Spaces:
Running
Running
Vincentqyw
commited on
Commit
Β·
4ede021
1
Parent(s):
e8fe67e
fix: model path
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- hloc/extractors/alike.py +1 -1
- hloc/extractors/darkfeat.py +1 -1
- hloc/extractors/lanet.py +0 -4
- hloc/extractors/sfd2.py +1 -1
- hloc/match_dense.py +2 -1
- hloc/matchers/gim.py +89 -18
- hloc/matchers/imp.py +1 -1
- hloc/matchers/lightglue.py +1 -0
- third_party/gim/gim/__init__.py +2 -0
- third_party/gim/{dkm β gim/dkm}/__init__.py +0 -0
- third_party/gim/{dkm β gim/dkm}/benchmarks/__init__.py +0 -0
- third_party/gim/{dkm β gim/dkm}/benchmarks/hpatches_sequences_homog_benchmark.py +0 -0
- third_party/gim/{dkm β gim/dkm}/benchmarks/megadepth1500_benchmark.py +0 -0
- third_party/gim/{dkm β gim/dkm}/benchmarks/megadepth_dense_benchmark.py +0 -0
- third_party/gim/{dkm β gim/dkm}/benchmarks/scannet_benchmark.py +0 -0
- third_party/gim/{dkm β gim/dkm}/checkpointing/__init__.py +0 -0
- third_party/gim/{dkm β gim/dkm}/checkpointing/checkpoint.py +0 -0
- third_party/gim/{dkm β gim/dkm}/datasets/__init__.py +0 -0
- third_party/gim/{dkm β gim/dkm}/datasets/megadepth.py +0 -0
- third_party/gim/{dkm β gim/dkm}/datasets/scannet.py +0 -0
- third_party/gim/{dkm β gim/dkm}/losses/__init__.py +0 -0
- third_party/gim/{dkm β gim/dkm}/losses/depth_match_regression_loss.py +0 -0
- third_party/gim/{dkm β gim/dkm}/models/__init__.py +0 -0
- third_party/gim/{dkm β gim/dkm}/models/dkm.py +3 -3
- third_party/gim/{dkm β gim/dkm}/models/encoders.py +0 -0
- third_party/gim/{dkm β gim/dkm}/models/model_zoo/DKMv3.py +2 -2
- third_party/gim/{dkm β gim/dkm}/models/model_zoo/__init__.py +0 -0
- third_party/gim/{dkm β gim/dkm}/train/__init__.py +0 -0
- third_party/gim/{dkm β gim/dkm}/train/train.py +0 -0
- third_party/gim/{dkm β gim/dkm}/utils/__init__.py +0 -0
- third_party/gim/{dkm β gim/dkm}/utils/kde.py +0 -0
- third_party/gim/{dkm β gim/dkm}/utils/local_correlation.py +0 -0
- third_party/gim/{dkm β gim/dkm}/utils/transforms.py +0 -0
- third_party/gim/{dkm β gim/dkm}/utils/utils.py +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/__init__.py +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/aliked+NN.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/aliked+lightglue-official.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/aliked+lightglue_homography.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/aliked+lightglue_megadepth.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/disk+NN.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/disk+lightglue-official.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/disk+lightglue_homography.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/disk+lightglue_megadepth.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/sift+NN.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/sift+lightglue-official.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/sift+lightglue_homography.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/sift+lightglue_megadepth.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/superpoint+NN.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/superpoint+lightglue-official.yaml +0 -0
- third_party/gim/{gluefactory β gim/gluefactory}/configs/superpoint+lightglue_homography.yaml +0 -0
hloc/extractors/alike.py
CHANGED
@@ -36,13 +36,13 @@ class Alike(BaseModel):
|
|
36 |
),
|
37 |
)
|
38 |
logger.info("Loaded Alike model from {}".format(model_path))
|
|
|
39 |
self.net = Alike_(
|
40 |
**configs[conf["model_name"]],
|
41 |
device=device,
|
42 |
top_k=conf["top_k"],
|
43 |
scores_th=conf["detection_threshold"],
|
44 |
n_limit=conf["max_keypoints"],
|
45 |
-
model_path=model_path,
|
46 |
)
|
47 |
logger.info("Load Alike model done.")
|
48 |
|
|
|
36 |
),
|
37 |
)
|
38 |
logger.info("Loaded Alike model from {}".format(model_path))
|
39 |
+
configs[conf["model_name"]]["model_path"] = model_path
|
40 |
self.net = Alike_(
|
41 |
**configs[conf["model_name"]],
|
42 |
device=device,
|
43 |
top_k=conf["top_k"],
|
44 |
scores_th=conf["detection_threshold"],
|
45 |
n_limit=conf["max_keypoints"],
|
|
|
46 |
)
|
47 |
logger.info("Load Alike model done.")
|
48 |
|
hloc/extractors/darkfeat.py
CHANGED
@@ -23,7 +23,7 @@ class DarkFeat(BaseModel):
|
|
23 |
def _init(self, conf):
|
24 |
model_path = self._download_model(
|
25 |
repo_id=MODEL_REPO_ID,
|
26 |
-
filename="{}/{}
|
27 |
Path(__file__).stem, self.conf["model_name"]
|
28 |
),
|
29 |
)
|
|
|
23 |
def _init(self, conf):
|
24 |
model_path = self._download_model(
|
25 |
repo_id=MODEL_REPO_ID,
|
26 |
+
filename="{}/{}".format(
|
27 |
Path(__file__).stem, self.conf["model_name"]
|
28 |
),
|
29 |
)
|
hloc/extractors/lanet.py
CHANGED
@@ -33,10 +33,6 @@ class LANet(BaseModel):
|
|
33 |
Path(__file__).stem, self.conf["model_name"]
|
34 |
),
|
35 |
)
|
36 |
-
if not model_path.exists():
|
37 |
-
logger.warning(
|
38 |
-
f"No model found at {model_path}, please download it first."
|
39 |
-
)
|
40 |
self.net = PointModel(is_test=True)
|
41 |
state_dict = torch.load(model_path, map_location="cpu")
|
42 |
self.net.load_state_dict(state_dict["model_state"])
|
|
|
33 |
Path(__file__).stem, self.conf["model_name"]
|
34 |
),
|
35 |
)
|
|
|
|
|
|
|
|
|
36 |
self.net = PointModel(is_test=True)
|
37 |
state_dict = torch.load(model_path, map_location="cpu")
|
38 |
self.net.load_state_dict(state_dict["model_state"])
|
hloc/extractors/sfd2.py
CHANGED
@@ -27,7 +27,7 @@ class SFD2(BaseModel):
|
|
27 |
model_path = self._download_model(
|
28 |
repo_id=MODEL_REPO_ID,
|
29 |
filename="{}/{}".format(
|
30 |
-
|
31 |
),
|
32 |
)
|
33 |
self.net = load_sfd2(weight_path=model_path).eval()
|
|
|
27 |
model_path = self._download_model(
|
28 |
repo_id=MODEL_REPO_ID,
|
29 |
filename="{}/{}".format(
|
30 |
+
"pram", self.conf["model_name"]
|
31 |
),
|
32 |
)
|
33 |
self.net = load_sfd2(weight_path=model_path).eval()
|
hloc/match_dense.py
CHANGED
@@ -257,6 +257,7 @@ confs = {
|
|
257 |
"model": {
|
258 |
"name": "roma",
|
259 |
"weights": "outdoor",
|
|
|
260 |
"max_keypoints": 2000,
|
261 |
"match_threshold": 0.2,
|
262 |
},
|
@@ -273,7 +274,7 @@ confs = {
|
|
273 |
"output": "matches-gim",
|
274 |
"model": {
|
275 |
"name": "gim",
|
276 |
-
"
|
277 |
"max_keypoints": 2000,
|
278 |
"match_threshold": 0.2,
|
279 |
},
|
|
|
257 |
"model": {
|
258 |
"name": "roma",
|
259 |
"weights": "outdoor",
|
260 |
+
"model_name": "roma_outdoor.pth",
|
261 |
"max_keypoints": 2000,
|
262 |
"match_threshold": 0.2,
|
263 |
},
|
|
|
274 |
"output": "matches-gim",
|
275 |
"model": {
|
276 |
"name": "gim",
|
277 |
+
"model_name": "gim_dkm_100h.ckpt",
|
278 |
"max_keypoints": 2000,
|
279 |
"match_threshold": 0.2,
|
280 |
},
|
hloc/matchers/gim.py
CHANGED
@@ -3,46 +3,116 @@ from pathlib import Path
|
|
3 |
|
4 |
import torch
|
5 |
|
6 |
-
from .. import MODEL_REPO_ID, logger
|
7 |
from ..utils.base_model import BaseModel
|
8 |
|
9 |
gim_path = Path(__file__).parent / "../../third_party/gim"
|
10 |
sys.path.append(str(gim_path))
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
class GIM(BaseModel):
|
16 |
default_conf = {
|
17 |
-
"model_name": "gim_lightglue_100h.ckpt",
|
18 |
"match_threshold": 0.2,
|
19 |
"checkpoint_dir": gim_path / "weights",
|
|
|
20 |
}
|
21 |
required_inputs = [
|
22 |
"image0",
|
23 |
"image1",
|
24 |
]
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def _init(self, conf):
|
|
|
27 |
model_path = self._download_model(
|
28 |
repo_id=MODEL_REPO_ID,
|
29 |
-
filename="{}/{}".format(
|
30 |
-
Path(__file__).stem, self.conf["model_name"]
|
31 |
-
),
|
32 |
)
|
33 |
-
|
34 |
self.aspect_ratio = 896 / 672
|
35 |
-
model =
|
36 |
-
state_dict = torch.load(str(model_path), map_location="cpu")
|
37 |
-
if "state_dict" in state_dict.keys():
|
38 |
-
state_dict = state_dict["state_dict"]
|
39 |
-
for k in list(state_dict.keys()):
|
40 |
-
if k.startswith("model."):
|
41 |
-
state_dict[k.replace("model.", "", 1)] = state_dict.pop(k)
|
42 |
-
if "encoder.net.fc" in k:
|
43 |
-
state_dict.pop(k)
|
44 |
-
model.load_state_dict(state_dict)
|
45 |
-
|
46 |
self.net = model
|
47 |
logger.info("Loaded GIM model")
|
48 |
|
@@ -94,6 +164,7 @@ class GIM(BaseModel):
|
|
94 |
return mask
|
95 |
|
96 |
def _forward(self, data):
|
|
|
97 |
image0, image1 = self.pad_image(
|
98 |
data["image0"], self.aspect_ratio
|
99 |
), self.pad_image(data["image1"], self.aspect_ratio)
|
|
|
3 |
|
4 |
import torch
|
5 |
|
6 |
+
from .. import MODEL_REPO_ID, logger, DEVICE
|
7 |
from ..utils.base_model import BaseModel
|
8 |
|
9 |
gim_path = Path(__file__).parent / "../../third_party/gim"
|
10 |
sys.path.append(str(gim_path))
|
11 |
|
12 |
+
def load_model(weight_name, checkpoints_path):
|
13 |
+
# load model
|
14 |
+
model = None
|
15 |
+
detector = None
|
16 |
+
if weight_name == "gim_dkm":
|
17 |
+
from gim.dkm.models.model_zoo.DKMv3 import DKMv3
|
18 |
+
model = DKMv3(weights=None, h=672, w=896)
|
19 |
+
elif weight_name == "gim_loftr":
|
20 |
+
from gim.loftr.loftr import LoFTR
|
21 |
+
from gim.loftr.misc import lower_config
|
22 |
+
from gim.loftr.config import get_cfg_defaults
|
23 |
+
|
24 |
+
model = LoFTR(lower_config(get_cfg_defaults())["loftr"])
|
25 |
+
elif weight_name == "gim_lightglue":
|
26 |
+
from gim.lightglue.superpoint import SuperPoint
|
27 |
+
from gim.lightglue.models.matchers.lightglue import LightGlue
|
28 |
+
|
29 |
+
detector = SuperPoint(
|
30 |
+
{
|
31 |
+
"max_num_keypoints": 2048,
|
32 |
+
"force_num_keypoints": True,
|
33 |
+
"detection_threshold": 0.0,
|
34 |
+
"nms_radius": 3,
|
35 |
+
"trainable": False,
|
36 |
+
}
|
37 |
+
)
|
38 |
+
model = LightGlue(
|
39 |
+
{
|
40 |
+
"filter_threshold": 0.1,
|
41 |
+
"flash": False,
|
42 |
+
"checkpointed": True,
|
43 |
+
}
|
44 |
+
)
|
45 |
+
|
46 |
+
# load state dict
|
47 |
+
if weight_name == "gim_dkm":
|
48 |
+
state_dict = torch.load(checkpoints_path, map_location="cpu")
|
49 |
+
if "state_dict" in state_dict.keys():
|
50 |
+
state_dict = state_dict["state_dict"]
|
51 |
+
for k in list(state_dict.keys()):
|
52 |
+
if k.startswith("model."):
|
53 |
+
state_dict[k.replace("model.", "", 1)] = state_dict.pop(k)
|
54 |
+
if "encoder.net.fc" in k:
|
55 |
+
state_dict.pop(k)
|
56 |
+
model.load_state_dict(state_dict)
|
57 |
+
|
58 |
+
elif weight_name == "gim_loftr":
|
59 |
+
state_dict = torch.load(checkpoints_path, map_location="cpu")
|
60 |
+
if "state_dict" in state_dict.keys():
|
61 |
+
state_dict = state_dict["state_dict"]
|
62 |
+
model.load_state_dict(state_dict)
|
63 |
+
|
64 |
+
elif weight_name == "gim_lightglue":
|
65 |
+
state_dict = torch.load(checkpoints_path, map_location="cpu")
|
66 |
+
if "state_dict" in state_dict.keys():
|
67 |
+
state_dict = state_dict["state_dict"]
|
68 |
+
for k in list(state_dict.keys()):
|
69 |
+
if k.startswith("model."):
|
70 |
+
state_dict.pop(k)
|
71 |
+
if k.startswith("superpoint."):
|
72 |
+
state_dict[k.replace("superpoint.", "", 1)] = state_dict.pop(k)
|
73 |
+
detector.load_state_dict(state_dict)
|
74 |
+
|
75 |
+
state_dict = torch.load(checkpoints_path, map_location="cpu")
|
76 |
+
if "state_dict" in state_dict.keys():
|
77 |
+
state_dict = state_dict["state_dict"]
|
78 |
+
for k in list(state_dict.keys()):
|
79 |
+
if k.startswith("superpoint."):
|
80 |
+
state_dict.pop(k)
|
81 |
+
if k.startswith("model."):
|
82 |
+
state_dict[k.replace("model.", "", 1)] = state_dict.pop(k)
|
83 |
+
model.load_state_dict(state_dict)
|
84 |
+
|
85 |
+
# eval mode
|
86 |
+
if detector is not None:
|
87 |
+
detector = detector.eval().to(DEVICE)
|
88 |
+
model = model.eval().to(DEVICE)
|
89 |
+
return model
|
90 |
|
91 |
|
92 |
class GIM(BaseModel):
|
93 |
default_conf = {
|
|
|
94 |
"match_threshold": 0.2,
|
95 |
"checkpoint_dir": gim_path / "weights",
|
96 |
+
"weights": "gim_dkm",
|
97 |
}
|
98 |
required_inputs = [
|
99 |
"image0",
|
100 |
"image1",
|
101 |
]
|
102 |
+
ckpt_name_dict = {
|
103 |
+
"gim_dkm": "gim_dkm_100h.ckpt",
|
104 |
+
"gim_loftr": "gim_loftr_50h.ckpt",
|
105 |
+
"gim_lightglue": "gim_lightglue_100h.ckpt",
|
106 |
+
}
|
107 |
|
108 |
def _init(self, conf):
|
109 |
+
ckpt_name = self.ckpt_name_dict[conf["weights"]]
|
110 |
model_path = self._download_model(
|
111 |
repo_id=MODEL_REPO_ID,
|
112 |
+
filename="{}/{}".format(Path(__file__).stem, ckpt_name),
|
|
|
|
|
113 |
)
|
|
|
114 |
self.aspect_ratio = 896 / 672
|
115 |
+
model = load_model(conf["weights"], model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
self.net = model
|
117 |
logger.info("Loaded GIM model")
|
118 |
|
|
|
164 |
return mask
|
165 |
|
166 |
def _forward(self, data):
|
167 |
+
# TODO: only support dkm+gim
|
168 |
image0, image1 = self.pad_image(
|
169 |
data["image0"], self.aspect_ratio
|
170 |
), self.pad_image(data["image1"], self.aspect_ratio)
|
hloc/matchers/imp.py
CHANGED
@@ -34,7 +34,7 @@ class IMP(BaseModel):
|
|
34 |
model_path = self._download_model(
|
35 |
repo_id=MODEL_REPO_ID,
|
36 |
filename="{}/{}".format(
|
37 |
-
|
38 |
),
|
39 |
)
|
40 |
|
|
|
34 |
model_path = self._download_model(
|
35 |
repo_id=MODEL_REPO_ID,
|
36 |
filename="{}/{}".format(
|
37 |
+
'pram', self.conf["model_name"]
|
38 |
),
|
39 |
)
|
40 |
|
hloc/matchers/lightglue.py
CHANGED
@@ -33,6 +33,7 @@ class LightGlue(BaseModel):
|
|
33 |
]
|
34 |
|
35 |
def _init(self, conf):
|
|
|
36 |
model_path = self._download_model(
|
37 |
repo_id=MODEL_REPO_ID,
|
38 |
filename="{}/{}".format(
|
|
|
33 |
]
|
34 |
|
35 |
def _init(self, conf):
|
36 |
+
logger.info("Loading lightglue model, {}".format(conf["model_name"]))
|
37 |
model_path = self._download_model(
|
38 |
repo_id=MODEL_REPO_ID,
|
39 |
filename="{}/{}".format(
|
third_party/gim/gim/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Author : xuelun
|
third_party/gim/{dkm β gim/dkm}/__init__.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/benchmarks/__init__.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/benchmarks/hpatches_sequences_homog_benchmark.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/benchmarks/megadepth1500_benchmark.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/benchmarks/megadepth_dense_benchmark.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/benchmarks/scannet_benchmark.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/checkpointing/__init__.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/checkpointing/checkpoint.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/datasets/__init__.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/datasets/megadepth.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/datasets/scannet.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/losses/__init__.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/losses/depth_match_regression_loss.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/models/__init__.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/models/dkm.py
RENAMED
@@ -5,9 +5,9 @@ from PIL import Image
|
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
import torch.nn.functional as F
|
8 |
-
from dkm.utils import get_tuple_transform_ops
|
9 |
from einops import rearrange
|
10 |
-
from dkm.utils.local_correlation import local_correlation
|
11 |
|
12 |
|
13 |
class ConvRefiner(nn.Module):
|
@@ -609,7 +609,7 @@ class RegressionMatcher(nn.Module):
|
|
609 |
if "balanced" not in self.sample_mode:
|
610 |
return good_matches, good_certainty
|
611 |
|
612 |
-
from dkm.utils.kde import kde
|
613 |
density = kde(good_matches, std=0.1)
|
614 |
p = 1 / (density+1)
|
615 |
p[density < 10] = 1e-7 # Basically should have at least 10 perfect neighbours, or around 100 ok ones
|
|
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
import torch.nn.functional as F
|
8 |
+
from gim.dkm.utils import get_tuple_transform_ops
|
9 |
from einops import rearrange
|
10 |
+
from gim.dkm.utils.local_correlation import local_correlation
|
11 |
|
12 |
|
13 |
class ConvRefiner(nn.Module):
|
|
|
609 |
if "balanced" not in self.sample_mode:
|
610 |
return good_matches, good_certainty
|
611 |
|
612 |
+
from gim.dkm.utils.kde import kde
|
613 |
density = kde(good_matches, std=0.1)
|
614 |
p = 1 / (density+1)
|
615 |
p[density < 10] = 1e-7 # Basically should have at least 10 perfect neighbours, or around 100 ok ones
|
third_party/gim/{dkm β gim/dkm}/models/encoders.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/models/model_zoo/DKMv3.py
RENAMED
@@ -1,8 +1,8 @@
|
|
1 |
import torch
|
2 |
|
3 |
from torch import nn
|
4 |
-
from dkm.models.dkm import *
|
5 |
-
from dkm.models.encoders import *
|
6 |
|
7 |
|
8 |
def DKMv3(weights, h, w, symmetric = True, sample_mode= "threshold_balanced", **kwargs):
|
|
|
1 |
import torch
|
2 |
|
3 |
from torch import nn
|
4 |
+
from gim.dkm.models.dkm import *
|
5 |
+
from gim.dkm.models.encoders import *
|
6 |
|
7 |
|
8 |
def DKMv3(weights, h, w, symmetric = True, sample_mode= "threshold_balanced", **kwargs):
|
third_party/gim/{dkm β gim/dkm}/models/model_zoo/__init__.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/train/__init__.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/train/train.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/utils/__init__.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/utils/kde.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/utils/local_correlation.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/utils/transforms.py
RENAMED
File without changes
|
third_party/gim/{dkm β gim/dkm}/utils/utils.py
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/__init__.py
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/aliked+NN.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/aliked+lightglue-official.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/aliked+lightglue_homography.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/aliked+lightglue_megadepth.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/disk+NN.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/disk+lightglue-official.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/disk+lightglue_homography.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/disk+lightglue_megadepth.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/sift+NN.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/sift+lightglue-official.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/sift+lightglue_homography.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/sift+lightglue_megadepth.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/superpoint+NN.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/superpoint+lightglue-official.yaml
RENAMED
File without changes
|
third_party/gim/{gluefactory β gim/gluefactory}/configs/superpoint+lightglue_homography.yaml
RENAMED
File without changes
|