identify matching points between two images</h1>
20
  </p>
21
 
22
  ## Description
 
24
  This simple tool efficiently matches image pairs using multiple famous image matching algorithms. The tool features a Graphical User Interface (GUI) designed using [gradio](https://gradio.app/). You can effortlessly select two images and a matching algorithm and obtain a precise matching result.
25
  **Note**: the images source can be either local images or webcam images.
26
 
27
+ Try it on <a href='https://huggingface.co/spaces/Realcat/image-matching-webui'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
28
+ <a target="_blank" href="https://lightning.ai/realcat/studios/image-matching-webui">
29
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/>
30
+ </a>
31
+
32
  Here is a demo of the tool:
33
 
34
  ![demo](assets/demo.gif)
35
 
36
  The tool currently supports various popular image matching algorithms, namely:
37
+ - [x] [XFeat](https://github.com/verlab/accelerated_features), CVPR 2024
38
+ - [x] [RoMa](https://github.com/Vincentqyw/RoMa), CVPR 2024
39
+ - [x] [DeDoDe](https://github.com/Parskatt/DeDoDe), 3DV 2024
40
+ - [ ] [Mickey](https://github.com/nianticlabs/mickey), CVPR 2024
41
+ - [ ] [GIM](https://github.com/xuelunshen/gim), ICLR 2024
42
  - [x] [LightGlue](https://github.com/cvg/LightGlue), ICCV 2023
 
43
  - [x] [DarkFeat](https://github.com/THU-LYJ-Lab/DarkFeat), AAAI 2023
44
  - [ ] [ASTR](https://github.com/ASTR2023/ASTR), CVPR 2023
45
  - [ ] [SEM](https://github.com/SEM2023/SEM), CVPR 2023
 
49
  - [x] [SOLD2](https://github.com/cvg/SOLD2), CVPR 2021
50
  - [ ] [LineTR](https://github.com/yosungho/LineTR), RA-L 2021
51
  - [x] [DKM](https://github.com/Parskatt/DKM), CVPR 2023
 
52
  - [ ] [NCMNet](https://github.com/xinliu29/NCMNet), CVPR 2023
53
  - [x] [TopicFM](https://github.com/Vincentqyw/TopicFM), AAAI 2023
54
  - [x] [AspanFormer](https://github.com/Vincentqyw/ml-aspanformer), ECCV 2022
 
56
  - [ ] [LISRD](https://github.com/rpautrat/LISRD), ECCV 2022
57
  - [ ] [REKD](https://github.com/bluedream1121/REKD), CVPR 2022
58
  - [x] [ALIKE](https://github.com/Shiaoming/ALIKE), ArXiv 2022
59
+ - [x] [RoRD](https://github.com/UditSinghParihar/RoRD), IROS 2021
60
  - [x] [SGMNet](https://github.com/vdvchen/SGMNet), ICCV 2021
61
  - [x] [SuperPoint](https://github.com/magicleap/SuperPointPretrainedNetwork), CVPRW 2018
62
  - [x] [SuperGlue](https://github.com/magicleap/SuperGluePretrainedNetwork), CVPR 2020
 
68
  - [ ] [SOSNet](https://github.com/scape-research/SOSNet), CVPR 2019
69
  - [x] [SIFT](https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html), IJCV 2004
70
 
71
+
72
  ## How to use
73
 
74
+ ### HuggingFace / Lightning AI
75
 
76
+ Just try it on <a href='https://huggingface.co/spaces/Realcat/image-matching-webui'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
77
+ <a target="_blank" href="https://lightning.ai/realcat/studios/image-matching-webui">
78
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/>
79
+ </a>
80
 
81
  or deploy it locally following the instructions below.
82
 
 
87
  conda env create -f environment.yaml
88
  conda activate imw
89
  ```
90
+
91
+ or using [docker](https://hub.docker.com/r/vincentqin/image-matching-webui):
92
+
93
+ ``` bash
94
+ docker pull vincentqin/image-matching-webui:latest
95
+ docker run -it -p 7860:7860 vincentqin/image-matching-webui:latest python app.py --server_name "0.0.0.0" --server_port=7860
96
+ ```
97
 
98
+ ### Run demo
99
  ``` bash
100
  python3 ./app.py
101
  ```
 
105
 
106
  ### Add your own feature / matcher
107
 
108
+ I provide an example to add local feature in [hloc/extractors/example.py](hloc/extractors/example.py). Then add feature settings in `confs` in file [hloc/extract_features.py](hloc/extract_features.py). Last step is adding some settings to `model_zoo` in file [common/config.yaml](common/config.yaml).
109
 
110
  ## Contributions welcome!
111
 
common/config.yaml CHANGED
@@ -28,10 +28,13 @@ matcher_zoo:
28
  aspanformer:
29
  matcher: aspanformer
30
  dense: true
31
- xfeat:
32
  matcher: NN-mutual
33
  feature: xfeat
34
  dense: false
 
 
 
35
  dedode:
36
  matcher: Dual-Softmax
37
  feature: dedode
 
28
  aspanformer:
29
  matcher: aspanformer
30
  dense: true
31
+ xfeat(sparse):
32
  matcher: NN-mutual
33
  feature: xfeat
34
  dense: false
35
+ xfeat(dense):
36
+ matcher: xfeat_dense
37
+ dense: true
38
  dedode:
39
  matcher: Dual-Softmax
40
  feature: dedode
hloc/extract_features.py CHANGED
@@ -211,7 +211,7 @@ confs = {
211
  "grayscale": False,
212
  "resize_max": 1600,
213
  },
214
- },
215
  "alike": {
216
  "output": "feats-alike-n5000-r1600",
217
  "model": {
 
211
  "grayscale": False,
212
  "resize_max": 1600,
213
  },
214
+ },
215
  "alike": {
216
  "output": "feats-alike-n5000-r1600",
217
  "model": {
hloc/extractors/xfeat.py CHANGED
@@ -18,7 +18,7 @@ class XFeat(BaseModel):
18
  pretrained=True,
19
  top_k=self.conf["max_keypoints"],
20
  )
21
- logger.info(f"Load XFeat model done.")
22
 
23
  def _forward(self, data):
24
  pred = self.net.detectAndCompute(
 
18
  pretrained=True,
19
  top_k=self.conf["max_keypoints"],
20
  )
21
+ logger.info(f"Load XFeat(sparse) model done.")
22
 
23
  def _forward(self, data):
24
  pred = self.net.detectAndCompute(
hloc/match_dense.py CHANGED
@@ -72,7 +72,7 @@ confs = {
72
  "height": 480,
73
  },
74
  },
75
- # Use topicfm for matching feats
76
  "aspanformer": {
77
  "output": "matches-aspanformer",
78
  "model": {
@@ -90,6 +90,21 @@ confs = {
90
  "dfactor": 8,
91
  },
92
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  "dkm": {
94
  "output": "matches-dkm",
95
  "model": {
 
72
  "height": 480,
73
  },
74
  },
75
+ # Use aspanformer for matching feats
76
  "aspanformer": {
77
  "output": "matches-aspanformer",
78
  "model": {
 
90
  "dfactor": 8,
91
  },
92
  },
93
+ "xfeat_dense": {
94
+ "output": "matches-xfeat_dense",
95
+ "model": {
96
+ "name": "xfeat_dense",
97
+ "max_keypoints": 8000,
98
+ },
99
+ "preprocessing": {
100
+ "grayscale": False,
101
+ "force_resize": False,
102
+ "resize_max": 1024,
103
+ "width": 640,
104
+ "height": 480,
105
+ "dfactor": 8,
106
+ },
107
+ },
108
  "dkm": {
109
  "output": "matches-dkm",
110
  "model": {
hloc/matchers/xfeat_dense.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from pathlib import Path
3
+ from hloc import logger
4
+ from ..utils.base_model import BaseModel
5
+
6
+
7
+ class XFeatDense(BaseModel):
8
+ default_conf = {
9
+ "keypoint_threshold": 0.005,
10
+ "max_keypoints": 8000,
11
+ }
12
+ required_inputs = [
13
+ "image0",
14
+ "image1",
15
+ ]
16
+
17
+ def _init(self, conf):
18
+ self.net = torch.hub.load(
19
+ "verlab/accelerated_features",
20
+ "XFeat",
21
+ pretrained=True,
22
+ top_k=self.conf["max_keypoints"],
23
+ )
24
+ logger.info(f"Load XFeat(dense) model done.")
25
+
26
+ def _forward(self, data):
27
+ # Compute coarse feats
28
+ out0 = self.net.detectAndComputeDense(
29
+ data["image0"], top_k=self.conf["max_keypoints"]
30
+ )
31
+ out1 = self.net.detectAndComputeDense(
32
+ data["image1"], top_k=self.conf["max_keypoints"]
33
+ )
34
+
35
+ # Match batches of pairs
36
+ idxs_list = self.net.batch_match(
37
+ out0["descriptors"], out1["descriptors"]
38
+ )
39
+ B = len(data["image0"])
40
+
41
+ # Refine coarse matches
42
+ # this part is harder to batch, currently iterate
43
+ matches = []
44
+ for b in range(B):
45
+ matches.append(
46
+ self.net.refine_matches(
47
+ out0, out1, matches=idxs_list, batch_idx=b
48
+ )
49
+ )
50
+ # we use results from one batch
51
+ matches = matches[0]
52
+ pred = {
53
+ "keypoints0": matches[:, :2],
54
+ "keypoints1": matches[:, 2:],
55
+ "mconf": torch.ones_like(matches[:, 0]),
56
+ }
57
+ return pred