diff --git a/hloc/match_dense.py b/hloc/match_dense.py index 9bf8b3640f0d79be1a75a7544f0fe8a99b742334..5681324c5340d7b184aff737f7b7aa31d261ce56 100644 --- a/hloc/match_dense.py +++ b/hloc/match_dense.py @@ -44,6 +44,25 @@ confs = { "max_error": 1, # max error for assigned keypoints (in px) "cell_size": 1, # size of quantization patch (max 1 kp/patch) }, + "eloftr": { + "output": "matches-eloftr", + "model": { + "name": "eloftr", + "weights": "weights/eloftr_outdoor.ckpt", + "max_keypoints": 2000, + "match_threshold": 0.2, + }, + "preprocessing": { + "grayscale": True, + "resize_max": 1024, + "dfactor": 32, + "width": 640, + "height": 480, + "force_resize": True, + }, + "max_error": 1, # max error for assigned keypoints (in px) + "cell_size": 1, # size of quantization patch (max 1 kp/patch) + }, # "loftr_quadtree": { # "output": "matches-loftr-quadtree", # "model": { diff --git a/hloc/matchers/eloftr.py b/hloc/matchers/eloftr.py new file mode 100644 index 0000000000000000000000000000000000000000..2c1e6245eb720c5b3545f9e2f5d2a6a5a93cb95b --- /dev/null +++ b/hloc/matchers/eloftr.py @@ -0,0 +1,88 @@ +import sys +import warnings +from copy import deepcopy +from pathlib import Path + +import torch + +eloftr_path = Path(__file__).parent / "../../third_party/EfficientLoFTR" +sys.path.append(str(eloftr_path)) + +from src.loftr import LoFTR as ELoFTR_ +from src.loftr import full_default_cfg, opt_default_cfg, reparameter + +from hloc import logger + +from ..utils.base_model import BaseModel + + +class LoFTR(BaseModel): + default_conf = { + "weights": "weights/eloftr_outdoor.ckpt", + "match_threshold": 0.2, + # "sinkhorn_iterations": 20, + "max_keypoints": -1, + # You can choose model type in ['full', 'opt'] + "model_type": "full", # 'full' for best quality, 'opt' for best efficiency + # You can choose numerical precision in ['fp32', 'mp', 'fp16']. 'fp16' for best efficiency + "precision": "fp32", + } + required_inputs = ["image0", "image1"] + + def _init(self, conf): + + if self.conf["model_type"] == "full": + _default_cfg = deepcopy(full_default_cfg) + elif self.conf["model_type"] == "opt": + _default_cfg = deepcopy(opt_default_cfg) + + if self.conf["precision"] == "mp": + _default_cfg["mp"] = True + elif self.conf["precision"] == "fp16": + _default_cfg["half"] = True + model_path = eloftr_path / self.conf["weights"] + cfg = _default_cfg + cfg["match_coarse"]["thr"] = conf["match_threshold"] + # cfg["match_coarse"]["skh_iters"] = conf["sinkhorn_iterations"] + state_dict = torch.load(model_path, map_location="cpu")["state_dict"] + matcher = ELoFTR_(config=cfg) + matcher.load_state_dict(state_dict) + self.net = reparameter(matcher) + + if self.conf["precision"] == "fp16": + self.net = self.net.half() + logger.info(f"Loaded Efficient LoFTR with weights {conf['weights']}") + + def _forward(self, data): + # For consistency with hloc pairs, we refine kpts in image0! + rename = { + "keypoints0": "keypoints1", + "keypoints1": "keypoints0", + "image0": "image1", + "image1": "image0", + "mask0": "mask1", + "mask1": "mask0", + } + data_ = {rename[k]: v for k, v in data.items()} + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + pred = self.net(data_) + pred = { + "keypoints0": data_["mkpts0_f"], + "keypoints1": data_["mkpts1_f"], + } + scores = data_["mconf"] + + top_k = self.conf["max_keypoints"] + if top_k is not None and len(scores) > top_k: + keep = torch.argsort(scores, descending=True)[:top_k] + pred["keypoints0"], pred["keypoints1"] = ( + pred["keypoints0"][keep], + pred["keypoints1"][keep], + ) + scores = scores[keep] + + # Switch back indices + pred = {(rename[k] if k in rename else k): v for k, v in pred.items()} + pred["scores"] = scores + return pred diff --git a/third_party/EfficientLoFTR/.gitignore b/third_party/EfficientLoFTR/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..580c0f0ca88656e5cdef86b4b62b7118bc621051 --- /dev/null +++ b/third_party/EfficientLoFTR/.gitignore @@ -0,0 +1,12 @@ +.vscode/ +__pycache__/ +*.pyc +*.DS_Store +*.swp +*.pth +tmp.* +*/.ipynb_checkpoints/* + +logs/ +weights/ +dump/ \ No newline at end of file diff --git a/third_party/EfficientLoFTR/README.md b/third_party/EfficientLoFTR/README.md new file mode 100644 index 0000000000000000000000000000000000000000..5542a10866ba51492583faf7e90e50d75bb40a71 --- /dev/null +++ b/third_party/EfficientLoFTR/README.md @@ -0,0 +1,69 @@ +# Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like Speed + +### [Project Page](https://zju3dv.github.io/efficientloftr) | [Paper](https://zju3dv.github.io/efficientloftr/files/EfficientLoFTR.pdf) +
+ +> Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like Speed +> [Yifan Wang](https://github.com/wyf2020)\*, [Xingyi He](https://github.com/hxy-123)\*, [Sida Peng](https://pengsida.net), [Dongli Tan](https://github.com/Cuistiano), [Xiaowei Zhou](http://xzhou.me) +> CVPR 2024 + +https://github.com/zju3dv/EfficientLoFTR/assets/69951260/40890d21-180e-4e70-aeba-219178b0d824 + +## TODO List +- [x] Inference code and pretrained models +- [x] Code for reproducing the test-set results +- [ ] Add options of flash-attention and torch.compiler for better performance +- [x] jupyter notebook demo for matching a pair of images +- [ ] Training code + +## Installation +```shell +conda env create -f environment.yaml +conda activate eloftr +pip install torch==2.0.0+cu118 --index-url https://download.pytorch.org/whl/cu118 +pip install -r requirements.txt +``` +The test and training can be downloaded by [download link](https://drive.google.com/drive/folders/1DOcOPZb3-5cWxLqn256AhwUVjBPifhuf?usp=sharing) provided by LoFTR + +We provide the our pretrained model in [download link](https://drive.google.com/drive/folders/1GOw6iVqsB-f1vmG6rNmdCcgwfB4VZ7_Q?usp=sharing) + + +## Reproduce the testing results with pytorch-lightning +You need to setup the testing subsets of ScanNet and MegaDepth first. We create symlinks from the previously downloaded datasets to `data/{{dataset}}/test`. + +```shell +# set up symlinks +ln -s /path/to/scannet-1500-testset/* /path/to/EfficientLoFTR/data/scannet/test +ln -s /path/to/megadepth-1500-testset/* /path/to/EfficientLoFTR/data/megadepth/test +``` +### Inference time +```shell +conda activate eloftr +bash scripts/reproduce_test/indoor_full_time.sh +bash scripts/reproduce_test/indoor_opt_time.sh +``` + +### Accuracy +```shell +conda activate eloftr +bash scripts/reproduce_test/outdoor_full_auc.sh +bash scripts/reproduce_test/outdoor_opt_auc.sh +bash scripts/reproduce_test/indoor_full_auc.sh +bash scripts/reproduce_test/indoor_opt_auc.sh +``` + +## Training +The Training code is coming soon, please stay tuned! + +## Citation + +If you find this code useful for your research, please use the following BibTeX entry. + +```bibtex +@inproceedings{wang2024eloftr, + title={{Efficient LoFTR}: Semi-Dense Local Feature Matching with Sparse-Like Speed}, + author={Wang, Yifan and He, Xingyi and Peng, Sida and Tan, Dongli and Zhou, Xiaowei}, + booktitle={CVPR}, + year={2024} +} +``` diff --git a/third_party/EfficientLoFTR/assets/main_figure.jpg b/third_party/EfficientLoFTR/assets/main_figure.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cbde5fac4f7657af2b9240ca434c3f0c89c07a82 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/main_figure.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f18ca33ce57f1752a9ee9bd3b59211bc968f83b8ab2534209648aea8e1bfec64 +size 2019735 diff --git a/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0015_0.1_0.3.npz b/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0015_0.1_0.3.npz new file mode 100644 index 0000000000000000000000000000000000000000..f4b1b79acff510aab203a8b604955dd89edffc45 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0015_0.1_0.3.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d441df1d380b2ed34449b944d9f13127e695542fa275098d38a6298835672f22 +size 231253 diff --git a/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0015_0.3_0.5.npz b/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0015_0.3_0.5.npz new file mode 100644 index 0000000000000000000000000000000000000000..2b2de7bda22dc6e78e01e3f56ba1dafd46c1c581 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0015_0.3_0.5.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f34b5231d04a84d84378c671dd26854869663b5eafeae2ebaf624a279325139 +size 231253 diff --git a/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0022_0.1_0.3.npz b/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0022_0.1_0.3.npz new file mode 100644 index 0000000000000000000000000000000000000000..5680f3747296a4d565dc9a95c719dce0472c7e63 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0022_0.1_0.3.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ba46e6b9ec291fc7271eb9741d5c75ca04b83d3d7281e049815de9cb9024f4d9 +size 272610 diff --git a/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0022_0.3_0.5.npz b/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0022_0.3_0.5.npz new file mode 100644 index 0000000000000000000000000000000000000000..79f5a30dd0a8cd8b60263fa721a4e5ef8394801c --- /dev/null +++ b/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0022_0.3_0.5.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1f4465da174b96deba61e5328886e4f2e687d34b890efca69e0c838736f8ae12 +size 272610 diff --git a/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0022_0.5_0.7.npz b/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0022_0.5_0.7.npz new file mode 100644 index 0000000000000000000000000000000000000000..0c1315698e217f3be3dbcc85be72fcd16477b9dd --- /dev/null +++ b/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/0022_0.5_0.7.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:684ae10f03001917c3ca0d12d441f372ce3c7e6637bd1277a3cda60df4207fe9 +size 272610 diff --git a/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/megadepth_test_1500.txt b/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/megadepth_test_1500.txt new file mode 100644 index 0000000000000000000000000000000000000000..85a2e16722183d3fe209a9ceb60c43d8315c32cf --- /dev/null +++ b/third_party/EfficientLoFTR/assets/megadepth_test_1500_scene_info/megadepth_test_1500.txt @@ -0,0 +1,5 @@ +0022_0.1_0.3 +0015_0.1_0.3 +0015_0.3_0.5 +0022_0.3_0.5 +0022_0.5_0.7 \ No newline at end of file diff --git a/third_party/EfficientLoFTR/assets/phototourism_sample_images/london_bridge_19481797_2295892421.jpg b/third_party/EfficientLoFTR/assets/phototourism_sample_images/london_bridge_19481797_2295892421.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ca687eeca4471e7bb9806059586fb23863a808a2 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/phototourism_sample_images/london_bridge_19481797_2295892421.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:45167ac6ca1ca2e4f5b4f3b88cea886cbcedf75cdddc6cd3214b93fe5cce93ab +size 295643 diff --git a/third_party/EfficientLoFTR/assets/phototourism_sample_images/london_bridge_49190386_5209386933.jpg b/third_party/EfficientLoFTR/assets/phototourism_sample_images/london_bridge_49190386_5209386933.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ca220b680bb89610b0ed28b4cd45ec65ecacc5f0 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/phototourism_sample_images/london_bridge_49190386_5209386933.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:999d61b530e23ab7da3605de46676d0e89a7947b239ee77e74f6acd2a427ab5c +size 381816 diff --git a/third_party/EfficientLoFTR/assets/phototourism_sample_images/london_bridge_78916675_4568141288.jpg b/third_party/EfficientLoFTR/assets/phototourism_sample_images/london_bridge_78916675_4568141288.jpg new file mode 100644 index 0000000000000000000000000000000000000000..30b481f19532e3939ebaa85fd9e14d6571f72c41 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/phototourism_sample_images/london_bridge_78916675_4568141288.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5b95c1f0c56ead99a87530f7862ca80996b6039267f44c37f7c260cab8757c26 +size 293798 diff --git a/third_party/EfficientLoFTR/assets/phototourism_sample_images/london_bridge_94185272_3874562886.jpg b/third_party/EfficientLoFTR/assets/phototourism_sample_images/london_bridge_94185272_3874562886.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eb928ab921ad5f9d558a1c8976e55ea826e8bbe7 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/phototourism_sample_images/london_bridge_94185272_3874562886.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:39b78b9b7e909ccf2f297265c9922ad34fa35ed580e0fc9edf376bb4e89d3f03 +size 368048 diff --git a/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_06795901_3725050516.jpg b/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_06795901_3725050516.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c417181146161214a70ae2a0be0d5f40fa8c1d5d --- /dev/null +++ b/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_06795901_3725050516.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:32a07bc272b315ff3eaa12ade6aa9a6a9b99cae34a896517695a159bfada3398 +size 469610 diff --git a/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_15148634_5228701572.jpg b/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_15148634_5228701572.jpg new file mode 100644 index 0000000000000000000000000000000000000000..80cc9d56ec68d59ec7870ef5f538cfc98cf9c817 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_15148634_5228701572.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1e95beadf2601a89edc69d66bb565300ed32d44498146ce02fc32f14a47f7c70 +size 457136 diff --git a/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_18627786_5929294590.jpg b/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_18627786_5929294590.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8250dacf14805c073177e4a10c8ae96e92c2e126 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_18627786_5929294590.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:421ea0ef24a6f6480afdf13e1d5483c6f40d4dc6928fd59af6943d26bafad790 +size 145430 diff --git a/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_43351518_2659980686.jpg b/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_43351518_2659980686.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ad666990d8cc65f6e0d76825e000b88409e43ed5 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_43351518_2659980686.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:86a1247908eacbb0dc9d383edc03ee83b50ea5f4779c7c006df32959770ba28a +size 506435 diff --git a/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_58751010_4849458397.jpg b/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_58751010_4849458397.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f0fd5f68f21e54b4b4033e1d9c3b29193bab7f91 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/phototourism_sample_images/piazza_san_marco_58751010_4849458397.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:acd9e43d253516b23756339f0e82979a69f2f01fef9484c8ca1da5a8c9b3ba98 +size 601365 diff --git a/third_party/EfficientLoFTR/assets/phototourism_sample_images/st_pauls_cathedral_30776973_2635313996.jpg b/third_party/EfficientLoFTR/assets/phototourism_sample_images/st_pauls_cathedral_30776973_2635313996.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c9ee7aca8caeb5bc6a22ecf0c4f789d467741079 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/phototourism_sample_images/st_pauls_cathedral_30776973_2635313996.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:68de07942d852f81915367de73adfb5ff612646f33d5a4d523d83df5d6bbdab7 +size 531254 diff --git a/third_party/EfficientLoFTR/assets/phototourism_sample_images/st_pauls_cathedral_37347628_10902811376.jpg b/third_party/EfficientLoFTR/assets/phototourism_sample_images/st_pauls_cathedral_37347628_10902811376.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1828d6e5831c63925e60cfc4e2334beb73a601b2 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/phototourism_sample_images/st_pauls_cathedral_37347628_10902811376.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9e1e6f984286998887ccbd1c6c99632d6e97936eea185b9ee93476badacbde11 +size 646814 diff --git a/third_party/EfficientLoFTR/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg b/third_party/EfficientLoFTR/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b61efcbf0dc78652eae119d6e8ada4c087f9d70d --- /dev/null +++ b/third_party/EfficientLoFTR/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:05ad1e66d7fee2f9e11766160522ad823f1fcc0ab8a5740a6c89b1765228ea32 +size 334048 diff --git a/third_party/EfficientLoFTR/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg b/third_party/EfficientLoFTR/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg new file mode 100644 index 0000000000000000000000000000000000000000..11f51edc25202ed31722422798c87f88dcb296c9 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8ed3a68939b922bc2362b1d8051c24d2ca03be6a431fcc7c423e157012debd5a +size 424584 diff --git a/third_party/EfficientLoFTR/assets/scannet_test_1500/intrinsics.npz b/third_party/EfficientLoFTR/assets/scannet_test_1500/intrinsics.npz new file mode 100644 index 0000000000000000000000000000000000000000..bcba553dab19a57fcea336e69abd77ca9e87bce1 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/scannet_test_1500/intrinsics.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:25ac102c69e2e4e2f0ab9c0d64f4da2b815e0901630768bdfde30080ced3605c +size 23922 diff --git a/third_party/EfficientLoFTR/assets/scannet_test_1500/scannet_test.txt b/third_party/EfficientLoFTR/assets/scannet_test_1500/scannet_test.txt new file mode 100644 index 0000000000000000000000000000000000000000..45cc7ffd9ca2fb5750ce3e545f58410674d7ab9d --- /dev/null +++ b/third_party/EfficientLoFTR/assets/scannet_test_1500/scannet_test.txt @@ -0,0 +1 @@ +test.npz \ No newline at end of file diff --git a/third_party/EfficientLoFTR/assets/scannet_test_1500/statistics.json b/third_party/EfficientLoFTR/assets/scannet_test_1500/statistics.json new file mode 100644 index 0000000000000000000000000000000000000000..0e3ff582943ac12711da7a392a55f0a42d3b4449 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/scannet_test_1500/statistics.json @@ -0,0 +1,102 @@ +{ + "scene0707_00": 15, + "scene0708_00": 15, + "scene0709_00": 15, + "scene0710_00": 15, + "scene0711_00": 15, + "scene0712_00": 15, + "scene0713_00": 15, + "scene0714_00": 15, + "scene0715_00": 15, + "scene0716_00": 15, + "scene0717_00": 15, + "scene0718_00": 15, + "scene0719_00": 15, + "scene0720_00": 15, + "scene0721_00": 15, + "scene0722_00": 15, + "scene0723_00": 15, + "scene0724_00": 15, + "scene0725_00": 15, + "scene0726_00": 15, + "scene0727_00": 15, + "scene0728_00": 15, + "scene0729_00": 15, + "scene0730_00": 15, + "scene0731_00": 15, + "scene0732_00": 15, + "scene0733_00": 15, + "scene0734_00": 15, + "scene0735_00": 15, + "scene0736_00": 15, + "scene0737_00": 15, + "scene0738_00": 15, + "scene0739_00": 15, + "scene0740_00": 15, + "scene0741_00": 15, + "scene0742_00": 15, + "scene0743_00": 15, + "scene0744_00": 15, + "scene0745_00": 15, + "scene0746_00": 15, + "scene0747_00": 15, + "scene0748_00": 15, + "scene0749_00": 15, + "scene0750_00": 15, + "scene0751_00": 15, + "scene0752_00": 15, + "scene0753_00": 15, + "scene0754_00": 15, + "scene0755_00": 15, + "scene0756_00": 15, + "scene0757_00": 15, + "scene0758_00": 15, + "scene0759_00": 15, + "scene0760_00": 15, + "scene0761_00": 15, + "scene0762_00": 15, + "scene0763_00": 15, + "scene0764_00": 15, + "scene0765_00": 15, + "scene0766_00": 15, + "scene0767_00": 15, + "scene0768_00": 15, + "scene0769_00": 15, + "scene0770_00": 15, + "scene0771_00": 15, + "scene0772_00": 15, + "scene0773_00": 15, + "scene0774_00": 15, + "scene0775_00": 15, + "scene0776_00": 15, + "scene0777_00": 15, + "scene0778_00": 15, + "scene0779_00": 15, + "scene0780_00": 15, + "scene0781_00": 15, + "scene0782_00": 15, + "scene0783_00": 15, + "scene0784_00": 15, + "scene0785_00": 15, + "scene0786_00": 15, + "scene0787_00": 15, + "scene0788_00": 15, + "scene0789_00": 15, + "scene0790_00": 15, + "scene0791_00": 15, + "scene0792_00": 15, + "scene0793_00": 15, + "scene0794_00": 15, + "scene0795_00": 15, + "scene0796_00": 15, + "scene0797_00": 15, + "scene0798_00": 15, + "scene0799_00": 15, + "scene0800_00": 15, + "scene0801_00": 15, + "scene0802_00": 15, + "scene0803_00": 15, + "scene0804_00": 15, + "scene0805_00": 15, + "scene0806_00": 15 +} \ No newline at end of file diff --git a/third_party/EfficientLoFTR/assets/scannet_test_1500/test.npz b/third_party/EfficientLoFTR/assets/scannet_test_1500/test.npz new file mode 100644 index 0000000000000000000000000000000000000000..d2011c2913a9ae1311d18b08c089bd999ba3ad30 --- /dev/null +++ b/third_party/EfficientLoFTR/assets/scannet_test_1500/test.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b982b9c1f762e7d31af552ecc1ccf1a6add013197f74ec69c84a6deaa6f580ad +size 71687 diff --git a/third_party/EfficientLoFTR/configs/data/__init__.py b/third_party/EfficientLoFTR/configs/data/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/third_party/EfficientLoFTR/configs/data/base.py b/third_party/EfficientLoFTR/configs/data/base.py new file mode 100644 index 0000000000000000000000000000000000000000..03aab160fa4137ccc04380f94854a56fbb549074 --- /dev/null +++ b/third_party/EfficientLoFTR/configs/data/base.py @@ -0,0 +1,35 @@ +""" +The data config will be the last one merged into the main config. +Setups in data configs will override all existed setups! +""" + +from yacs.config import CfgNode as CN +_CN = CN() +_CN.DATASET = CN() +_CN.TRAINER = CN() + +# training data config +_CN.DATASET.TRAIN_DATA_ROOT = None +_CN.DATASET.TRAIN_POSE_ROOT = None +_CN.DATASET.TRAIN_NPZ_ROOT = None +_CN.DATASET.TRAIN_LIST_PATH = None +_CN.DATASET.TRAIN_INTRINSIC_PATH = None +# validation set config +_CN.DATASET.VAL_DATA_ROOT = None +_CN.DATASET.VAL_POSE_ROOT = None +_CN.DATASET.VAL_NPZ_ROOT = None +_CN.DATASET.VAL_LIST_PATH = None +_CN.DATASET.VAL_INTRINSIC_PATH = None + +# testing data config +_CN.DATASET.TEST_DATA_ROOT = None +_CN.DATASET.TEST_POSE_ROOT = None +_CN.DATASET.TEST_NPZ_ROOT = None +_CN.DATASET.TEST_LIST_PATH = None +_CN.DATASET.TEST_INTRINSIC_PATH = None + +# dataset config +_CN.DATASET.MIN_OVERLAP_SCORE_TRAIN = 0.4 +_CN.DATASET.MIN_OVERLAP_SCORE_TEST = 0.0 # for both test and val + +cfg = _CN diff --git a/third_party/EfficientLoFTR/configs/data/debug/.gitignore b/third_party/EfficientLoFTR/configs/data/debug/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..94548af5beba7825284af746324c8dc5b2f1ea31 --- /dev/null +++ b/third_party/EfficientLoFTR/configs/data/debug/.gitignore @@ -0,0 +1,3 @@ +* +*/ +!.gitignore diff --git a/third_party/EfficientLoFTR/configs/data/megadepth_test_1500.py b/third_party/EfficientLoFTR/configs/data/megadepth_test_1500.py new file mode 100644 index 0000000000000000000000000000000000000000..876bd4cad7772922d81c83ad3107ab6b8af599a3 --- /dev/null +++ b/third_party/EfficientLoFTR/configs/data/megadepth_test_1500.py @@ -0,0 +1,13 @@ +from configs.data.base import cfg + +TEST_BASE_PATH = "assets/megadepth_test_1500_scene_info" + +cfg.DATASET.TEST_DATA_SOURCE = "MegaDepth" +cfg.DATASET.TEST_DATA_ROOT = "data/megadepth/test" +cfg.DATASET.TEST_NPZ_ROOT = f"{TEST_BASE_PATH}" +cfg.DATASET.TEST_LIST_PATH = f"{TEST_BASE_PATH}/megadepth_test_1500.txt" + +cfg.DATASET.MGDPT_IMG_RESIZE = 832 +cfg.DATASET.MIN_OVERLAP_SCORE_TEST = 0.0 + +cfg.DATASET.NPE_NAME = 'megadepth' \ No newline at end of file diff --git a/third_party/EfficientLoFTR/configs/data/megadepth_trainval_832.py b/third_party/EfficientLoFTR/configs/data/megadepth_trainval_832.py new file mode 100644 index 0000000000000000000000000000000000000000..b4ce0dd463cf09d031464176a5f28a6fe5ba2ad3 --- /dev/null +++ b/third_party/EfficientLoFTR/configs/data/megadepth_trainval_832.py @@ -0,0 +1,24 @@ +from configs.data.base import cfg + + +TRAIN_BASE_PATH = "data/megadepth/index" +cfg.DATASET.TRAINVAL_DATA_SOURCE = "MegaDepth" +cfg.DATASET.TRAIN_DATA_ROOT = "data/megadepth/train" +cfg.DATASET.TRAIN_NPZ_ROOT = f"{TRAIN_BASE_PATH}/scene_info_0.1_0.7" +cfg.DATASET.TRAIN_LIST_PATH = f"{TRAIN_BASE_PATH}/trainvaltest_list/train_list.txt" +cfg.DATASET.MIN_OVERLAP_SCORE_TRAIN = 0.0 + +TEST_BASE_PATH = "data/megadepth/index" +cfg.DATASET.TEST_DATA_SOURCE = "MegaDepth" +cfg.DATASET.VAL_DATA_ROOT = cfg.DATASET.TEST_DATA_ROOT = "data/megadepth/test" +cfg.DATASET.VAL_NPZ_ROOT = cfg.DATASET.TEST_NPZ_ROOT = f"{TEST_BASE_PATH}/scene_info_val_1500" +cfg.DATASET.VAL_LIST_PATH = cfg.DATASET.TEST_LIST_PATH = f"{TEST_BASE_PATH}/trainvaltest_list/val_list.txt" +cfg.DATASET.MIN_OVERLAP_SCORE_TEST = 0.0 # for both test and val + +# 368 scenes in total for MegaDepth +# (with difficulty balanced (further split each scene to 3 sub-scenes)) +cfg.TRAINER.N_SAMPLES_PER_SUBSET = 100 + +cfg.DATASET.MGDPT_IMG_RESIZE = 832 # for training on 32GB meme GPUs + +cfg.DATASET.NPE_NAME = 'megadepth' \ No newline at end of file diff --git a/third_party/EfficientLoFTR/configs/data/scannet_test_1500.py b/third_party/EfficientLoFTR/configs/data/scannet_test_1500.py new file mode 100644 index 0000000000000000000000000000000000000000..ca98ed4b120d699f8de00016f169a83c0c8ddac8 --- /dev/null +++ b/third_party/EfficientLoFTR/configs/data/scannet_test_1500.py @@ -0,0 +1,16 @@ +from configs.data.base import cfg + +TEST_BASE_PATH = "assets/scannet_test_1500" + +cfg.DATASET.TEST_DATA_SOURCE = "ScanNet" +cfg.DATASET.TEST_DATA_ROOT = "data/scannet/test" +cfg.DATASET.TEST_NPZ_ROOT = f"{TEST_BASE_PATH}" +cfg.DATASET.TEST_LIST_PATH = f"{TEST_BASE_PATH}/scannet_test.txt" +cfg.DATASET.TEST_INTRINSIC_PATH = f"{TEST_BASE_PATH}/intrinsics.npz" + +cfg.DATASET.MIN_OVERLAP_SCORE_TEST = 0.0 + +cfg.DATASET.SCAN_IMG_RESIZEX = 640 +cfg.DATASET.SCAN_IMG_RESIZEY = 480 + +cfg.DATASET.NPE_NAME = 'scannet' \ No newline at end of file diff --git a/third_party/EfficientLoFTR/configs/loftr/eloftr_full.py b/third_party/EfficientLoFTR/configs/loftr/eloftr_full.py new file mode 100644 index 0000000000000000000000000000000000000000..24ff5f33b6cf6ee11c4b564050fbe736126b8bc5 --- /dev/null +++ b/third_party/EfficientLoFTR/configs/loftr/eloftr_full.py @@ -0,0 +1,36 @@ +from src.config.default import _CN as cfg + +# training config +cfg.TRAINER.CANONICAL_LR = 8e-3 +cfg.TRAINER.WARMUP_STEP = 1875 # 3 epochs +cfg.TRAINER.WARMUP_RATIO = 0.1 +cfg.TRAINER.MSLR_MILESTONES = [8, 12, 16, 20, 24] +cfg.TRAINER.RANSAC_PIXEL_THR = 0.5 +cfg.TRAINER.OPTIMIZER = "adamw" +cfg.TRAINER.ADAMW_DECAY = 0.1 +cfg.TRAINER.EPI_ERR_THR = 5e-4 # recommendation: 5e-4 for ScanNet, 1e-4 for MegaDepth (from SuperGlue) +cfg.TRAINER.GRADIENT_CLIPPING = 0.0 +cfg.LOFTR.LOSS.FINE_TYPE = 'l2' # ['l2_with_std', 'l2'] +cfg.LOFTR.LOSS.COARSE_OVERLAP_WEIGHT = True +cfg.LOFTR.LOSS.FINE_OVERLAP_WEIGHT = True +cfg.LOFTR.LOSS.LOCAL_WEIGHT = 0.25 +cfg.LOFTR.MATCH_COARSE.TRAIN_COARSE_PERCENT = 0.3 +cfg.LOFTR.MATCH_COARSE.SPARSE_SPVS = True + +# model config +cfg.LOFTR.RESOLUTION = (8, 1) +cfg.LOFTR.FINE_WINDOW_SIZE = 8 # window_size in fine_level, must be even +cfg.LOFTR.ALIGN_CORNER = False +cfg.LOFTR.MP = True # just for reproducing paper, FP16 is much faster on modern GPUs +cfg.LOFTR.REPLACE_NAN = True +cfg.LOFTR.EVAL_TIMES = 5 +cfg.LOFTR.COARSE.NO_FLASH = True # Not use Flash-Attention just for reproducing paper timing +cfg.LOFTR.MATCH_COARSE.THR = 0.2 # recommend 0.2 for full model and 25 for optimized model +cfg.LOFTR.MATCH_FINE.LOCAL_REGRESS_TEMPERATURE = 10.0 +cfg.LOFTR.MATCH_FINE.LOCAL_REGRESS_SLICEDIM = 8 + +# dataset config +cfg.DATASET.FP16 = False + +# full model config +cfg.LOFTR.MATCH_COARSE.FP16MATMUL = False \ No newline at end of file diff --git a/third_party/EfficientLoFTR/configs/loftr/eloftr_optimized.py b/third_party/EfficientLoFTR/configs/loftr/eloftr_optimized.py new file mode 100644 index 0000000000000000000000000000000000000000..5c044e49db7ecb31e22570d8295d8ac617dcf64c --- /dev/null +++ b/third_party/EfficientLoFTR/configs/loftr/eloftr_optimized.py @@ -0,0 +1,37 @@ +from src.config.default import _CN as cfg + +# training config +cfg.TRAINER.CANONICAL_LR = 8e-3 +cfg.TRAINER.WARMUP_STEP = 1875 # 3 epochs +cfg.TRAINER.WARMUP_RATIO = 0.1 +cfg.TRAINER.MSLR_MILESTONES = [8, 12, 16, 20, 24] +cfg.TRAINER.RANSAC_PIXEL_THR = 0.5 +cfg.TRAINER.OPTIMIZER = "adamw" +cfg.TRAINER.ADAMW_DECAY = 0.1 +cfg.TRAINER.EPI_ERR_THR = 5e-4 # recommendation: 5e-4 for ScanNet, 1e-4 for MegaDepth (from SuperGlue) +cfg.TRAINER.GRADIENT_CLIPPING = 0.0 +cfg.LOFTR.LOSS.FINE_TYPE = 'l2' # ['l2_with_std', 'l2'] +cfg.LOFTR.LOSS.COARSE_OVERLAP_WEIGHT = True +cfg.LOFTR.LOSS.FINE_OVERLAP_WEIGHT = True +cfg.LOFTR.LOSS.LOCAL_WEIGHT = 0.25 +cfg.LOFTR.MATCH_COARSE.TRAIN_COARSE_PERCENT = 0.3 +cfg.LOFTR.MATCH_COARSE.SPARSE_SPVS = True + +# model config +cfg.LOFTR.RESOLUTION = (8, 1) +cfg.LOFTR.FINE_WINDOW_SIZE = 8 # window_size in fine_level, must be even +cfg.LOFTR.ALIGN_CORNER = False +cfg.LOFTR.MP = True # just for reproducing paper, FP16 is much faster on modern GPUs +cfg.LOFTR.REPLACE_NAN = True +cfg.LOFTR.EVAL_TIMES = 5 +cfg.LOFTR.COARSE.NO_FLASH = True # Not use Flash-Attention just for reproducing paper timing +cfg.LOFTR.MATCH_FINE.LOCAL_REGRESS_TEMPERATURE = 10.0 +cfg.LOFTR.MATCH_FINE.LOCAL_REGRESS_SLICEDIM = 8 + +# dataset config +cfg.DATASET.FP16 = False + +# optimized model config +cfg.LOFTR.MATCH_COARSE.FP16MATMUL = True +cfg.LOFTR.MATCH_COARSE.SKIP_SOFTMAX = True +cfg.LOFTR.MATCH_COARSE.THR = 25.0 # recommend 0.2 for full model and 25 for optimized model \ No newline at end of file diff --git a/third_party/EfficientLoFTR/data/megadepth/index/.gitignore b/third_party/EfficientLoFTR/data/megadepth/index/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..5e7d2734cfc60289debf74293817c0a8f572ff32 --- /dev/null +++ b/third_party/EfficientLoFTR/data/megadepth/index/.gitignore @@ -0,0 +1,4 @@ +# Ignore everything in this directory +* +# Except this file +!.gitignore diff --git a/third_party/EfficientLoFTR/data/megadepth/test/.gitignore b/third_party/EfficientLoFTR/data/megadepth/test/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..5e7d2734cfc60289debf74293817c0a8f572ff32 --- /dev/null +++ b/third_party/EfficientLoFTR/data/megadepth/test/.gitignore @@ -0,0 +1,4 @@ +# Ignore everything in this directory +* +# Except this file +!.gitignore diff --git a/third_party/EfficientLoFTR/data/megadepth/train/.gitignore b/third_party/EfficientLoFTR/data/megadepth/train/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..5e7d2734cfc60289debf74293817c0a8f572ff32 --- /dev/null +++ b/third_party/EfficientLoFTR/data/megadepth/train/.gitignore @@ -0,0 +1,4 @@ +# Ignore everything in this directory +* +# Except this file +!.gitignore diff --git a/third_party/EfficientLoFTR/data/scannet/index/.gitignore b/third_party/EfficientLoFTR/data/scannet/index/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..94548af5beba7825284af746324c8dc5b2f1ea31 --- /dev/null +++ b/third_party/EfficientLoFTR/data/scannet/index/.gitignore @@ -0,0 +1,3 @@ +* +*/ +!.gitignore diff --git a/third_party/EfficientLoFTR/data/scannet/test/.gitignore b/third_party/EfficientLoFTR/data/scannet/test/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..94548af5beba7825284af746324c8dc5b2f1ea31 --- /dev/null +++ b/third_party/EfficientLoFTR/data/scannet/test/.gitignore @@ -0,0 +1,3 @@ +* +*/ +!.gitignore diff --git a/third_party/EfficientLoFTR/environment.yaml b/third_party/EfficientLoFTR/environment.yaml new file mode 100644 index 0000000000000000000000000000000000000000..52bc6f68c1b0d7c0f020453427873370753234bc --- /dev/null +++ b/third_party/EfficientLoFTR/environment.yaml @@ -0,0 +1,7 @@ +name: eloftr +channels: + - pytorch + - nvidia +dependencies: + - python=3.8 + - pip \ No newline at end of file diff --git a/third_party/EfficientLoFTR/notebooks/demo_single_pair.ipynb b/third_party/EfficientLoFTR/notebooks/demo_single_pair.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..21036882f5243a1adab978bbe509b3ae6f5877f7 --- /dev/null +++ b/third_party/EfficientLoFTR/notebooks/demo_single_pair.ipynb @@ -0,0 +1,173 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Demo EfficientLoFTR on a single pair of images\n", + "\n", + "This notebook shows how to use the eloftr matcher with different model type and numerical precision on the pretrained weights." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.chdir(\"..\")\n", + "from copy import deepcopy\n", + "\n", + "import torch\n", + "import cv2\n", + "import numpy as np\n", + "import matplotlib.cm as cm\n", + "from src.utils.plotting import make_matching_figure" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Outdoor Example\n", + "\n", + "We recommend using our pre-trained model for input in outdoor environments because our model has only been trained on MegaDepth, and there exists a domain gap between indoor and outdoor data." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'backbone_type': 'RepVGG', 'align_corner': False, 'resolution': (8, 1), 'fine_window_size': 8, 'mp': False, 'replace_nan': True, 'half': False, 'backbone': {'block_dims': [64, 128, 256]}, 'coarse': {'d_model': 256, 'd_ffn': 256, 'nhead': 8, 'layer_names': ['self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross'], 'agg_size0': 4, 'agg_size1': 4, 'no_flash': False, 'rope': True, 'npe': [832, 832, 832, 832]}, 'match_coarse': {'thr': 0.2, 'border_rm': 2, 'dsmax_temperature': 0.1, 'skip_softmax': False, 'fp16matmul': False, 'train_coarse_percent': 0.2, 'train_pad_num_gt_min': 200}, 'match_fine': {'local_regress_temperature': 10.0, 'local_regress_slicedim': 8}}\n" + ] + } + ], + "source": [ + "from src.loftr import LoFTR, full_default_cfg, opt_default_cfg, reparameter\n", + "\n", + "# You can choose model type in ['full', 'opt']\n", + "model_type = 'full' # 'full' for best quality, 'opt' for best efficiency\n", + "\n", + "# You can choose numerical precision in ['fp32', 'mp', 'fp16']. 'fp16' for best efficiency\n", + "precision = 'fp32' # Enjoy near-lossless precision with Mixed Precision (MP) / FP16 computation if you have a modern GPU (recommended NVIDIA architecture >= SM_70).\n", + "\n", + "# You can also change the default values like thr. and npe (based on input image size)\n", + "\n", + "if model_type == 'full':\n", + " _default_cfg = deepcopy(full_default_cfg)\n", + "elif model_type == 'opt':\n", + " _default_cfg = deepcopy(opt_default_cfg)\n", + " \n", + "if precision == 'mp':\n", + " _default_cfg['mp'] = True\n", + "elif precision == 'fp16':\n", + " _default_cfg['half'] = True\n", + " \n", + "print(_default_cfg)\n", + "matcher = LoFTR(config=_default_cfg)\n", + "\n", + "matcher.load_state_dict(torch.load(\"weights/eloftr_outdoor.ckpt\")['state_dict'])\n", + "matcher = reparameter(matcher) # no reparameterization will lead to low performance\n", + "\n", + "if precision == 'fp16':\n", + " matcher = matcher.half()\n", + "\n", + "matcher = matcher.eval().cuda()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Load example images\n", + "img0_pth = \"assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg\"\n", + "img1_pth = \"assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg\"\n", + "img0_raw = cv2.imread(img0_pth, cv2.IMREAD_GRAYSCALE)\n", + "img1_raw = cv2.imread(img1_pth, cv2.IMREAD_GRAYSCALE)\n", + "img0_raw = cv2.resize(img0_raw, (img0_raw.shape[1]//32*32, img0_raw.shape[0]//32*32)) # input size shuold be divisible by 32\n", + "img1_raw = cv2.resize(img1_raw, (img1_raw.shape[1]//32*32, img1_raw.shape[0]//32*32))\n", + "\n", + "if precision == 'fp16':\n", + " img0 = torch.from_numpy(img0_raw)[None][None].half().cuda() / 255.\n", + " img1 = torch.from_numpy(img1_raw)[None][None].half().cuda() / 255.\n", + "else:\n", + " img0 = torch.from_numpy(img0_raw)[None][None].cuda() / 255.\n", + " img1 = torch.from_numpy(img1_raw)[None][None].cuda() / 255.\n", + "batch = {'image0': img0, 'image1': img1}\n", + "\n", + "# Inference with EfficientLoFTR and get prediction\n", + "with torch.no_grad():\n", + " if precision == 'mp':\n", + " with torch.autocast(enabled=True, device_type='cuda'):\n", + " matcher(batch)\n", + " else:\n", + " matcher(batch)\n", + " mkpts0 = batch['mkpts0_f'].cpu().numpy()\n", + " mkpts1 = batch['mkpts1_f'].cpu().numpy()\n", + " mconf = batch['mconf'].cpu().numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAugAAAEZCAYAAADFfNCxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAAuJAAALiQE3ycutAAEAAElEQVR4nOz9d3wk2V3uj7+rc261chxpRpNznpE2p3HEvoDh+hqcwRi4ly/BOCzgBGvA+Gfggi9gmwtevMaAcbi2Wcdde4M0OecZjXKWOofq7gq/P1rVKtVUt6TZtb2263m9+qVWddVJdbrrOc95zucIqqqqWLBgwYIFCxYsWLBg4SUB24+6ABYsWLBgwYIFCxYsWFiERdAtWLBgwYIFCxYsWHgJwSLoFixYsGDBggULFiy8hGARdAsWLFiwYMGCBQsWXkKwCLoFCxYsWLBgwYIFCy8hWATdggULFixYsGDBgoWXECyCbsGCBQsWLFiwYMHCSwgWQbdgwYIFCxYsWLBg4SUEi6BbsGDBggULFixYsPASgkXQLViwYMGCBQsWfgiQZRlZln/UxbDwYwCLoFuwYMGCBQsWLPyAoKoqqqqiKAqDg4P09fWRz+d/1MWy8BKHRdAtWLBgwYIFCxZ+gFBVlWKxSF9fH8eOHSOXy/2oi2ThJQ6LoFuwYMGCBQsWLPyAoKoqsixz5coVjh8/jsvlwuFw/KiLZeElDougW7BgwYIFCxYs/ACRTqf5zOe/wNG4m28/08/ly5dRFOVHXSwLL2FYQzgLFixYsGDBgoUfIGZmZvl0+ztJb2zEk57iwf4vsWfPHmw2Sye1YA6rZ1iwYMGCBQsWLLzIGM/CfwzB75yA15xuIh1sA4cLsWYNz/QfZ2pqClVVf9TFtPAShaWgW7BgwYIFCxYsvABICpyPQd8sPD9T+jufh8P1pderxGM4nr9Ak+RlrDBHen6Gqakp2traUFXVUtIt3AaLoFuwYMGCBQsWLKwCsTwcnVsk48fnoMEDvQ1wdyO8exvsiIDDBsWizBNnRtn/+PvwFIvkHA6O/tqv4ff7ARAE4UdcGwsvRVgE3YIFCxYsWLBgoQJUFW6kFsj4AiG/mYI9tSVC/hub4LN3Q6tv8Ro5nydx7DSx/n7mn3uO8FNPYS8WEQC7JGFXFJqamhAEwSLoFkxhEXQLFixYsGDBgoUF5CQ4Ob+ojvfNgkCJjPc2wpu6YX8deHUMSpycZPIb/UT7+oj195M4dQpvZye1vb00HDmC561v5XMfeYxNQ+c5Fu6gqaEBp9P5I6ujhZc+BNVaoWDBggULFixY+CnFRHapd/xsFDaEFgj5AinfEARN6FYkieT588T6+4n19RHt66MwM0PNgQNEenup7e2l5vBh3PX1pfMVhUwmw8Q/7WGDb4Br8QbGdz3BXXffjcfjASybi4XbYRF0CxYsWLBgwcJPBSQFLsTg+dlFu8pcHg7VL5Lxw/UQcS9eU5ifJ3b0aFkdjx8/jqu+ntreXiI9PUR6ewnt3InNqIgrRZg/hzLdhzr1HPbh/yh/NP7gJdrWbv0h1drCjyMsi4sFCxYsWLBg4ScS8QIc1anjx+ag3r1Ixt+1DXYuLOYEUBWF9JUrDOvU8dzQEOG9e4n09ND1m79J7Wc/i6e19fbMslMw07/wOgpzJ8HXDA2HkeoOceP6FTY4L3I8uoFmvD/chrDwYwdLQbdgwYIFCxYs/NhDVUuLN/Xe8RtJ2F271K7SplvMWUwmiR8/XibjsaNHsXu9ZatKpKeH8N692BesKGUoRZg/WyLiGinPTUPDAWjsWXgdBm8TiqJw7do1Hn/8caanp3G6XPgOv5Xu7ft5xx47LvsPtZks/JjAUtAtWLBgwYIFCz92yElwan6pXUVlkYz/8rrSYk7fAtNRVZXswACjC1aVWF8f6atXCW7fTqSnh/Y3vYmdf//3eDs7b/eEZyeXkvG5U+BrKRHxprtgx+9B7U6w3b7ws1gs8tz3vkfwX/+VplSKJ171R5ye2od9RmA8rfKR+ywPuoXbYSnoFixYsGDBgoWXPCazS8n4mSisDy4q43cZFnPKuRzxkycX1fH+flRZJtLTU1bHaw4cwBEILM1ILkD0nM6u0g/iLNQfKKniOnV8OaRFhaf6b/HP//cbjNLKzTWHSXsjSA43NkHgnXvgE0cscm7hdlgE3YIFCxYsWLDwkoKkwMX4UrvKjKhbzNkAPQ1LF3PmRkfLRDzW10fy3Dn8GzaUF3LW9vbi37ixgjreb1DH23RkvAdqd5iq43qoKlweTvBU/zDP38pzJlfDLV8nLbEB1s1fYOOFb9I9cpQpZ5rvv+Fv2HfPw/z5Qx4iXisWuoXbYRF0CxYsWLBgwcKPFNpizr4FhfzYHNS6l3rHd+kWcyqFAomzZ5eo41IiQc2hQ4vq+KFDuCKRpRnJBYiehWkdIc/PLajjeu9447JljmUknj46zDMXo5yYc3HB0QmyxNbkVfb649zV7eX+u9bRsLaNv/u7v+PZf/kXAvk8w7W1dK1bx0c+8hFrsyILFWF50C1YsGDBggULPzRoizn7dHaV68kSAe9thHdshH++C9r9i9fkp6eZ/X8lZTzW30/85Em87e1Eenupf/BBNv7hHxLctg3BblhxmZlYJOKzR3XqeA803ws737OgjlenQ7ICZ67N8fSxUfpHJM4U6hnztdE5n2WXEOW1zSof36uwr2cLDu/dS65NJpNMT0+TbWyk6HQSRiWbSzM+PUFjY6NFzi2YwlLQLViwYMGCBQs/MIgynJxbtKr0zZYIb2/jokJ+oH5xMaciSaQuXiTWv7AzZ18f4uQkNfv3l9Tx3l4ihw/jbjSo3HIB5s8sXcyZn4OGg4vqeMOhFanj0/E8331+kOeuJDgR83LJsxZ3PsP2zHX2hdLcszHA/fdsoG5Ni+n1GrUqFos8//zz/MM//APJZJLt7Vn+589f4f/c92tknQHekDrCgeAObDabRdQtLIFF0C1YsGDBggULLxomszoyPlNazLkuuEjG72qEjaHFxZyFWIzY0aNldTx27BjOSKRsVant7SW0axc2l2tpRpnxpWR8/jT423Vk/PCK1PGCpHLi/CRPnZrg6JjKWaWZWXcD3dHL7HbM0NNu44H9rWzdvwm7q7oPXYOqqiiKwvnz5/n033+MsHeIxh122vf7mG1uY6BuLQWHm9CAk0db3oHP51s+UQs/VbAIugULFixYsGDhjiArcCG+aFXpm4VpEQ7WLURWaYDDDSU/OSxsBHTtWnkhZ7Svj+zAAKHdu5fEHve2txsy0tRxvXc8uqCOH14k5N6GZcs8PJ3hqecHee56mlOpIFe8a6nJzLI9f4sDEZF7toa5555NhBrrVt8gSgEpeY6xTD/D0gA3hQQTkUaivgiBmXl8Y3MccN/iW5sfRLR5sX0qxm+/4p10dXWtPi8LP9GoStBjsVh52kV7af9Xmo7Rjpl9ZszqhUznGNPS/ldVdclLURTTawRBKJ9jVp7lymaz2ZakrYeiKOXPjGUwXmMsryzLpuVdyTjK7Bx9PZZLQ7vHWpnN2tAs3eXSM56rry9QzsusnJXKvJpxZbVztbLp61ntfO0zs/6zknJVarfV1LNa2+vbXFXViudWS8P43danaXzpP9eXudL3UX/crK5mZdb3E7PzV9J2ldJersyyLJumX+m7b5a3Hqv9zdPfC+NvVU9Pz6rSsmDhxUBCv5hztvQ+4lq0q9zVWNqZ07mwmFNKp4kfP74YXaW/H8HpXLSq9PRQs28fdq9hZ83M+FIyPn8a/B26hZw9ENm+rDqeKyg8f2KE752d4diUjfNCKwlnmI2xK+xxz3FXp5MHDq9h/c5uBJttdY2hqqjZW8yl+hkuXmbYNs+wz814qIVwUaIt52T+bJSxkzmkUQWXzYnD4cBpk1FtAnkJHIKd17zmNdx1111V+ZOFnz4sS9DNHsp2u70i+YLbSYKGF5OgG9Or9IA1e5DeKYnSw2b4ImvXaA/0lRCTSufpSbqxbtVwp0TaeO5KBjmrIehmqNQ++jyM743XrxZm7aPdx0oDuUr5/rAIutnnKyHolf43Q6W+bJaOfsBe6Xqz76L+/XIkvdL/xnu0GnK+knP05dLy0gaPyxHy5eqh4U4IeiX09vauKi0LFlYLVYWB1FK7yrVkiYDro6t0+LXzVbKDg2WrSrSvj9SlSwS3bVuMPd7bi2/t2qXfBTlvoo7HlnrHGw+Dp37Z8l4fifNU3xDPD4icztZww7+WxuQoO6URDjYUuG9HPT33bMYbClRNyxSFGJlEH8P5swwzwbBbZjjcjGpz0SkKdNJMp3sXaxybcBedTExMcPLkSex2O06nsyzsaWKBqqoUi0UaGxvZtWsXPp/P8qJbKGNZgg5LCbfNZrtNVTd2pjsl6KtRe43nvFCCvpovRLUvkEaujeRBrxJXIul61bqSkl6p/GZ5mmGl9dSXpdI9rJZWJSJvVANXQ9ArkTWoTmQqXbNc2VfymbGeq+23ZrjT2adKxHo5mLVdpe+3GUG/EwW9Ur2M1xt/Q/SzHMsR9Erft2rnm71WS86r5fNCHrzGweTdd99d7XQLFlYNUS7tzKm3qxQV3UZADaWdOf0LNmxZFEmcOlVeyBnr70fJ58txxyM9PUQOHsQRDC7NKDNWIuHTC5FV5k+Df41BHd+2rDqezEp8v3+QZy7Mc3zWyXnHGgqCky3Jq+z1lcIcPtC7lo6NHav/7ikFiskzTGSOMaQMMuzMMByIEPNFaBMlOuUaOp2b6XTvoUGoRWDxGTA/P8+tmycIOf6WaCLEqcs9FItFPJvHsUeyJE+0U5PL4kEk7luL1+ulsbGRdevWsX79ejwez+rKauEnElV7vxkpUFWVP/mTP+GjH/0o6XT6ts9XAkEQ+PCHP8wf//Ef3/aZ3W7nk5/8JG9/+9uXTec73/kOAA8//HD5mMPhoK2tjZ//+Z/n0Ucfxe12V7q8KsyUVe2YGSExQzWipCcggiCgKEpFkmckKdWw3KDohQ5OlkvL+Hklon4nCng13AmJMqLafaym9hrv8wupWzVLiqa6rOY6Dfr+XEkxNx6rNkumv+4HofaYpW2cWVoNtHui7yeVZoxe6D38QeHF6OMWLOgxlVtKxk/Pw9qFxZyvboc/3VtazGlb+BrmxseJfbmPoQV1PHnmDL7ubiI9PTS9+tVs/shHCGzatNQqIucXibimjhfiUL+gju96dEXquKLChWszPHV0lP7hAmfy9QwGOmmPS+xSM7ysWeZPd9s50LsZp/fw6hpCVVGzA8wl+xiSLjNsjzHsLVlVIh6JzmIbnba13OvZR5utHafPnDqpqoooipw++U02t/4R7U2DyG12BoYLTNVEaHx4EqdapL4wyGv+q8RfvjpzN+f892H7P/8H240bFN/9bvb80R+trvwWfiKxqjjolQhCteNG6M+z2+08/fTTSz4TBIF169bx7LPPlo9duHCBX//1X+dv/uZv2LNnT/n8LVu2cObMGQA+8YlPsH37dtLpNF/72tf4+Mc/TiqV4uMf//hqqngbedH/X8lzq6+vNoVl/Nxms5kqxWZpajMVRjJxp6ThR0U2VqJEL2dzeDHLXmmwUC2fOyGhy6npd0poV2JXWe76Sv25Ul7L2diMqKZqm/XhSsfMzjFb96G/3ux3qJKSbva/8bj212ywXg0vRXJvwYK8sDOn3q4ymYODCztz/sEOOFwPdQvirVIskjx3jiGdOl6Ynydy6BCR3l42vv/9RA4fxlVbuzQjvTo+0w/RMxDoLJHxlgdh1x8seMftt5VRj/mEyFPPDfDslQQnol4uutdik21sy4jsD6Z5bLvC/feEaOzYAmxZXWMUogtWlTMMMcmIW2E43IJa76QrH6aTzbzCtYtO+2b8di9UE7TVNBRPg3QcisdxF49zYH+SKbWWo8F9TLkaCf5ihjUDk6z7ziB1UzFcQxJ2QaEoQuf0LVLjKg1nziAA0x/5CFgE3QIrIOiVpq6BMhHVyKfx/JXg8OHD5bS16wVBoKGhofy/JElAiZBr5+uv0T47dOgQqqrywAMPcO3aNT772c/ysY99bEWK4XKfG8tX7Tp9ftpD3Yy0VbJ/6InUakh6NbKzUnJSKd3l0liOlFYj5Kstz0qwGpuK/pgZwTMOKlfqV6+UvpEYLzdIqXbdSvql0ZKmr9dKrEH69M2UaC0No+1kuVmTarNKlc6vtDh7uf61GlQbZFiw8OOCRKG0G6emkB+dg5CzZFPpbYT/bzPsql1czJmfnSX2rX6u9PUR7e8nfuIEnpYWIr291N17L+vf+16C27djc+hog6aO673jxUQp1njDYdj9hwvqePVoKJKscvLcOE+fHC+FOZQbmfC1sTausMue5XVtOT6x38Ou/RuwO+9aXUPIeYrJM4znjjEsDzLkzDISjBCri9AmCnTJ29jv3MLPO3dTL0QQnFX4gVoA6QJIJ0A6jlo8QVYdIeraTMzdxbzbR6ywG3W4SDHqorNmmG7nMNsvXkHyQmZSZeYMTF1wkzoPUkIG5zT2DWFkrxdHsUjkvvtWVz8LP7GoStDNbBz6h5feD6p/2I+Pj/O+972Pb33rW+RyObZv384HPvABXv7yl684LzMSshrs2rWLp556irm5ORqNmxlUgJm/Vl++lZTDSC70hGK11hhjBAczZb4SVtNmK7GqrDSN1Zy72jxWi2qWkOUGCmbXaf3bbJZkpf10Jar6coOw5d4by2zWp81mbIwDLiP5r0SojSr1SmdA9L8blQauxrSrqdjVBr8vNowDaOP33IKFHyZUFW6ll9pVriZgx8Jizrevh3/s1S3mlGVSly8z/p8L6nhfH7mxMcL79lHb28u63/5tIj09eJqbl2aUHl1KxqNnF9Xxtodhzx9BzbZl1fHx6TRPPT/Ac9fSnEwGuOzrxpe3sV0scqAmy9u2CNx/b4Rwww5gx6oaQs3cYDbdz3DxCsP2GEM+D+PhFmq9RTqLHay1r+V+9z5abW0VrSqltBSQb5SUcekEFI8jypeJubqIutcT9YWIKpvwzrQhjjYgyUWC3hE2eSaoFefxjESZ/4aD6FUbT19yUrgm4WoRCG1WiYVbiYazdMankQtFhOFh6O6m89d/nY2/+qsrr6+Fn2isyuICtxN0QSj5p+0L2+umUikeeeQRstksf/EXf0F9fT2f/OQnee1rX8tXv/pVjhw5siQ9TR2HRaKwGjtHJQVxdHSUUChEQ0ND1ZCIehK8EjtDJfJe6Zg2NQ+L/l+tDY1h/Yz1NlM8q5EUIyFdrYp8p+euhJC90AHXi4HlyrkaYqUn6ZXSrTY40L43Zsr2cnVYKTHXPq82U6N95/QquPaZ2WDF7P1y5Hy5fqjVyaz/G9OqVm/t+tX2r9Veo591ML43I+wWLLzYyGuLOXV2lYICPQuRVf76ABzQLeYsxuPEnjvGNU0dP3oURzBI5K67iPT00PUbv0F4z56lGwFJIkz3LZDxo0vV8cYe2PP+0vtl1PF8UaH/xBDfOzPNsUmBs7Qx76lnQ1xljyvL27qKPHhoms071yLYWlfZEHOkE30MF84xzCRDbpWRcAtCnZ3OfJhOtvAq927W2Dbi9yxjVZHHF2wqJXW8KJ8h5ogQdW0m6qkl5u3CNhdCGK4lm7fh90zQ6ZugQZzFNxwjetHJ9MUQ45ftDFxJIXa3EPlFG+F3KARuFkl9rZ7s8VmC/bN09gzS3AGzw2ADmtNphIsXUT/+cYR3vnN1bWDhJxZVCbpe2aqklmnQjj/++OMMDAzQ19fHgQMHUFWVV7ziFezevZsPfehDSwi6LMu37Z71h3/4h7z//e+vWKZKREaWZSRJKnvQv/zlL/PYY4/hWJiOqzSVr1f+V2t9qaS2mg0wzNRJ/XlaW6/kwa4/ZzmiuVI184XixbQY6FGpLivxBa+U9OrTr6QUa4TamP9qoW8noxWqGvE2Eufl+qpWVrvdbqqE6+tqZp+p9t6YTyViXKnvmb1fySDAaHExnveDHvit5J7fab+wYKEapnOLRLxvtkTOuwIlMv7KNnhsN2wKlxZzqqpK5vp1ot/o5+aCOp65cYPgzp3U9vay5u1vZ9enP423QxfZRFUhMwpjOjIePQuBrgV1/JEVq+MDIzG++/wgzw/kOJ0Jc93fTSRjY6dU5EB9gd/eMcs9d9fiC+1eXSPIIsXkacayxxhWhhh25hgK1pGoD9MuCnTK2znk3MIvOndTJ9RUt6ooMZBOQrGkjsvSCeI2lah7GzF3E1FvE1J8P57JIKmMB49zlibfJE3yDMHJKMmLKhMXa4lecTJzNYutPkDNf99G6I1BQl1plPYaVHsR5VQW53AW21wW91qRQj6Leh0ST4HbBk1AcaFIqt2Oo7bWmoGzUMayFhezB59ZB9Ie1M8++yzd3d3s27dvCfl83etex2OPPYYoiuUQQna7neeee25JOi0tLVULXIkI6iO5ALzxjW/kt37rt0zLrCcFRnJ+J0pmNfJSKR2jArtS5fDHFT8p9VgpKvUJs+MvZtuslCBWime+moeDqqrY7fYXFF3FSLIrKeP6QYVxcGY2aDEbLKzGWrXcfaoU3Ul/rtlg+4dpw7Hw4wlZgUuJpXaViSwcWFjM+b6FxZz1C2qwlMkQP3GCAS32eH8/giCUd+Vs/+VfJrx/Pw69GCaJMNO3SMZn+qGYWqqONx4Gd615IReQyRZ5pn+A758vhTm8YO8g5QyyJamyx5fjdzYpPNA7T9eGTgSha+WNoKoomevMpvoYlq4ybI8zvGBVqfMW6SyuYa19HQ8sWFUcviqDBjUH0pmyMq5IJ0gyXyLjzjai3iBieieBGRfJRBC7PUGdb4oWYYrwbIz8pTxjFyKkrniJXS2gKjZqfnE7/lfVEvj/RNT2GGowj3J+HK5ncH/PizKtkD0fI38+TW4EXIBTzmPzuUg1+1n7Lpnp9naeOnM3rbNzZF0udjQ0sPH977d+FyyUsSxBX61tIh6P09TUtCQNgKamJhRFIZFILInxuX///hWlrX1utlkJwN///d+zc+dO5ufn+Zu/+Rv+5V/+hZ6ennK4RrMHo5lyuNI6r1axM6p/RgW9mnVAX1cza0y1PM2U+x8FKs02vFD8IKwEK1Go7xTVbC/VPq90jtE+VYnkViuP8ZqVXG82aK/UbytdZ5an2cxBpfthVNP1sftXW/5Kx1YCvXVNf6xa+tZD2IKGpLaYc0EhPzoHAUdpR867GuF/bYZdEXDZS30oNzxM9It9XOjvJ9bXR+riRQKbNxPp6aHlF36BbX/5l/i6u29Xx2/pd+U8C8F1JRLedgT2fABqtlZVx1UVLl+b4qmjI/QNFTidr+NWYB3NKQe71CIPNIl8cPcch3tqcXn3ra4R8rOktA2AhGmGPSrD4Vbsbhud+QidbOVV7j102jbi83gqW1VUCeTLZTKuSsdJq4PEXBuJOjuJur2kCpsJTsvkojUoQoaIb5p19kki0SjKlSyjF2tIXPJz85qMNFsg/N824z/SQsNbiqhr4qi1WdTr8wiXRvAcdaPMqohX0hTOxskOqLgkAacKNp+bYmMHiYe2MtLYSPDwYW5OT3P16lUe6n6IsbEx7J12Unv2kojP4b7Hh6OmsLp2s/ATjRV70Ks9UPSf1dTUcP78+SUEVBAEpqensdlshMNh02vNHsJm9ppKitTGjRvZt6/0o/DAAw9w6NAhPvCBD/D6178ev99fUZkz4k4e0supcC+UQFZLfyUk3ZjOcoOsleZfbeCykmtWSworpWNUVKvN+CxH4CoR5ZWSqzud/TAjypXKo72v5IW+E6y0fisl3Prvs9EitNr0te99tcGN8WV2/IVgJddXWxtiwQKUSO5geqld5UoCtteU1PG3rodP9ZQWcwoCyPk8idOnGe3rK20G1N+PnMmUd+Xc8md/Rs2hQzhDocVMyuq4PrJKWqeOfxAaDy2rjscSOZ5+boBnL8dKYQ5dXUiCm21plX1BkffviPPg3Qla1qwH1q+8EWSRQuIkY7njDCvDDDtzDIfqSNaFaRftdKo7OOTYwn937KK2mlVFVUEZLNtUKB4np1wi6mwl6uom5gsRk9fin25EGokgyQWC3kE2uyepTc7jvJlk7GKY6MUgg9dUbgyJBB7qIvCqTur/m4q6JonaEkIdySOcOY/7vBP1uwKF6xlyZxIUb8hkc+AWBASXk+DGLfh/9UHCR47gO3iQ4VSK57/1Ley1OeJTCfx+P3a7vfxbrb0XBIGf7/kCGxtvYBv5E1g/AI6VBbaw8JONO7K4aDCbEr/77rv50pe+xOnTp9m3b1/5wfyf//mf7N+/v+IOWcuR8+WgJzcul4s///M/59WvfjWf+tSn+J3f+R3TPFaK5UjTSgjfakj6ciRPT0hXovRX+/wnEaup83J9ohpR/2HgB620VhqQVWpDs1kdI6oNuo2fL1cmRVGW7M5rvN5MNTcj6JXKYJa3Pv2V3u/VkvPV/K5Z+PFFXobT0aV2FVFeXMz5lwuLOQMLiznFyUmi3+zj8oI6njh9Gm9XF7U9PTS+/OVs/vCHCWzZsrgRkKpCegQG/ksXWeXcgjreA20vhz0fgpotVdVxWVE5c26Up0+M0z8qc1ZqZCTQRWfSwS6bxGta03x83zx7D67H4Ti08gZQlbJVZUi6yrA9wbDPy0RNM/W+Ip3FTrrt3Tzo2UubrRW7v4pVRZkuK+MUT1CQzxB1eIm5tpQWcXpacM36sE0EEQsqPvco6z2T1Ofm8I3FmbgQYPZSmLErNoau5/HsbiL4sxuI/C8HdKVQ23wwr8LJy7hu2hH67RRu5RDPxMhfkcimwG2zYRME/N2d+P77fdQceRm+Q4dwdnbe/l1NpXBsncB1zw1aFeBb9dhGbTjsCvWBIdrWX6C1dpKO+inqAuMIAqgIUByyCLoFYAWLROH2WNwaaf/Sl750m03k3nvvZd26dbzuda/jwx/+MPX19XzqU5/i6tWrfPWrXzXNx2j1WOnDq9pU+pEjRzh8+DB//dd/zW/8xm+8qFvnrsY6olc7Kz3EzdKD5a0WlRYZLleWlZzzYhDRF9tvvVzZ7iR2vD7d5Y7p8WLYaoz1qWTzqFYG48ZDxmtXO4OynLptZuMwawuj4q+qasVQjnqFXH9MT8D1+RtnaZYj6NXqVum7bCTqq4W+DBbJ/unBdA76dZFVTkVhjb9Exl/RBn+8GzaHS4s5FUkief48s1/o4/pCdJXCzAw1Bw8S6e1lw6OPUnP4MO563Q6bUm5RHdd25ixmSup4Uw/s+zA0HFxWHZ+eSfLdZwd47lqKUwk/l3zdOGQPO3KwvybPL29Jcv89WWobNgObV94A+RlSiT6GCucYZophD4yEW3G4bXTma+lkBz/j3s0a24bqVhUlBdKpMhmXpJPE7CIx11airiai7hqE2A484wGyOQdu1xQdnikapVmCM1FmLnqYulDD1FUX41dl7C0hwq/bTOiXvAjrsqgdPhBl1JM3cY2D/ayT4ohI7kyM/KUC2XlwO2zYFPCsaSHy8rsIv+zl+Ht6cG/cuHSn1AWoqGSJMs8t5hhgrPUi7q7r1BQS1OWiNLQP8sraIWp/do5MoZ7RuSZy6QADQ3t5Nnc/j+z+Pp66l+Pw7DdpEAs/jVgRQTebulYUhTe/+c23XfN7v/d7fPOb3+TRRx/lXe96F7lcjh07dvDlL3+ZI0eOVCRt1awRZg/7StPZ+nM/8IEP8IpXvILHH3+cd7zjHcu1xaqgf7CvhBCb2V2q2QOMx8zy1RMIM3L6Qkh4JWJbbVC0XNmrpbsarGSGodKW7sZZodXabKrNpuhtHCspp9l5qyFzKyXn1Yi//jsjCILprJjZPVuOgJqp8MvVTU/Utfdm+a+2/yw38FlJm68kz0pt9GJitTOLFn5wkBW4nFgk48/Pwni2pIj3NsB7tsPhBmhYIKGF+Xliz/VzbcGqEj9+HFdjI7U9PUR6e1n3rncR2rlzcSMgVYX0MAx8WxdZ5RyEukvqePsrVqSOF4oyx04M8v3TUxydFDintjDlb6M74WSPS+aX1mV54FCMbTu7sNlWodzKOQqJE4zlTjKkDDHszDMcqiNVF6RDtNOp7KTHtY3XO3ZSK4SrWFXyIJ0v21QU6QQJYZqoaxNRZxsxt5NCciOBGSdiyofNMUeTd4ZmdZpQNEbyssDYhVrmrniZuSaA4CT0CxsIvCpM8LfzqGs8YJNRT43hGpdwfttJYUwqkfELItmpEhm3yyqu5npCPQcJH3k5gbvuwrN9O4LTaVrsHHHmGGCeW6WXegNvYZZO0U5bLs2G1Aje4i1Ep4s5oR5pvpva4XnUmMCsezs37Jt5dfiTgICtcB99U//IvRvvxY6ANaS3ACCoVX7pC4VCVWXKqJwZYy9rD/wlGZoQCTMsN61upuTp09bHdn6hqEa0VvJQNg4o9F5ps+srvarlqaWrVzVX2obLTcNXS6fSNavFnaqMy5V9OetBpXwr9Z1qUTlWUp5q9VzJd8NIype7thL515Ne/eJSu91ekaCbDYgr1cusvxnfG9Mx+00xO6/aMbM8lxsALVcmsz6/3CJQPV6Izaya1ejee+9dVVoWXhhSRTg2u2hV6Z8Fv7aYc2F3zt2RhcWcikL6ypWSb3zBP54bHia8dy+R3t6Sh7ynB0+rLu63lIO5k0sjq0jZ0kLOxsMlUt5wCNyRquUcHpnjqecGef5mllOZMFcD6wnkE+woDHOwPs+92yPce/dGAiFf1XSWQFVQ0leZSfcxLF1nyB5n2O9nMthEfb5IlxSg095Np2cfrbZm7FQYMKgKyNfKZFyVjpNSB4g6u4i6O4nZvWRyMcIzIMYCCLYUYe8szfYpIrEo+esSw+frSF7xI1/No8RnCb62G98D9di3SKidSQgUUM/mcQ3lcMy7kSdlxPNxxHNZlLGSTcUhqdjqw3h27SH08MsI3Hsv3t27sXm9psUWSZaJ+By3mFcHcBYn6RJtNIlZanLTePI3QAiA5wCKYzuzIxKxgSn8yXFq8jcJqGMILhXcUPR6cNgKCCiowNCJjUyO7GT9H/4hjTt3WrNuFoBlCHqxWKz48NMIYKXY0Hpyru9s1UK5LUdu9P8bH1ZGi4eRbNxph69GPMyOVavDciR9ORJUCfo0zd6bkaPl0l4JKf9BqXjLzSZo93e5ttZjJZaUSuTXmHal9FZyr7S0zc5bjqAbvzv6vr0Sddg46NC3rVE9r/S9Mes/K22rlZJss7CNZgNKs0FCtUHncoMIvXJfbUChr9Nq8WIRdIB77rnnjspgYXmoKgyll24EdDkB22pK6vhdjaW/axYWcxaTSeLHjpUXcsaOHsXu9VK7sBFQpLeX8N692N3uxQzSw4ZdOc8vquPaq2YLCJWFplyuwHN9N3nm/BzHZhyct3cQ9dSzKXmdvZ4od61z82BPF90bW1b3DMxPk0w8z3D+HMPCDEMegZFwK05VoLPgoEtoo9O9hzWO9XhxV25EZaxsU1Gl42SVi0QddcTc64k6QiSLKYIzBZRYAEnOEfTO0+Scoi41D7dyDF+oI3YpiHRNQR6dwP9QK/6Xt+HYpkBXGrVeRL1axHE9gzvqQp5UyF9KkjudRhoGNwJOGYSgD/f2HQQfeJjQAw/g3bcPuyFgRbnqpIkyWCLiDDCvDoA0QZdoo1kUieSm8Yg3EHAgeA+AcxeIEYgWYGoAdeokpK9R8AYpulw43BlcZEnKjSh5iIf8PHvvAWZDdRz8SD81zw9R/F4cVLBt3cqOs2fL+7dY+OlGVYKu7fJp9oCqpoqVEzchEJVU9UpYjpzrjxkfzlpe2i6nd4KVEPRKxyuRxEokvRKBNqZjViYj+a9ENKqRdmOZ73Qw8kKxErvPSgYtxv/1uzwul3+lPqknZmYk7YVu917tOqO6vRqCXmlgbCTpZtdXai/jAF2fhr5faTM71b67eujP19dhOYKu/8xYBzPiXunYSr4TP4jQnmao1h/uvvvuF7UMP83Iy3AmujS6SlYqLebUyPjB+tJiTlVVydy8WSLiC+p45to1gtu3l2OPR3p68OoXDpbV8f7FnTnl3GJklbI6XlOxjIqicvP6JN/tH+b5oQJnxFpuhDZQn5lilzLGwSaZ+3Y10NuzHo/XVTGd2yBlKSROMCqeYFgZZshVYDhYT9odoENU6FLr6XRupdO1k4gQqmzAUKJlZRzpBKJ0mpjDQdS9magjQkIt4JlJ4Yj6KRRkvJ55mtxT1OfmcY2lGL4QYe5imOJVO/LAJJ7dAQKv6cK52w5rM9CSRR2ScVxK4Y45UaYgfyVF9kwK6YaKSxZwqQKC24lry2YC9z1E8IEH8B88iKPR3LpTJMc8g8wzsEDIbyFLo3TmbLSIIhFxFp84gKAWETz7wLULxDqISjA1CFMnIH0dwnXg96MKOZDmEO0tjORayKyXyW1ViXprGbu+DdtgGt/4MKEzU0S+P47/WgwVSi0qCIhr17Khv5/6+voVuw0s/OSiKkHXlKxKvuaVkDwjiajklV2JP1Wfl/F8vb1DO0+vDOrV/GqqnzG/1RJDI5nQl1n/3kimjcSgmg3G2F5m5Fsf/ULfRtXyMit3pXZZSVusBi/2D9FyREyf72ryXo6gV+o3LxRaH14NQV/O7qXvA5WuN6at799mEVb0+ej7lxnx1Vtn9KhE0M3KbjYwr/T9rjY4fbH7/WoJfKW+WQ0WQb9zzOgXc87CyXno8JVsKppdZUu4tJhTymZJnDy5qI739aEqSpmIR3p7qTlwAIffX0pcVSE9ZFDHL0BovUEd31xVHU8msnz/uRs8cynGiXkPF1yd5Jx+tqRvsi+Q5K4NPh68ax0da+orpnEbVAUlfYXpBavKsD3BkN/PVLCJhnyRTilAl2M9ne69tNhasFOhfGp2YfOfEhkvSieJ2VJEXZuJORuJ2lTsszH8US9iTsDlilPvmaKxMEdgJs7YxRBTFyKIV12oN+awt8mEfrYb9wEPQncWtSOLOiNjP5fCHbXDtI389Qy50wmKVxXsohZRxYZjQzeBu+4j9Mgj+A4exKnfIVWHIiIxhspEfJ4BCtIIHaJAq1igVpzDJ97CJqcQPHtLZDxfB1EZJkdg+qSOjAdAyII0B/51KPX7yTZ3M13nY9yXZlKcoHBlBsepNP5Tc0SOTuC9kkDxuJFcTuR8DrUgoxQVVEFA2LIFYft2HK9/PbseeQT/Ql+yCPpPN5Yl6MspVJUUMUEQlkRmAPMHvv54NVQjWdpxM6JZSUFcLs/Vks9q6qT+vZEUzM7OMjMzg9/vx+fz4XK5cLlctxEhfTr6gYf+uJ7U6EmOkVRWIkyVCEs1H6zx2Grap9Lx5cjKaixSZru5Vqrbculr1xrbtBLMFu5WOl7tXOP3pxJRN9ah2qDYeP8rWVu0a83asFpfMsLYbvp0K7WpdqxaXc36byWCXY2gV0qzUl2WO/5iK+xmsAj6yqCocDm+SMafn4GxLOyvWyTjPQuLOVVVJTc6ukQdT50/j3/DhiXquH/jRp06noXZk0sjq8giNCz4xhsPr0gdP39umKePj5XCHBYbGAx105oeZbcwyaFWuH9fMwf2r8PpXMWMsDhJItnHcP78wgZANoZrWnErJatKJ+10efbQ4eiuYlWRQL5YDnEoF08QF8aJutaXduK0O5Bj84Tm3BQyduzOJLXuGZqUWULRKDNXfYyfryNz1QNXk+CJE/rZ9Xh6Aggb89CVQc0o2M6k8MwCM3YKgzlyJ+MULsnYUuBZiKhi71qD79BdpVjjhw7h3rDBNKKKTIEow+WIKvPcIicP0S4KtIlF6sR5/OIgNmkOwb1rgYw3QEyGyXGYPrWUjNtyUJwtk/FM81qm63xM+LLMFCcRz8/gOJ3Gf3KW2v5pPNejKF43stOJkssiq1BYux5502aU7m7k7m6UxkZc//7v2OfnUd7+dlwtLbS0tLB27VqcCwtTLYL+042qBL0akdNjuc9hecKgnVMNyz0YK6lpxvzN/teOLUc6qxHNakTQ7L2iKFy8eJFoNFq2L8iyjMfjIRAIEAgEcLlcOJ3O8uf6GQDjzpFGEmJG0vVEfqUEvRJWc64ZXmwbSDWyVa1frDaP1RL0SumudGBTiaBXK7vZdWb10A/4jOTc7HygYl9ark3MBgXGgaX+uNn3Wl9OY9hGMxJe6bix/sZymrWp/jPtukrf8R8EQTf2p97e3hc9j58EpIpwXLczZ/8s+ByLVpXeBthTW1rMqRQKJM6cWaKOS8kkNYcPLyrkhw7hrKkpJa6qkBpcSsajFyC0YZGMr0Adn5tN8PQzN3n2apKTCT8Xvd2ogsD23AD7wxnu3hzigbu7aWwMr7ziUoZ84jij4kmGlRGGXXmGQ41kXH46RIVOtZ5O53a6XNupqWRVUVVQBspkXCmeIKleJ+ZqK+3E6fSST8UJzYCccqHaMtR4ZmkSZogkoiRu2hm5UE/qcgD1uoiamSTw6k5899Vi2yzB2jQIMpxJ451UEGbsFEcK5E7HES8UEebA47RjkxTsbc349h8mdOQI/p4ePNu2IZh4s2Uk4owsLuBkgLQySJuo0iZK1IkxAuIw9sI4gnt7iYwXGiCuwsQkTJ2CzA0I14PfryPja1Hq95FuWcdUrZcJf5aZwjT589M4TmUInpwl0j+F53oMAl5UlwcplUG225E2d5Nbs45kWxtXD28gFwjSMS4CIHiyFEQZm8uDYlPwSl7u7fgc7YHLnE++FV/bL7Fu3Tq8Xu+S33qLrP/0YVmCDksfZh/+8If5kz/5EyKRCCMjI7hcriUPpt/5nd/h7/7u71izZg3Xrl1bmtkyJP0zn/kMNpuNN77xjRULXKm4TqeTD37wg7zvfe+77Tyz0HfVSMxqybn+M+MD21khRBPApz/9abq6usoq4Re/+EW+/vWvMz09TSgU4uDBg7zzne+ksbERh8OB0+lEkiT+8i//kieffJJUKsWmTZt4z3vewyte8Yol+WvER5bl2+JVr5agV1KclxuU6VGN9FQ6vtr7sNIyLGefWC6POyHoZuR3JW1s1l+XI+jGH3WjCq+q6hL7k/a5kThrMPaXaoO9avfA+PlydiHjdcbBhEbQK5H55fr3nQwsjQTdeGwl9VkOlTz/xvvd09Nzx3n8pEBVYTiz6Bt/fgYuJWBbWEfIG6FzYTGnODVVIuL9/UT7+kicOoW3o6NsVant7SW4dSuCtm5JysLsiaWRVZTCUu944yFwVSbSkiRz8thNnj49xbEJOKu2MBbsYm3qFrudsxzusPHAgXZ271qDzbZCEqbKKKnLTGX6GJZuMGxPMuwPMBVspDFfpFMK0mlfT5dnH822pspWFXmy5BuXTqAWj5NRLhB1BBfU8RCpfIrwtISQcCErIgHPHE2OGWrT8xRGFQbPNRC/FEK+LqNOj+J/oBHfw004tquwLgN+Cc7m8Iznsc86KY4VyZ5OkD+XR50Ej9OGXVKx1dfi2bOP8CNH8N91F95du0wjqijIxBkrW1TmuEVCGaQlL9MhKtSLMQK5ERyFYQTXRnDthkJjiYxPTcPkmYpkXG7YR6api8l6H+O+DHP5GfLnSsp48OQstX3TuG/GIOhDdbiRkilUrxff/v249+yh2NXFiMfDaO8V1E3zKAknfWMPM7SlDlS467+G2Oa+ReMjfWRUHxNSG83ZGdafm2S39wQ2QSVTCPFP5x6jpqaGcDjM2rVr2bJly20z5hZ+OrDipcL6B7zNZiOfz/Pkk0/y2te+tvyZJEn853/+J8FgcMk1+jTMjml4/PHHsdvtVQn6ciS5mjJv9lA2U9CWy8cMlR72zz777G3HHnvsMZ566in27dvH6OgooVCIT37yk/zbv/0bb3rTm9i2bRvj4+N85jOf4ebNm/zd3/0dDocDQRD43d/9Xa5du8av//qv09zczH/913/xxje+kX/8x3/kvvvuw+l04nQ6bwt5aUYsjBYD/bHlSLDxB8NowzGmYUZMK5FS/bHliLTx/Erl1UOvvBo/X+l9r1R3s8+1fFYywFvus0qDWzOVXXsZF0nr1V89gTeuWTAj42Z1Xg1BXwlxrTSgrlb/anmavb8TNWo1A8aVhuk0u261g8afJhT0izkXFPK0bjHnx/aXFnMGnaWNgFIXLxL7Rh9nFhRycXKSmgMHqO3tZf27302kpwd3Q0MpcU0dH/z8IhmPXVxUxztfAwf+FMKbqqrj48MzfPf5Wzx/I8updIgrgQ245Ag7CgkO1om8bVue++6WCYdWsQmQOEEi8TxDxQsMM8Owx8ZITRsej0pnoZFOYS973XtYY+uuvEBUSSzZ/CcnnyZqV4i6NhJz1xJ3eAlMb8MV91AsFvF6Buh0TlOfiyJM5xg838jcpTCxqyEYTePa5Sb4qmbq/5cdoTsLdR2oV/K4bw3iOOtE+rqEeCFF7nSO1Ch47KXwhs5wkMDOg4Te+QiBe+7Bu3cv9lDo9uKikGRiyQLOmHqLpnyBdlFlQy7JXnEUZ+EWgrNrgYxvhfh2mJqBybOQ+fxSMh6YhaZ1yA37SDV3MlHvYdKbY1acoXhuFsfX+gmdmKG2f5ruW3EI+FAdLorJFEIwiPPhRwgeOkRw714C+/bhamslpc5xYuRZjmevE2suMB9Zx7xwgFhNBF8oR7dwk235K+zbf5UGeYyaGwnqslHccoEZbz2JujaUjAtFlYlJ26irq6NQKDA2NkahUGDNmjUEAoFlnyEWfvJQlaAbyZwGQRB4zWtew+c//3le+9rXlo9/+9vfJplM8qpXvYqTJ0+aqtIrISovhBwbCaaRjKyEmFUrw2pVt8OHDy/5P5/Pc/z4cV72spcxOTmJJElIksS3v/1tHn74Yd70pjchyzI7duzA6XTy0Y9+lOHhYTo7O7l48SInTpzgj//4j3nooYfK6Q8ODvLnf/7nbNq0qUy47HY7dru9rLzrCZuetBtnEe5EVYSlmwMtZ5VYzf01I/mrKeOdqvR32g4vFNUGtdUGt3piDqWIL9UIut1uXxLVRv/9MFPKzWZXVqugLxdDvlIbmLVFteuN1yy30+lKYMxrJZGAzK7T7oW+fS1SXhmz4sJizoWNgE7OQ7uvpIw/0gIf2Alba0qLOQvRKLGjRxlfsKrEjh3DVVdXVsfX/fZvE9q1C5s2q1nMlCKrnNNFVlEKizaVA39W2pWzijqeFwv0PX+d75+b5di0g/O2dmYDLaxPBdjrKfDWbTIPHc6yaVMLgrDCTYCkNPn4cUbEkwyrIwy7igyHGsjW+1kjuulU9nKPazud9u1EHCEw4+NqHqRzC2T8OAX5FFEhSsy9gaiziZhLwD3TjT/moSDKuFzDbHbP0pCfwxNLM3Spjunztdy8FuLmQB7HGhvB1zRR90YXwvoctDbBgITzxgiuG07k7yuIl1LkTmdI3wIXNlwq2NxuItv2E/zFBwnefz++/ftxaAMifXFRSDKlizU+QEwdoLaQZ01OoFtMskccx5m/geBoAdceKHZDYgNM7YKJc5D5Twg3LJDx7AIZX4tUv49US4mMT3izzIlzFM/O4vx/RwkfnybSP82GoURJGbc5KSSSCLW1OF/2ckKHD5fI+N69uFqaSDDNGEMcY4JrfIchFOYJE+sM01poY2vhKocSV6grTlOXjVObjVOXiSKgMutpIuZoYawmyKXmnVxzbEN22MiP7icVEnhgZBTyG2hoKK0FKBaLeL3esjhn4acPyyrolR6Cb3jDG/jFX/xFUqkUoYXR7+c//3le9apXlf/XHqi5XI5HH32U73znO4yMjBCJROjt7eWjH/0oHR0dADz00EN8//vfBxYfYm9605v4p3/6JwBOnDjBhz70Ifr6+igWi2zYsIF3v/vdvP71ry+XSRAEPvaxj/GJT3yCZDLJXXfdxd/+7d/S1tZW7uDFYpG/+Iu/4IknnmB0dJSWlhbe/va38573vKecbzwe533vex//9V//xezsLLW1tezdu5d/+qd/oq6ubvWtrMOTTz5JNBrlZ37mZ5idnaVh4cdKkiR8Pt8SVdPn85U/UxSFS5cuAbBv3z4kSSrX6cCBA/zrv/4rk5OTNDQ0LCFLGvnS1FG9Amm32/F4POV09CTe4XCUSV4lJVx/bKXE2zhw0t5XO9fs/5US6NUQdLM0Xyyi/kIHJStRzvUDMI2YGyMYwWKd9IMq7X6YrVkws4bcCSHXsNx1y92zSv3GrEzLzaqtFCuZyVltmvqBk0XQS4s5rySW2lVGMguLORvhXVtLSnmjl9JGQNeuEftiH+cX1PHsrVuEdu+mtreXzne+k92f+Qze9vZS4qoKqVsw/G9L1fHwpgV1/L/BgT+H8MaK6riqqty6Ps53+4bpG8xzOhfhemgj4XwNO+U0B5uL/PauPPf22PF6t6+s0qqMkrrEVLqfIfk6w/YUw4Eg07UNNOUlOqUNbHGs5+XuvSWrit+kbKoM8tVyiENJOkmcYaKuLqKuNmJOB0K0ldB8J1JWxe6YZJ1nlkZplmAizui1CBMX6hi8HGBoQMYWkAi+uoGaV/ux/V4BOsOoUwFclydwTdhRTquIV9JkT6VJXQenJOAWbAg2O+FN2wn82v0lMn7wIM729tv6sIpKmpklCzjn1QHCxSydORudYpod4gRu8TqCPVJSxqUOSHTB5GaYvACZ/6cj4zkIzJTIeMNeki1rGK/zMOHNMZ+dRTo7j/PLR6k5MUNN/zS1w4mSMm5zUEimsDU04HrVq5eQcXtDhDiTDDPE95niOt9gBIhSSxI/68mzTYnyC9mrtA1eoP76ILWJOM6tBaSAg2lXE4lwmNn6GqZs9Yg3fh3iOwBwJV1EZJm9TjgTyfLd7gwKMB9azxvO+crPbbfbjdvtLhP1n6bfAgslVCXo1QjSkSNHCAaDfPGLX+Stb30rmUyGr371qzz++ON87WtfK58vCAKiKCKKIu9///tpampiamqK//2//zf33Xcfly5dwuv18rd/+7e86U1vwuFw8Fd/9VcAZfLa19fHww8/zM6dO/nEJz5BQ0MDFy9eZGRkZEn5Pv3pT7Nr1y4+8YlPEI1G+f3f/33e+ta38q1vfat8zpvf/Ga+853v8O53v5u9e/dy4sQJPvKRj5BKpfjIRz4CwLve9S6efPJJ/uRP/oTu7m5mZ2f57ne/Sy6XK6fz4IMPMjw8zMDAwIraT3vAf/azn6W2tpbDhw9z7ty5srXgla98JV/+8pc5ePAgO3bsYGpqiieeeIJ9+/bR2dm5JJqFdo2eaAMMDg6W20yDtlBUkiRkWb7NxmC328vRerRyagqrtkBV/3I4HDgcjiVEsBIBNCryldTwav1Mj9VYFO7ERmOMilNptsWI5TzDL2RmQrveSMT1hN1sgKURdDNib7xPejJu/L8amf5BzTKslKyutF1fCPk1I+YvJM/Vnv+T/FBO6xdzLuzM6bEvRlb5tY2lxZxuO0ipFLHjx4l9po/BBQ+5ze0u78q55m1vI7xvH3aPp5R4MQNzJ+Dcvyz6xxVJp47/+bLqeCaZ4fvPXOPZSzGOz7m44Ooi6allUybKfr/Cb2+RefAuka417UD7yiqdGyOe7GO4cIEh2yzDHjsj4Va8HpWuQhOdwn72e/awxrYOt5lVRVVBGSnbVBTpOAn1GlFnA1FXFzGfh2Kihpq5OtSMAMIcbZ55mtQZIqkY04N+Rs41MHolwNj1egQlj/9ltQTvDlHzdhnWeVCTrTguzOGZjaJ+TUC8kSF3MkX6CjhyKm67HZsCwXXd+F9/D6GHH8Z38CCu7u7bIqqoqGSYKy/eLO3CeRN/MU2n6KBDTLNdnMQtXgfBg+DaA1IrJFtgah1MXILMN0zJeLFxL8nmDsbqPEx6s8xn55HPRHF+8TiRY9PUHJ2mfiQBQT+qYKeQTGFvbcX92gcWyfiePQi1QaKMMsAwF5nhBl9jFBsx6hBxsJUs2+Rp7ktdpvXWJepvjVCTTOKyFSAM+Q1OxF4PUTVELuQm73WjCA5QvNjtKWyqjKO9g3GphhFXjjG3yJAjQ8xRpE52oQogACG3k/b2JiTBRlEsosqlZ342m8XpdOJ2u8uCm/bMsWwvP9lYkQfdjEw5HA5+4Rd+gX/913/lbW97G1/+8pdxuVy8/OUv5+tf/zqwSFzq6ur4h3/4h/KDTZIk7rnnHtasWcOTTz7Jz/3cz7F161ZCoRAOh+M2W8h73/te2tra+P73v497YSe2Rx55pFwmDcFgkC984QvlMs7OzvLud7+b2dlZGhsbeeaZZ/jSl77E5z73OX72Z38WgAceeACAP/3TP+Vd73oXkUiE48eP8/rXv563vOUt5bR+/ud/fkmZNPvIcm2mb7f5+XmefPJJ3vzmNxONRqmpqSmn8ba3vQ2Hw8Gjjz5artPevXv54z/+YxwOB6qqlmcbrly5wp49e8pk7cqVKwAkk8ly3nq7gt76YGwzvboOlBeWFotFCoUCgiCUbTIaOdeInz7CTCXPtZ5Mmi1ufCn8uPyoylBpwGBmXdETdP2GRfqBkpmKrr/ebOBUSZlfrswrHbysFisti9nAodJg4k7ub7WZldWQdWN99N/JSuf/JEJVS2p4n86ucileijV+VyP80lr4xEHoCgCoZG/dIvbNfq719RHr6yN95QqBrVup7e2l7Zd+ie1/+7f41q4ttZeqQmoARv9jMbJK7NKCOn54Req4IitcPj/I08fG6B+ROFNsYCC8kcZcLbsEkfu74AN7i/Qc8OJ07FxZpaUUYuIYo+IphpTRklUl3IhY76ND9NCl7uM+5w46HduoIWhuVVHmFiKqlHbiTCnniTo8xFzdRL0hslkfNdM7cKRtSGqSRvcQjbYZajPzJMfdDJ5vZOpSkMnrTdiSebx3h/E9GCbwCypCtx1VbcN+Lo1nOgVP2Sh8WiR7MkH6kootoeJx2rEXVXwd7dS/4nAp1vihQ3i2bjWNqJIltmQB57w6gEuK0yU6aBazbBGncYs3EFQFwa2R8QaYXgPjlyDz3RIZDwRAyEFgeoGM7yHe0sF4rZtJb4759BzK2RjO/zxO7dESGW8YS0IwgIpAIZXG1tGB53VHCB06RHDfPgK7d6OG3cwywjVGuMQMA3yFcZxEqcOGzDZSbJfGeEX8Ek03r9AwNEE4k8LpkFDqBPIbXOTu9jBrb0L0hRC9KoLqRch24buewx31kq5fz4D9vzHmk7nlGmLc7idfAx3FadYUvfijdXyjfzu5WICv3JOg2DRLzH6e+wK/wdX163iCN+BRHLxjopdw0UMulyOVSuH1eolEIni93tvsqRZ+MrEigl7N5nLvvfcyOTnJ5z73OV73utfdFtVFw7/+67/yV3/1V1y7do1UKlU+fuPGjaodLZvN0t/fzx/90R+VybmxTNq1jzzyyJIFgFu3bgVgbGyMpqYmvvOd7+D3+3nlK19Z3iVVEAQeeeQRPvjBD3Ly5EkeeeQR9u3bx+OPP05TUxMPP/wwu3fvvm16/dvf/vZKmm4J/uM//oNCocCrXvUqhoaGaGtrKxOqr3zlK/z7v/87v/qrv8q2bduYmJjg//7f/8sHP/hB/vRP/xSAgwcP0tHRwV//9V/zB3/wBzQ3N/Pkk09y9uzZctk0Yma0LuhH3kZ1WD8aN9vuXftMU+K1tIvF4hIrhRYxRq/EaoTfbrcvIfN6+4zeM18pXr2+jxjXFayGXK7ETlOJkJkdXwlBNZK9agMUIxnX/zVuVqR5E43EXD8gM4sko5XDuLvnSkij8Xz9fTDWWd8PV4o7UYRWYrfRymt8v1KiX63fmPWLOx2EVrsHP04P44IMZ2NL7SraYs7eBvjo3tJizpAL5FyO+KlTxL7Qx8mF6CpqsVjyjvf0sO3jH6fm4EEcgUAp8WK6FFnl/L/pvON6dfyjC+r47QsPNcRmYnzv2Rs8cyXJybiPi951FJwNbM0m2R/O8IebVB66u0hzYxfQtXyFFQk5dYGpzFGG5ZsMOVIM+4PMREpWlS5pA9scG3mley/NQgM2U6tKBoqnQTqOKh0nK58lZhOJutcTddeStAkEpzfjTdiR5AI17utscMzQkI2Sn1cZON/EzIUwU9ebsc3IuHcI+F8Woun/syFsKKL6WkpkfHIc+m0U/y1P9lSSzHmZ5KyKx23HXlDwNDUQuesgoYcfLoU33LkTmzYzoUOORNkzrtlVbNI8XaKTFjHHhtwMXvEmgppFcO0CqR3SG2G6GUYvQ+YZiDSWlHEdGS807Sbe0s5YrZtJj0g0PY9yOob7309Q2z9F7bFpGidSEPSjqALFdAZ7Vxfe17+qTMb9u3YhBwSmGeIio1xhjFvcYhIPUWoJkmUbCfYVBvm52FUar12lYXSakJjG7pKRm2zk1rsR13qYdLQh+oIUPBJOGvCyC7e6GTXbyeRsAyN2J2NukdHtOUadOZyqQKck0lHwcn9qF02FALNzPi7HnVxOunhy0kOqKLMhcpVB5SQ7PdcQXUN8RXgZt4R1pe+PIDMcSrAnXtqwSFEU8vk8ExMT+Hw+GhoalvAhCz+ZWHEUFyMEQeDw4cOsXbuWv/qrv+K73/0u3/nOd0wfJF/5ylf45V/+ZX75l3+ZP/iDP6CxsRGbzUZvby/5fL7qgycWi6EoCq2trcuWKRKJLEnLs/CjIooigiAwOztLJpOhRotpa8D8/DyqqvLxj3+choYG/uEf/oFHH32UpqYm3vnOd/Le9753iW2gGswe6E888QTd3d00NDSQSqXK5CWZTPKJT3yCt7zlLfyP//E/EASB3bt309bWxm/91m9x7Ngxent7sdvtfOhDH+LDH/4w73jHOwBobW3lLW95C//4j/94mz9eT8z1ZTJGyai2Pb1GmDRLjZ4gaiRPu16SJDKZDNlslmKxWD5flmWcTifBYLC8YFXvkTcuYNVUfaMyrCeqUBq8BQKBJTMZeoVfb73RL4TU100/ONG3gZFgVWojrW00GO0+ZtBbaszU7UoEz+grN1PJzQi5kShr98zoNzcO8CrVQf+5/hw94dfqZLfbl+SxXNss12b6/5cb7BhR7dwXakFaLh/jsZUMFM3S+EHZil4o5sTFnTmfnykt5mz1lewqD7XAH+2ErWGw2yA3Nkbs+X5GFtTx5Nmz+Lq7qe3tpelnfobNH/kIgU2bSnYJTR2f/NKidzx+CcKbF7zjPwcH/mJBHTe//3JR4vSJG3zv1CRHx+Gc0sxQeD0dmVp2OyRes9HGXx4ssmdnELttz/KVVVVUcZR4oo/h4kWGhTmGvHZGw634vCqdhWa6hAMcdO+lw9ZVwapSBOliyaoiHScvnSJqmyHqXEfU1UTCoeCZ7iCYcCDni/hdg3S6ZmkQ57El89y82MTshQiz15qxjwk4OtL4Xxmk8S2O0uY/dbXYLuXwjE1gu+Cg+F9FsmcSZM4WSUyUYo07igqumjCh3XsJPvQQgbvuKkVUWYjCpkee9FJlnFso8swCGc/TnZvDJ95EkKMIrp0gd0CqC2ZqYfQaZI4uJePBaWjqotC8m2hLB2O1LqY8OaKpKOrpBO7Pn6Sub4r64zM0T6Uh4EeRVYrZLPbubnxv/FlCBw+WyPiOHeR9RaYY4iRjXGWIQW4whY8YEZpJsE2d577CLdrnrtJw9Qb1k7ME8hnsHoVim53cOg/iZg+jzk5Evw/JKeFmDV524RO24lE3MSm0c0PJc12JMaAmGPfniLhjrJG8dBR8vDoTwTHvZDIZ4mrKw9NxO5eTbqLFDPe3naNnzQUe2TLIvYEUcaeTcbWNY7YwN5Q2WuQ2moVn2a2e52nhAbyqk+50LU6nk3w+j8dTiqxjt9vJ5XKMj49TV1eH3+8vW1x/nAbwFlaGFUdxMYMgCLzhDW/gscceo729nXvuucf0/P/4j/9g8+bN/PM//zNQesCPjo6u6GETiUSw2WxMTEyYls8MRruFVqba2lpCoRDf+MY3TNNau3YtULLKPPbYYzz22GPcvHmTf/mXf+FDH/oQLS0tvOUtb1nRwklj2W7evEl/fz+PPvooExMTBAKBMmkZHR2lWCyyfv36JZEd1q9fD8D4+PiSMv7zP/8zk5OTFAoFOjs7+fznP4/L5WLTpk3A7QRcXz6bzYYkSUtUQmOUDz0B15NPjWgJgoAkSaTTaRKJBNFolFQqRbFYZG5ujnQ6jaqqBAIBBKG0SFiWZWpra2lqaqKtrY1wOIzb7S7bd7R89eRRy8dI+vSEW5uN0dR7o+KuJ7Cad157aYq+1gZ6Ym+MsV2N0K2ElBvb1li2Sufpz9UTdC1f48yCGSrtJGuMwKKlpbWDGbE23gv9ce3+6QeE+sGIoijLkv9qMKuf2UxaNaxk4LTcsUpp6tuw0u+D2YxDtTqYpfWjfhArKlxNLJLxvlkYTpcWc/Y2wu8uLOZs8oJSLJI8e5bok32cXVDHi7EYkUOHiPT2svGDHyRy+DCuSKSUeFkd/9LiZkCqsrgr56GPQf2Bqur41Mg0Tz17k+dvZDiVCnEpsAGb0MiOfJYDdTl+aavK/XfJ1NasB9YvX+FiEjF5jJHcKYbVUYZdEkPhJvINXtaIPjrV/TzgKllVwgRut6qoCsg3F+KNH6dYPElMGCTqbCPmaiPmsGOfqycca0YVJVyOUTa55mkozuLLZLh1rZGJ83XMXW3k+pATR3iKwCsC1L7WgW1zHlr9CDeduG9N4xhwIj1TRDyfJH26QGIYPA47TlnF4fVSt2M/oTc/SODuu/Hu34+jvv626hbIGpTxWxTkKTrzTlpzRbrEWXziIDZpEsG5DZQOSDfDTABGbkDmFERGF3bgzEJwGrWpi0LLbqLN7YzVuZh054gnFsj40yeo75um4cQ0LdMZCPiQJRUpn8exfj3+l99VJuO+7dvIujOMMcTzjHOV6wxxhVmCJAnSSZxt6iSvEG/QOnWV+mtDNMzM4ytmEXwqhS4n4hY32Z0+5l1N5P1uZDt42YCX3QSFLTjZwBgNXCDLAAkGSDDLHO2qSEfRS3PGwY5cI7ZUhFsJHxdjDo6m3VyM2wm6p3h4zVF2dVxi694JRH+eWVuASdq5joeE3EVzwc+abBu9Uiv1WQ9utOfQz1AoFLjf40NAIC+KKG6lvP+JRtYdDgeSJDE5OUkkEqGurq5qJCgLP764YwUdSg+WN77xjZw/f56XvexlFTuItshB//njjz9+23lut5tMJrPkmM/no7e3lyeeeIL3vve9uFyLv34reZjpjx85coSPfexjSJJU3uTDjEzosX79ej70oQ/xqU99isuXL5sqjtXaR/v7xBNPIAgCDz74IKOjozQ2NpY/a2pqAuDatWvs27ev/BC/fv06AM3NzbfVR5tREEWRr3/96xw5coSANgVsgEaM9ORIWxhqRqy0emnkXG+XSafTTExMMDo6SjqdJp1OUygUypYhzc4ClDdpSiaTiKJIPB5nenqaa9eu4fP5qK+vZ8OGDTQ0NJQJsVYOI0HU/6+psvo21tpGluXbVGTtM81Tr12nkd1CoVC+Tmsrt9uNd2GjDG3BrJH869VmWLSg6MulL4fxr/GlXWfWr8wWhupf2r00kl+j8m9sN+29sR0rEepKg1FtNkK/MZY+XX0a+vtnLOdqYBwkrBb6wYnx+1+NmFe6V2b306xsxryqnWuW3g8bmSIcn1/0jvfPgtu2uBHQOzbC3oXFnPmZmdImQP393OzrI37yJJ7WViI9PdTddx/r3/c+Qtu3lzYCUlVI3oSZr8LlBatK/BLUbCmR8bWvg4Mfq6qOF3J5jvVd5XtnZzk+beec0MZkqJN1mTr2uAXesNPBg4cktm1qQhBWEIFLkZBT55lcsKqUoqqEmYnU0+yT6JQ2sc2xkVe599BUyaoiTywo4yeQi8eJc42YI0zU1UnU60XNeamZ34EtKyPYp1nrmqdJmSWUTTAyVMfouQZuXq7j1i03dvsovge91NzrwP5rInTZEcYbcd2YxzXtQD6rkLuYJHtSJDkAbsGGSxUQ7A4iW3YT+F/3E7zvPnwHDuBsa7utqEVEogyWF3HOc4ucMsEa0UWrWKRDjOIXB7EXRhBcm0BZA+l6mPXAiAPS5yEyvRjaMDiN2tRJvnU3883tjNU6mXKLxOMx1NNJvN85Qf3zUzSfnKVtRiPjClKxiHPTJvyv7iV06BCBvXvxbdtCyhljmGG+yyTXuMwIF5mlBhEXG5lnizLBz+du0jx+jYZrQ9TNx/EqOdQg5Ne5ye1xk7AHmXa3IfrsCIIbr7AVr7CLGrYQp5sxggyQ4uYCGc8xwTrSrCfMfhr5meJ64tM+jo/mOTOr8p8pNzczAtvrb3B/29Ps23WJw7XjZJweZoQmpmjmkhqkRd5CsxhhW66NB7JhWmwRBIXyc9XpdFJUishq6X+bzY4sC9iLcvnZJIoiHo8HRVEQRRG3213mU4qiMDMzQz6fp6Wl5Uf+O2Hhxceqwiya3fzu7m6++MUvVk3jyJEj/OZv/ibvfe97OXLkCM8++yxPPPHEbUr35s2b+fSnP82XvvQlOjo6qK+vp6uriz/7sz/jwQcf5P777+e3fuu3aGxs5PLly+RyOd797ncvScPsoa0RqYceeohf+IVf4Od+7uf43d/9Xfbu3UuxWGRgYICvfvWrfPWrX8Vut3PffffxMz/zM2zbtg23283Xv/51YrFYOfa4qqocOXKE0dFRrl69WvEBrCdDn/vc5zh06BBDQ0P4fL4lRC4cDnPvvffyuc99Dih55ycnJ3n88cfp6OjgwIED5bQ/+9nP0tLSQl1dHRMTE/zbv/0bqqryzne+s2L7G0mkhuVC7GlqKkA6nWZwcJCBgQESiUSZjObz+fJ7LVIMlAZbqqqSyWTKKre2Cr1QKCCKInNzc4yPj9PV1cX27dvLSoAWQlK7b/p21d9XfR208hthvEZ/T4zRSzQCr6pqWfXXLDm5XA5VNd8ZVrtelmUaGxtNfyiNBNcYZcV4rpmCbgajAm5mPVluBkBrC/1MgP5843Fj2tpMi1Fd1w+4jDMSq0Wl8ld6IK0kDzOCbpwlqAaz9lqOoJvNOpidZ0zvhwVVhdHMYmSV52fgYhw2h0t2lTeshb89CGsDgCKTunSJ6H/2cXkh1GFubIya/ftLccd/93ep7enBvSBAlNTx43Dhz0pkXFPHtR05D30M6g+C63aLRalsKsPXRnm6b4jnb4mczkW4GtqEV2lhp1TgYKvEb+yEew7bCPhWsAGQqqLmhoml+hkuXGTYNsewx8FoTRt+j0JnsYVO4RCH3Htpt3WaW1WUOEgnF3biPEZSvUjUDlFXNzFPCLFoo2ZmC56MhEKMdvcAjcIskUyMmekQg+eaGLxUw/B1Hw5pBM8hF4H7HdS8XoRuGSHehOtKCud0DvVrCrmrGbLHMySvCThlcNtKEVVC6zcRePM9BB94YDGiiqHfSBSIMVS2qMwzQFoZoz3vpE2U2CnGCIjD2PO3EJzrQO2EdABm18EokLoCkagumsoUamMn+ZZdzLaWyPi0SyQei8LpNN5vnaT+uSlaTs3QPpcFvw+5KCPJMo4tWwj83F1lMu7ZvIGkY46bDPEs09zgPCNcIEoEBdjCDFvlce7JXKdp5AYNN8eojcZxk0eJCIjr3eQOe5i31SJ6A+S9Ag41jFfYgVfYhYfNzNDFME5ukWSABLdI4GKEbsJ0E+YIawjlQkzNBjg/J/DcHPztnMpUNs0DbSfZtqaPQ1tv8rA3T9rpIUYtCiAyT0BIkVbc7J3roSO7jltpN3a7k4JsI2SXqXcUwamSLKqcSrrY6c9TZy/9NmqzxEnZwfmEhz1BEb+z9NtSKBTKM7+iKOJwOHC5XOVnpNPpJB6PoygKLS0tZQHTIuo/GVj1IlGjAreSB9mv/uqvMjw8zOOPP84nPvEJ7r77br7+9a+zbdu2JWn9/u//PoODg7zjHe8gGo2W46D39PTwve99j/e///382q/9GqqqsmHDBt7znvesusJPPPEEf/mXf8lnPvMZPvjBD+L3++nu7uaVr3xlmTD19vby+c9/nqGhIVRVZePGjTz++OMcOXKknI4W6cRIiMwUuf7+fgYGBvilX/olZmdn2bz59ofH7/3e7/H5z3+eb37zm3z2s5+lpqaG3bt38yu/8itlsisIAplMhk9+8pNEo1FCoRB33303v/Irv0I4vDRcmJkCa/QIm/mvzULszczM8NxzzzEyMoLL5cLtduPxeMoqtNYOqqouifiiqirZbBagrEhrddFCPoqiyJUrV5ifn2fXrl2sWbOmqgJsRtS0QYFerTXW3exa/TV6hdrlct0WoUf7EdUGLXoCquWnqftautUIlxYFSE/Yzcquh3FAZUaW9Xno76exTY0DlWq2E61eZpYafV6SJN3md3+hxFwPY77G43pUyq+aaq59rqVZSZzQ519pJsRsytlssFipjxjTWK6+d4qiAmejS+0qySL01JfsKn+2Fw4tLOYsxuPEjh4l9pl+jvb1ET92DEcoRKS3l9reXrr+5/8kvHs3NpdrQR2/ATPfgJsLkVXil6Fma2kx59rXwaH/X2mXzgr1ySbSPP/cVZ65EOX4nIvzzk7mAy1sSqfY60/wzm0OHuyV6V7TyIo2ASomyCWOMiKeZlgdY9gtMRxqolDnYU3eT6e6rmRVsW8lbA+AcQ2eKoJ0FoqlRZwZ5SxRW6pExl21pNQiNVNd+NIqspyh0T1OvW2O+lyUZNzNwLlmRi/WMHI9gDPpwLVNxv+wg8DLRISNBZDqcF1M4p6ZQX1KJffJHLnjKZKXBRzZkm/cVlQIdHbh/7legg89hP/gQdxbtpRmJHSQKRJjZIlvPKmO0Jp30C6qbBXjBMVhHPkbCPY2ULsgE4C5dhgtlmY2IqlFMu6fRm3oRGzdyUxLG+O1LqZcIvFoHNupFL5vnqTh2UlaT8/SEc2Bz4dUKKIIAs5t2wj890Uy7t7QRdQ+yVWG+Taz3OQ045xjngheRLYyyWZplEdSN2gaukHDwBSRZByXrYhUby8t3rzbzYy9kZzXT8Gt4lab8Qq78Ao7cbOZSdq4KShli8oIKeoZopsQ3YR5nbIeWzLM4KyHc3MCX5iDs3MqXucUL1/bz76Oy7xm0wh3eyTmbF4U7ASEFF5y+InTrmSxIeAudiLZp5BtaepI0Zlp52vpMO8ptCDlBBx5FRvwb7UDbPHmec3lNYwXXNQ5JL6zbRBBLQVRkAQHD5/rJC3ZWOcT+eetE0Qcpd9lba2Vx+MhnU6Xd2rXflsdDgfJZBJVVWlvby8/ey2S/uMPQa3y1NQ/yKsmUqEjrLSDrObBvZyiv5L8K01lmz28qz3A9WTLeI7x2mKxSF9fHzdv3qSrq+s20ljJllFJkTNT2MwWCBqJmZGM6ctqJG7ZbJZTp05x4cIF5ufnEQSh/EOh+eL0HnXtuJZOsVgsL4Z1OBwEAoGy2l4sFoFF/7vD4cDj8dDd3c3mzZvL9hKze2VGSvVEXd8WZmRIn47RlqHZWfREGxbVdWMEGu1zzSOo2ZWqqeKa8qHZvvTHjQMk/cyHUeU2S1s/ANOnZ2wLYzx8PfRWHa2/GCPIGPulMd6+2fdoNbuOGrFSC4y+3JW+v2ZlWK48ZgTdrC3MoucY8zemZyy7GdE35qeqKt3d3cu0xu2YF6F/bpGMn5iDFu+iXaW3EbaFwSaoZK5fJ7qwkDPW30/mxg1Cu3aVY4/X9vbiXQj9SiFVijuuLeScOVo6rkVWaexZ8I5XUMcVhevnBnjq2Ch9wxJnCvXcqNlMbSHKTiY41KzwwJ4mevZ34nFV38UVAKWInDzHRPYow/Ithh1phgMhZv31tOQlOqUwnY6NdHr20iTUY8NwP1QZ5MsLIQ6Pk5NPERUmibk6iTqbSMoy/qk0oaSAVCzgdiaoc85RL84jZeD6xVZmz9ciX3finJ3EuSaO/0gLrr1OhE1FcMs4L6VwTyowIZAfzJE9kSJ/AWxxFY/bgT0vY2tpxnfgEKGHHiqFN9y5E5sheoeCRJyxxU1/uEVcHaKpYKdDVGkQkwTFUZzidQRbPbAWsoHSNq1jQ5AYhkjTome8MI3qayfbtovZllbGIi6m3SLJuQTCqRT+k/PUPzNJ4MwstlgOfF6kfBHF4cC7fTuBe+4hdOAAgX37cKxrY9Y2xiVGuMQct8gzjosYEWqJs5UpNheGaEvdoPHmTRoGZ6jJpLA7JIptDnLrPOTCbkRHgJzXi+wQ8NCJV9iLR9iOyEbGaOAWos4vnqODQFkZb5PCZOfDXJt1cnYOzs7DxajMjvoBHuk8z4a2q6g1c8y4VFL4cAgSYRKE1AQ1JPGSQVbCJAkxa/PiLnRyYPBu3GozUbuH8wWJY7Ycl3NrGCoEmJPsIAFFQBKwSSrryRMrOpiV7KAKoKp8qH2GoZyDy2kX10UvMckOCGBTcdtUvrRjlPWeAplMZsl6Li0QQi6XIxgMksvlyhaY5uZmmpubl4TitfDji2UJOixPoKupO2ZkajmYKU3GMpnlZTxeqVyVCLr+oV7pAW/cntuMoBvLqaoqsViML3zhC9TV1VFTU7PkYa6lpy/ri0XQ9e/N1GbtcyNBj8ViPPXUU5w9e7Z8TJs+s9lseDyestLs8XjKBE5ThfP5fDmai6qqZQVdK6PmVdem7zRF3el00tHRwa5du8rpaudX6z9a+ZdTLfWEUrt3GrnUx7bX6qJFowHKdh49sdbyLRaLhMNhamtrb7svRqXZjKCbDZiM5LYSjKS9GvnWt4lZ/9b6pX4AYszbuAGSUY3XL+w11kE/27CS35Xlfj+MSrexvMY6roagV/otM1O+9QS9WrkrqeOV8tLfC+M5XV1dt7WHHooK1xJL1fGhNOyrWyTjPQ3Q7AUpnSZ+4kTJP75AyAW7vaSO9/QQ6e0lvG8fDp9Pp4736yKrXFlQx3sWX6H1FdXxxEy0tAnQlQQnYz4uetaS9tayJXeL/aEUd28K8uBd62hv9Fet40IDo+aGiCX7GCpeYtg2z7DXyWi4laCk0Fn00CmsodO9lw5HJy6ct12PMlQm4wX5BDH1FlFXI1FnG3HVgWsmTk3chlAoYHOkibjmaMjP4xAL3LjeyuT5egpXPLgm53FEJvA93Ij7oA/bFgkiEo4rGdwTRWzjNvIjebInk4hnVZhV8WpkvK4W7979hB58EN/hw6WIKoZ1RQoKCcbKizfnGSCmDlFXFOgUBRrEFKHcGK78NQTBD3RDNlgKszM6DIlRHRnPQWFqgYzvZLq1lbEaJzPuAomZOLZTaQIn52h4ZhL/mVlsCbFExsUCqtuNd+fOJWRc6GxgShjhPKNcIcotCkziJUmIdmbZok6wsTBIU3yAxuu3aBydI5RLYXMr5Dtc5Na5yfk9iM4AOZ8bQXDgYQNeYR9uYRtx1jNG2OAXl1lHiPULZLxGDDM/E+TinL1ExudgIpvh4Y4r3LPmPE3NA2SCaWbtDoqCAw85akhQot9JbIBNbSWsbsCbWoOQbEZO1OLwNnA+I/Ntv5unCx6yqQCJgpuiJEARbLJKQFHwyCqFAsQkB3a7itOmErLJ7HXmyMl2LmXczBUdhOwye4M5GlwSgiKTx87JjJ/xohMQcKDwh22T/Fx9gq9NO2nx2dkfyJaFr3A4jCRJFAqFkpd9YRZbCxxRX19v+pth4ccLKyLosLJFU8b3qyqIICx5aJqRFiOMarZZOc0IbqX6GMPPaccqldfsYasnI/pjx48f58SJE2zcuLEcK74SQTeWu9KAw/iAr0TQjfU2Kun6cxVFYXp6mm9/+9tcu3YNVVUJBoPl+6PFPvd4PGU/nH5nUY18iqKILMvlSC2yLJdDImaz2XL+Pl9pa2Mt3KYglKKtbNy4kU2bNuF0OssDi0o2DD2RNFukqFeEtXJqi0L1Iar0qrmmkmur5qG02Fmz8BgJViaToaWlhVAoVLGM+vONUWO0z42DRO2emN1Hs/6vt5iYkVOzv8Zyan/1JF3/vdT7583Kp4+Hv5yCbiS7xrKYLbo1I7z6+uq/u2YkvJqyXgkredjpy2umeBt/L8zIt1YGfTrGNLW0tI3LNGSKcGJ+kZD3z4JTt5iztwH21oHbppIbGiLa30+sr49oXx/pS5cIbN5cUscXSLlP8zEXUjB3HKb7FyOrICwl4/X7K6rjclHiwvFrPH1qgqNjKmeVJm5FNtOSm2S3fZqedhsP7G9l385WnPYVPD+K8QWryimG1HGG3TLD4WaKdjedeehUm+l076TTuYUQJgRfmSlv/iNJx4mrV4k6vERdncRsXoS5GLVRO458HlXIEnbP0yDN4ctnuTXczOjZBnJXAziGUrh8w3jvqcHTE8S+TYY2GfuNHJ7RHLYJG8WRItkzKXKnZZTxEhl3FBVsfj/unbsJPvgggd7eUkSVhcG9BhWFJJNLFnBG1UHCkkpnzkajmCYsTuAWryJgB7ohF4L5AoyOQnwUIs2LNpXCFKq/nUzbTiZbW5kIO5h2F0hNx7GfyhA8Pkv9M5P4zs1iS+bB66Uo5hH8fjw7dxK8994yGVfagowJw5xjnKvEGURiGh9ZfHQzyWZ1kvXiAE3zt6i/PkzjxByBfAb8IHa6yXW5ET0ecq4AoteBQ/XjEbbgFfbhELYu+MU9Br+4vayKr1PC2JIhxhf84hoZdztmeOXai+zruICvYYyYO0/M5sImgJ8U4QUy7ieDQggPXTSwlQa2EmQDbrWZARGem83wnbkiF4oeRmQXRadIwJPG60vjDyQZPL+RUM5NKm/HhsoGd55GexEXCtm8TFRxM5j3UlQFul052t0iAYeKrKrEVSeDeQ+jBQ9NzgIbXBk2evJ0uzLI2PjYdDsNTon/s2aAv5tr4SuxCCDwqQ3jHA5ly4tEXS4XmUwGt9tNLpfD5XJRLBaRJIktW7aUrTDl/lTlt9bCSxOrJuhmytCLQdD1aVZT0PX/64+bLSbU0ljpSNKo8pmph8tF6TCWT1vc8a1vfYtoNLrEY12NUJuV24ysm52nJ2naqFpbmBmPx0kmk6TT6bLNxO12l4m2JEmcOnWKkZERFEXB7XaXibXP58Nut5PJZMjlcgiCUI5tDouhCjUirxFRjdC53W4URSGXy2G325EkqUzeJUkqk3mbzUYgEGD37t00NjaW1XONrFQjd0b12OiH1o5p5E3bQEnLV9/3tFjsdrsdWZbJ5XIASwYlmv0jlUrR3d2N1+s1vW/aX/3gUz9AMLNm6PtftQGqMQ/tMyNZNbve7HthLKM+Lz2xNGtj7Vzj96iSom4sv9lA1VjXSj9Z2gBHK1M1gm5WZ2PaxrbRE+VqZTAOlvXQzz7oY9pXSqfaMTXSXo6s0jcLF2KlxZwaGe9thHUBUPIiidOnS2R8gZTLuVzJprKgjtccPIgzFCqpyYnri8r47NEFdXzbAhk/vKw6Pjs8yfeeu8lz19OcTAW55N+I5HSzPT/I/ojIPVvDPNi7loaa2ze/uQ1KoWxVGSpbVWqY89fRIkp0KTV02jfR6dlNo6lVJQ3FUyAdR5GOk1AuErUXibnWEbUHKSaS1M6qeHJFFHIE3DEa1FnCYorRmXoGzzaRvhTCNljAYxvEvceJ974I9h0grJWwjRRw30rhmLIjjUnkzqfInpCQh0q7cDplEJxO3Nt2ELjvPgJ3312KqGLY10NFJcW0LrzhAPMM4pckunJ2msQMYXESj3gdQSmA0A25MESLMDoOsQUyHliIM16YQvG1kenYwWRLG+NhBzPuAumpBLZTGULHZ6j//iS+83PY0gXweCjmRIRQCO+uXQTvu4/QgQP49+5BavEyyCDnGecqKYZRmCGIjI1NjLNJmWBtboCG2UEar45SPxPFX8wi19gQu9zkOjyILi85t5+8x4ZLjuC17cAr7EcVtjBJG4Ng8It7y37xNilMPhpmYKbkFz87BxejCtvrb/FI5wU2tV1Bicwx55LJ4cAlFAmRIESSMCkcyKi0EGY9zewgwiYCdJOU/FzIwXMpeC4BlzMq01IRryeF15Mm6E8TCKbwBDMoRTupeJBcxodcsFOI+9gz4yQ/M82gs4URWz2t7gLrXFnC9iJuVxHJd46xXCNXYjtRsbPRI7LenaPblWGDO8eWgEzAofIfKT9XJS89QpY5yc21rIvrooeBgo+8IiAh4EThj9rGeU1NjEKhAEDCEULMF2hzS3i9XjKZDDabjUwmQzAYZOvWrWVxySgSWPjxwB1ZXKrd5BeDoJvluVw5qilsy6nLxge4GbEw5mvMT9/5jeWampriK1/5Ci0tLdTU1Cwhm5VQaVBhVNzMCHqhUCCZTDI3N8f8/DyJRIJsNksul0MUxfKGB8a2KhaLxONx0ul02crh9/txu91lO4ZG4rU6aJYWVVVxuVxlb3qhUChbRrSXlgdQPk9TxbV219KAUjz6PXv24PF4ltRTr+qaYTnypJ8hMZIkPVEuFovlWOmyLJPP58uDLi3sokbyRVFk48aNyy781A+e9AMavRptRqxX4sHWk2gzYmpsC/1f4/X69tI+qzTwMGI5cmz2vdIr9tXqttz7St/hSu1QKZ2VDI6rtYNxVs3YptrgTL8brPF6fdpFBS6nnJxIODkRd3Eq4SIl2zlcv0jGD9VD2AXixESZiMf6+kicOYO3q4tanToe2LKltBFQIVmKrKL5xmePgmArkXAt9njDAXCah3At5kROPn+F752d5tiUnfNCKyORDXRmRtjjnqen08lDh9rZuakR23KPBlVFzd4imupnuHCJIXuUYa+LsXArQUmmq+Ch09ZJp2cf7fYOE6tKAaQL5Z04U/JZYrYYUVcXUWct2UyWyLREIFNEVkS87jgNwhyRXJzZdJiBsy3ELkYQbih4pFFcG0W8D9Tj3GVD2ChhmyviGkjimrQjjcnkLqXJHM8j3RRwCzbcCAiKgHPTRgL33EvwvvvwHjiAa+3apd8zVDLMlXff1Ei5W8rTJTpoFnPUiNMlMi4nEYRuyNVATIKxcZgfv52M+9tIt+9gorWF8bCLWadIejKF/VSG8PFp6r8/he/CHEKmZE+RciK22lo8u3cT0sj4nt2IjXCdIc4zxQ3SjCAwSxAXRTYzxiZ5gjXZAeqnhmi6NkHtXBSPLCI1OBDXusm1usk5fIgeH5JTwK204LXtxmvbR46NjNPILQqmfvF1apiIGCYxG+aqzi8+nsnxcMcV7l1zgebWG6QDaWJ2UAQbHrJlVTxAGhk/TtbQwFaa2E6IDTiUVq7n7ZzKwPcScDoFt0QF1Z4l4E3h86UJB1N4g2nszgLZpJ9i0o8368YmeyioXia9DpJ+AWnOgXzByyPyNQ4Nfxt/YpwhVyfDkU1cWNPDuORjjXeK7XUn2BK5wJaaS3TKQZSB15NIxKlraGRKDXBddHMq6eKM2sCIEgQZvA6F/Uwi4eZKNswrwnP8t+AIf51YR6OjyLtbp7CrpdnJ/pSfd0dLQTb+rPEGD9eKpVlor4NTgVmCSYEHGraXN4WsxjUsvHRRlaAbN6lZzQPqTrGSB7Exz0qqob7cZoutjGnrlT+9UrvSxbJmZZMkiaeffpobN24ssbdo5+lV4UppGQmDsR7lh3ixyOTkJAMDA8zPz1MsFsnn88DSjXz0VhHtHhcKBebn5ykUCuUoLZrPXJKkcvQWDRqJ1uKfO53OchhFSZLK6ri24FKrYz6fLyvQqqqWrxcEoRw6SltsKssy7e3trFmzxtSza0ZaK91bfVvqdynVFtxobaIRJm2q0OiR1y+YhEUiZrfbWbt27RKF1OxHUd+fjAtN9Z8bZ6+qWa20c5b77hj7nbEPGT+v1obLff+M38Xl1Hwzgm683ojlVPlqirlZ/mbpG9vJbBBRjcwb09f3Da3fGNO12WwkJDsn406Ox5yciDs4E3fS6FY4EClysFbiYETi7s4aBLlI8vz58kLOaF8fhdlZag4dKi/kjBw+jKuuDlRFp44vRFZJXNWp4z3Q1APBblN1XFVVxq4N8/Tzg/TdynEqW8OV0GYcgspOaYSD9QXu3VHHfT1dhH0rCBBWiJFN9DOcP8OIOs6QW2Y43IJsd7EmL9ClNtHp3kWnczNBo1VFVUC+Xg5vmJNPExXGiLraSos4ixLhySw1aRlZyuNyJqmzz1MvRkmLXq5dbGXuQh3KNTve7CTOtll8DzXi3OvEtklCKMi4ryRxToE6ppK9liFzLEfxqoBLEnDbSxFVHGu78PfeRfD++/EdPIh78+YlEVVUVLLEyhYVjZTb5SxdopsWMUdEnMEr3kSQZhCEdSBGICrB+CTMTSyQ8cACGZ9E8beS6tjJeGsLEyEHM84C2YkU9lNpIv3T1D0zhffiHEKuiOpyI4kitoYGvHv2lMm4b88u0rV5LjPERWa4QZYxbMwTIkSKLUywQRqjPT1A/fgQjTemqYvGcAkF8q1OxC4PucYFMu71oNrseJROvLZ9uG17SLCeUWq4RYabJLhFkixS2S++VgnjSIWZmQ1ycXbRL+60zfPKdRc50H4eb+MYcY9IxgaCoBAgXSbjTiRkGgnQTQs7qWcLfrWbuWKQc1n4fhKOJuFqFmJKnoA3jdedIhRM4w+mcfvTFAsucvEAXjGITw2gqF7iKsw5ZVIBENxFOuZG2XBtnOaxBGkRMsUgE45WLoW34RKKbBMusDV0kc1tl9jccYVu3xQ1znHs+SIzmXouqnv53tVf5/jcbm5JfuKqH8EGOEFxQtCWJ7HwXN2YT7F96gZfVPYBAqDyh8JRphMyO7d7GbeFuS6WFPabQj15Ss+Xn3UN8d62WfKCzBfXjzMWziMAb77axQNde8qzuhZ+/HBHUVzMiHq1B7rZ8UpYjSpqRsaqPZDNiEml6/UqpNF2sFw59AQyHo/z9a9/HbvdTktLi6myVu3LsxxB18o0NTXFtWvXGB8fp1Ao3GbT0YilRow1Yq6p2/F4nGg0isvlIhAIlKOxaKQ1FAqV09PqoF9oqb209DUFXQvHKAhCWb3XrDKwVG3VIqX4fL7yj4rD4ShbR/TEWE/c9AOAan1MK7M2KNDUer1VRauHJElLFojq+4BRWZYkiZqaGjo7O5f4s42LLbWXZtkx+34ZFfNKZNes31Ujs8Z2WO67YJbucmkuR8wrla/SgLPa4LjSQMA467eS3wPtvZmFxew7p28v48Bf3z+M/aXS9SAwkHNwMu7iRNzJybiLkZydneESET8QkThYK9PsUSnOz5M8cYLU8ePkzpwhfuIE7qYmIgtWldreXoI7dmBzOAzq+AIpt9lv945XUMfFRIr+Zy/z/QvzHJ91cd6xhulwJ+uzQ+z1xent9vJQTyeb1oTN+PxSKAWk5BkmMscYUm4x4sgwFIww76ulVZTolGvocm6m072bBqFuqVVFVUEZL+3EWTxOXj5OlFtEHTXEXO3EVRu+qRSRhIpQFLE50tQ65qkvzCMXBK7d6GDybD3Fa1680Vlc9aN4763FfdCLbYuM4JRwXU3hnlRRR1VyN7NkjmcpXLRhz6l4XE7sooS9rRXfocMEH3wQ38GDeHbsKIWU1CFH/DZlXFVSC2Q8T0Scw5cbwFYcRRA6IV8HMQXGpxbIeMuiZzw/iRxoJdmxnYmWVsZDDmadBbLjaRyn0tT2TVH7zBTeS3MIooTqciHlROzNzXj37SuTce/u7cTDaS4wxCXmuInIOA4SBGlkni1M0l0YojkzRMPwMI0DM9Qm4tidMmKbq0TG6zRl3IVddeNlPR77QRzCTmZZywheBkiZ+sXbpTCFWIix6cASi8rWumGOdF5gc/sV5MgMMVeRIuAUCgv2lCQBUih4sdFOHZtpZRdhNqDK7VwRHRxLwzMJOJeGUVHB4crg86QI+Etk3BNMY3NIZBMBhHSAoBTCJvjI42LeAfNuCdEn0Zyd4cHZo2zM36DWN4O3Nom/NsWZ4b08dvRDrGeALf7LbKm/wJbOC2xzXaJFnsEhFVEcCgP2DZyZ7uHZ2UfI31IIzyf4QsvryPn8SA47QbuIz57E3SiwNZkjHJMYmRUZV2uYcjajCrDOM49fnuaqvJ6c3Y3LWSQvusALfqnInkCcLluK2uw4wQaFr/lbcYcS7IkMUaiRSXlkbCrINrAp8NrLjdwd2khHR8eKfuctvPSwaouLGTk3/l+JQCyH1ajUZtdWehgby29GBszyX46gV6qnntRdv36d7373u6xdu7YcZrDS4KAazFQ6KKnmV69e5fz58+WY41p6mjKsxafWSKzeWx0IBCgUCkSjUQDC4TCamg2Uvec+nw+grI7rF7rprSyagq6tLne5XOWY8cViEZfLRTAYXFI2zX6TyWQoFAp4PB68Xm95dXowGKSmpoZQKEQgEMDv95eVbi1/jWRX63P6CCPGeO3AbWnpF5zqVW09mZNlmUwmQ1tbW1npNyPo+vuipWVcTGnMx6gKr1QNrtR/jP+bqdb6cpq9X8nnlZTvSgN3I6E1S88s/WrKebX09Plq91EfOlNfPuOMgbHN9O0It1tbjHUFyMpwLuHiRKJExk8lXNgFOBApcqCmyIFIkb0RFY9NRbx+neTx4+WXODpKYNcuggcP0vrAA0R6evC0tBjU8YVX4hpEti8l5MF15uq4ojBw7gZPHR2hf7jImXw91yJbCMgZdqnjHGpWuH93I3ft68DnXma6XFVRswPMJ/sYli4zZIsx7HMxHmolJMl0Fr10Cp10LVhVnMbtOJTYAhk/QVE6RoxrxBx2os5OYoIHx2yCupiKM59HtWcIO6M0FOdxFItcH+1g7Gwj+St+3FNJ3IEBPD3+hUWcCtTIuK6mcU9KMArioEj2eBrxnA1bXMHjceEQJWz1dXj3HyhFVDl0CO+ePdj8S1V8kdSSOOPz3KKoxOnMe2gTC9Tm5vGLt7AVBhGE9gUyrsLEFMxNQY2ejE8hB1pIrtnBaEszkyEHs44CudEMjlNp6p6fpPbZKTyX5xHyEqrTiSTmcbS14d2/v0zG3bu2MBuIcY4RrjDPAHkmcJHBxxqm2KRO0F0YoiE1TMOtEZqG5ginEuAFscNd8oyHPeScPgpuB045gFfYjMd2CNW2k0naGcJm6hdfp4apy4dJz4W5Mb3gF5+HsXSeh9Zc5b6O8zS13iQbSJByyKiCinfBohIiiZsCRerxsJY2dtLIVvzqBsYLYc5k4ekEnEzBjaxKRs0T9Ja84uFQGl8ghcufpZBzk08E8RcCeNQgMh7iNhtzLpmUT8alZLl75hQHshdodk7iDcfx1CcRHDJD8bVMxtsopl345QwtwTE2h6+wUb2Bv5BBcMjMeJu4PL6V5wfvZTCzE/9UlDXRIXYkL7AtdZmNqevMu+uY8TbyjXUPM9T8ADfqtnDTBYnmIHafRPpChP2ZeVLz4xTkAqG2dYw7vEwrQWyqgpCUkRJu5CQEQkkCjgyb1w9xcO8ksaBMzFfEVRBoyLmoSdqxjaZYI9RwxdnK/27bSsSW4teiT/Nq93M47X66Gh8l4A9bJP3HEKtaJFpJMa+Y+B10hjslIMsRCj2q1cOMDFTy0y6Xdj6f5+tf/zpzc3Ns2rRpScQQvRJsTNeo0BrT1c5JJpOcOXOG69evl8MWAkusGZrPW8tPi9ft8/mWbBdss9nKyramrmtWE5/PV/aQa+2hWUOAcvpG1dDr9ZYtLhqx1+ohiiLZbLa8YDWdTqMoStlao/neJUlCFEVgcYFdIBBg48aNdHZ2Lpm+06v7xnuiEWKtDFr6wJKILhqp1siz/gUsIWJav0ilUmzdupW6urrblFhtIKS/d/o+pY8ZbowiVOll1lerDZj1ZTEeM4vprt3TSnlVItDVlHJ9v9BDf7/0bWGsQzVV3UxBN/tMXyb9QF2750Y1XN8uZiq4vi+YWei0vCZyNo7HHRyLOjgRc3Il5aDbL5fsKhGJg7USa30KcipJ+vRpUidOlF6nTmH3egkdOkTo4EEC+/fj37EDu8eDWkhQK+lDHR4Dm0NHxg+X4o47zcMUpqbnePaZqzx7Jc6JmI+L7rXEgs1szg6yL5Ti7g0BHujtYm3zCsIcFqIlq4p4miFhkhGXzFBNK4rNSWdeoFNtocu9kzXOzQTxLb1WzYF0BorHkaXjJNQLRG25km/cFkSNJamdU/GJIootR8AZo0GZx1fIcWuuhaEzzWQuh3CNiHg9t3DtVPHeU4N9h4DQIuMayOAeK8AoC+EN04inBdQZBZ/Hib2gYAsG8ezes0jG9+/HEYksrSIZ5hlcQsZFdY41eR9tYpG6XBS/OIg9fwNBaIJ8PcSBiRmYm4Zwy2Kc8fwUUrCFRMcORlubmQw6mHMUyI1kcJ5KUf/cJJFnp/BcnUfIy6gOJ1KhgKOjA9/+/YTuv5/g/v24dm5kwjfDWUa5QoxBikzhpYiD9YyzQZ2gSxyiPjFCw80xmkbnCGXTyGGB3BoPYoebXMCN6PJRdNpxSxG89h14bD2IwhbGaanoF+9SwrjTYaIzYS7PODk3X7Ko2G0xXrX2IgfaLuBtHiXpzZATZByCtGBRSRIkiYIblVbCbGQNu6llM6K0hks5B88vLNq8lIGpgozHncbrSRPypwiG0rgDKRBUsokArmwQvxpEUH1kBCfzDpWoR6Loltg6d537YidYxzCBYAx3bRJPTZrZVCO3EuvJJIM48xK1rlnW1d5gq3CFRiGGYAMlJjN7s4Gpa+1EzkdZOzFI0h4GGzQr09gCKpLdQc7mopAUuCht4psPvo3+Hb1kgzmcdSK2WoWpmgbkqAdlTCAphynGPEhpF6piw5nLo6RsSFEnoWCUhnXThNYlqGmOEgqI4C6iqgLJ+TBdU7Nk1jQyGgjS+pWzHBrKsn7rVm4KLr49ncO7rZtvtXQh2u20M8G/2H6f7sZnQRUozP02XfXvrrrGx8JLEysm6Ldd+BIj6C8WlptO1/5fiSd4fHycL3/5y7S2tpa3gNefZ3yQG0lMNeVyamqKp556isnJyfLmOnpoXndtQahGUm02G36/v7wR0NTUFLIsl8m0ZuvQIrc4HI6ymq2V2Rh9Q1Ok9YRFI/ca4c9kMkSjUeLxeHlrYm2AoEVI0Qi63W7H7/fj8XjKxF6zvwDl8IyNjY10dHTQ2tpa3shBI+nG8hWLxfLMgWZtEQRhSYQY/aBDTwS1MhoJmna/stkse/bswb+gsBntDsaIJ0a1XEtH87kb+1wlkr4cQa/U3/T/6wcRRoKu73MrUdSrnWck3kYSrvWranWqlk8lgm4shz5N/SyQ8Zhx8KJdp5Fx7TNjupIqcDlVIuPHonaORx3EiwL7I1JZId9XIxFyKBSGhkgdP07qxAmSJ06Qu3kT/9atBA8eJHTgAOFDh/CsWYOAipC8jjB7DEf0BI7YSezpAYSyOn64qjquFItcOn6F752coH9M4ZzUyI26bTTk59lln+ZwGzywv5WDO5pxO5b5zZbzSMkzjGePMazcYsiZYyRQw7yvljZRolOJ0OnYTJd7Nw1CLcISq4q0sPlPaRFnUjlLVJgl6uog5qgln8pSOyMRyOVR1BxeZ4IG5gnlU4ynG7h5vpX4+Qj2QYWAfRDn+jS+++pw7LIhrJVxjObwDOewjQoURgpkz6bJngRlTMHrceIsqgguF+4dOwnef38pvOGBAzibm5dUsUhugYzfKr8y6hTtBR/tOZl6MY5fHMYhXkUQaiHfAAlgYq5ExkMti3HG85NIwRZia7Yz1trMZMDBnKOIOFQi4w3PThB5bhr31XkESUGx2ZElCWdnJ74DB8pk3LFjLUPuCc4yzlUSDKEwjRcHMhsZY70ySWdukEhslKYbEzSMl8IaFhqc5Dvc5Nrd5LxeRLcX2W7DKzXhte/BZeshIWxgjLqKfvF2KYwUDzM5HeTCgl/8wrzK1rpRXtZ5kc0dF5Ej0ySdeWRBxi0UylFUPOQpEMFJJ01so53d+NQNDIoRTi4s2jyTgls5laJNJOBJ4felCQVT+AJpnL4cYsaLnAoQkII41QAF3MTtNuZcEhmvTENqhgfmjrGzcJWIdw53JIW7PklRcTEQ72Ym0YKadRAgQVvNMFudV9noGMHtVLFl88SGPMxcXodwtkj91BTRuhqurtvMlfWbuNq9iYCY4R8+9pvMOGs5H9zOqZrd1MxNY+tQuHFoGwMbNzLYthYx76NuNAbTAqlYmBm5iZi9FlexiJpWKcy78NnTNHRNU7M2Rrg9TigUx+OTUO0q7nwBaRimngqRT+/gpNiFfYOEc2eeFs846RY/BcmNJNpxTReRIk42Fa6xIXedPa4L7Gi5Qqt3ACdFbHk3HnccVbURH/k11je/r7xGzMKPD15SBP2HRc6rEeBKMJLo5fz5kiRx7Ngxzpw5w8aNG00jkWjnm03HVyNBU1NTfOtb32JycrLsodZP1QuCULaHGBEIBHC5XPj9fkRRZHR0tLyJkJ7AaxvpaERZU5W1cugtMxrphcUNiLQoJ7IsMzs7y/+fvT+NkSRN8zuxn91mft8e9x2ZkXdm5FXZXV1d1T09M5yheCy5BHRQICEIkr7w00rECtCKOgAK+iJhIa2ExXAJaQgNtcMhZwbiMVcfM13VVZWZkRl5xH3f4RHht7uZu9uhDx7u5enlEZXdM8OljhdwuLu52Xu7vf/3b//neY6OjtquHT3Pa7P1rTnW0s17ntc2SG1tGDpZ/VYdW/koikI0GmVsbIyRkZE2UO8c4072vpV3q26tfDsBeudGoBOgt1IniG8x7Q8ePGgz8hc9obmIMe8G35cx6Bcx2xcB9O551uucy6z8L9J0XzY/O793gvFe1132H+z1dOuiPC4D6K3Uy4XjRf3U6pdOKVUncG+9cnWBpzmJz88kvsxKzOVlkprLo6jTNua8HnLwqhVKc3OUnj1rM+R4HqFzMB56/JjQ7Cyiz4dXzyOdPWuC8ewzpOwzEFXs2APs6APs+EPsyF1iqeFezeRse5+f/Nlq081hMcBb/zSmHuZ6bYuHUZPvXAvzvSej9EW7Y9l3Jc/Dq6xyWvoZ2/Yi22KWLZ/OfqifSONcqiKNM6rNMiQNvStV8TxwN6DxFM/+goozR1bYJaekyCppyladyKFJpGLjuVbTiFM8I1bLc1qPsPxmiNNXcYRViaC7hzJwjPHdWNOIc9pBOqujr5eQ9kXsXZvqmzKVL1ycTQ9dllA9AQEBdeYagY8++sq94djYO/PKpkaWrXd04yXvkIG6j2HLJWEVCFo7yNYCgueHRhoKIhyewkkGggPvaMYboX5yIzeaMpWAzJncoLZpoj7Lk/zJAdHPMmjLZ+B4uKKI47ioY2P4Hj9ug3FuDLCq7DHPESuU2MbjBB8Bqlxlj0lnn8HqFrHsHumlI5LHZ+iOSa1PwxrRsPo1TF3H0nQET8ZwhzGkB0jiY06ECXYJ9NaLn0tUKmchto++0ovvVhp8f3iZ7w6/om9wBTOYpyrVEAQHH1VC50F+PGRs+ggwyQj3SHk3KTZGeV1V+NMS/KwISxXI2jY+rYyhlwgHm64MtUAZ1xMwCwEMM4hBEA8fJUHmVHHJ6TaSZ/Ktg+c8qbxkQDnECBdQEmVkf53DwiCbhQnMoh/NrpHwHzHtW+GWvEJcrSC6No39OpnlSaqvg8RX9rBUmdXxSRanrrE0eZXFsRm20yP0ZY5IbWVQj+rkrQiZQD+H4WGqkh9NtxAMm0F3l0QuS+UsTKaa4EROI3oeYtWlnpWR6w2SA8dEJ8+IjOSJxAoYhomneCimBGt+aqshznZDZBopTmIBagMe6nANIe7g6AIOErW6huB4TErr3FLfcJUlrjlLXFFWiAfOWD+YZGnnGks71/jbkxWe7wcp+wb4jr7ErZHfoOhcY/fgP+Xq1eskk8n/P0DvShetP/+hPGn4DwKg/zfNmv88qRMoXZRa8pM//MM/pFqtMjQ09DV5S+d7K3WCr16MqSAIZLNZfv/3f5+dnR1CodA7URs1TWuX05KVtECS67ptIB4MBjEMg52dHXK5HOFwuO2hRVXV9isUCrWZ8E6w3/JX3snMu67bZhVbcphMJsPW1hbFYrEttWmB6pbEpKUBbzQabcNSwzDaZXQC5JaOHWgHQlIUBV3XaTQaxGIxHj16RDqdbm8eeoHzFsDv1qy36t4tP+rUirfOa6WW0eutW7fa7e5OrXFuSWw6gX/n59Yc6DX+vUB7a05cNAcvYs1bc6KTFe5mkjtTq+zujeRlQLmzzO5zel3zTfeAn2dj0Cm5uqguvT53S5M6jYab+YlsmgrPCipf5hW+zMpsVQRuh10ex5rGnA9jNn2ai7W3R+mLL9oGnZWFBfTJySYYf/SI0KNH6JOTCHhI5dWvwPjZU8TSGk74OnbsIU7sIXb8Ia5vFKGrTeFwmEbV5MVnC/zkxRFfHIrMM8BWfIZB65B76ilPRmS+93iYe1fiSN+0NtdOqRQ+Y7s2zzYHbOse2+F+PFFh1BIYpZ9R7S6jyhUC3VIV9xgaX4L9FNP+kpywTlb2k1WGKDngO6gQL9uItokkl4lKWeK1HGXXYGl1hOOXCZxlnUD1GC2+jf6dMOpDHemai2Q20FaLKPsC9q5DdaFM5QubxgpooogmSIh1B2VqCv+HHxL86COMhw/Rrl5tupI8Tw51suy841Gl4O2RbvgYtjxSVpGgtYdiLiB4EjT6mmD86AxOTiHQAuMW1A5ohPs4G7nJbl+ao6DCqdSgvmGiPcuT+vEBkc+O0VazTTAuiDiehzo5if/RI0Lf+x6B+7PYMwkW5F1ec8wqFXYRyOInQZar7DNu79Nf2SZ2skt6+YTkyRmyUMca0rGGNKw+DVPVqWkasqNheOMY0ge44kMOhRG2kVg/D/bTqRcfd8PolTD5kzArR1/pxQWK/NWJNzwcfoUvvU1FL1IXbRShQYASIYoYmNQIIzBMgmuMcx/NvcKqGeeLssCfFuBVGbZND1Gp4tfKbaNNI1hG1i3Mkg+hEiDghBA9PzVB40w6N9pUbWaOl/ko+4yrbBAM5JDjVbREmZIZYq0wzVkhiWBBWM4xEtziprzEpL6HInoIZyWyqylO34wQepVBrltsDw3zduo6y1NXWZy4ysrQFQyzwuDGIYGjMnZFpShEOfANshscwdCqhANZwlIB4dRlsrBBuRriM+dDamjINRsnJyJUPCKxM+ITJ0TGcsQSOfz+KqgukuMh7wYxF0LkNoMclGLk4hHMQQllyEJMOXg+cESRek2jbisMifvcE+a5Y7/lqrDGoL7BSHiTk1yapZ1r7J1Mkj8ZxC73oTXC/OujG7wuJPn18Cp//8ECv/tJhT5lh/9N8X+NRh3XE/nTpX9G/+Ask5OTF65R/7+avskT3H/TQP3/owD6z9NZFwGYv4jNwDcBCtd1WV1d5V//63/N1NTUO8ahvQwHL2MKO/XP9Xqd3/u93+P58+cEAgGCwSDFYhFZlnFdt818t8poGXq29NKhUKht9Ol5Huvr6wBtzbdhGG3XioZhEAqF2oC/06iy5Saxk0luAThoPj3Y3NxkaWmpbVDaakfL4LQlMQHa8pOW7KUTuLdY7k4m3bIsKpUKjUYDXddJJBLtQEzRaJSHDx8yMDDQ7oPWE4VeLhO72dNu+UIne94JVFvX1Go1UqkUk5OTPQ0EW6kzv8te3eN/2atz7nwTg95Zj842tJ6GvA9A75yfF713nndRHTpTN/vd63/VvXHtbmdnn7yPtKc7n4s2K3VkXpc1nhU0nhVUnucVRAEex10+SLg8SXjcCTWQ6yal+fl3jDmdcpnggwcEHz4keB59UQmHERtF5Pwc0tmXSGdPkXPPQVRx4g9x4o+wY012HNnXc2xP1nb46Rc7/GyrzrwVYyE0g6to3GpsN90c3ozx8QejxPxf2T30TI5FozjHQfULttwttmWT7VCMrBFhyLIZdWKMtr2qRN+VqrhFsJ+D/ZR64wtywiJZCbLKCAVUtKMisYKL2qgiSFVCco5kI4vtiCzvjbI7l6K+FMCfy2GE19EfqmgfBJBueoiyjbZcQjlwcbddqitVKp/XaCyIKA7osoxo2UjDw/ifPCHw3e82ParcvPmORxUHmzw758x405Az7+2SsA1GLIGUVSJk7aGaCwiu0wTjRQmOcnB6Cr5+8AfPI3AeUg+nOR29yV46zVFA5lS0aayb6M9ypH54QOTzY9S1HLgeLgKOIKBNTeF/8oTQxx8TeHAfczrIa2mX12RYx2QXiTI6AxxzlQNG67ukq7vEDvbpX80Qy+YQNZfqkE5tWMVMaJiqQV1V0Op+DOEqhvwtTPEe+/SzicMGBda69OJDThgvH+bkOMzbjNKWqFyNHvIrY/NcG3mDGz3GVMq4go0uWATPwTiI1EmiM8Egtxny7nJSH+d1VeNHBXhagtUqlJ0GAb2ErpeJBEv4g2XUYBmnIVEvBvHVgmhCEMfTKYgSJ4pL0bCJlU757uHnzNbfktBPUGIVlGQFFI+d/BjbhTHqZR3dNUkHDrimLHNDWyOiV5AqJtamyMHCNZQ5i0DmhKO+FAuT11iausrSxAxLI1epqAYjW3tE9gtQECh7IY71fjaDE4TdPH3KIanwISOJbWaMRUbMHZLlM/qqGZRjhzF3m7NGnP8i/z/mt8J/h/B4lnhfjkC4hKpZaJ6JP29S+zyE8lmN9cYUi5PXKaUCSEN1lJSNGwBXFmg0VBp1lQAlbopvuWG/ZdpdY1Jd5WpkiUZDZWnnGjuHU2TPhqmXBrHODAaDHgNhi1IgCtljVDFHdbLO/kCdm+pr7opvGGcDVxBYlycYt7cIOBU8T+GPX/3fSPVNc/36dXT9PYKD/X956rWWXfT7N4H1XnLNv8j0lwrQ3/fcvyyAfpGG9bL836cul7GErtuM3PkHf/AH7O3tMTk52QajFxmTdRvpdfd7C0z+7Gc/4/d///dxHIdEIoEgNF0XtkBkLBbr6cZRFEUMwyAQCOB5Xjt6597eHp7X9PYSDocJh8P4/f42k+zz+dpeV1o69It8d7fY4XK5zOvXr9/RxrcAr8/nIxwOt10v1mo1LMtqt6FVrqqqbZa7Bd7r9fo7LhxrtRqNRqPts711XBRFIpEIDx48IJFItPPsZMY7AXevOdLSzvdirzvZ2dZYj46Okk6n35HHdIPozlc3KO80SG3VqxcY7/7cPQe7Ad1FspbuOdvJGHcbw3bWp3O8Oz9fBNgvYvE73y/ajLbO6ez/XuV3H+u14eqVOstpjWemofC8pDNX1JkraiyWVSb8Do+iDR7FHB7HHKZDAvbpCaWnT8n/7GcUvviC8vw82uAgwUeP2oDcd/Uqgii02XEl+wwp+xSxvIETvo4T+wqQe/7RntrxerHEy89X+OligednGm+UUfZj04xVd7irZ/nOpI/vPRnhxmio1+WdnYNXWeGk9Bnb9hLbYo7tc6lKtOEwahuMihOMarMMSoNdUpUa2K/A/hK78SV5XpMVS+SUEbJSEOmkSDzrYNRMPLFKUMmTsM+QHIe1sxE2X/RRfRPGOK4SCKyg3nTQvx1Gug1iyEFbKaHtO7g7LuaaSeULi9prEanqYWgqktVATKXwPXxE8JNP8D16hHH3LqLvKwbfxaHA/juuDbNsE7U1RiyRtFUmbB6iWYsITgnsfijKcJyHkzMwBtqaca8FxsdusptOceRXOBNtGmsmxtMc6R/uEf78BHU9Cx44HniyjDo9TeBb3yL08cf4H8xSmFCZF3d42/akolBHYowDprwmGI+Xd4nvHtG3fkKkkMMLCViDOuawhhXVMBUDR5bQ6xEM6Saa9G0K4u1zvbj5Nb34pBcmUQ9jZcPsHwZ5da4X3ynbfG94le+OvKRvcJV68JSaZCIKDn7KhCjio4pFsG24OcEDVPsmK2aCT0tC22jzsOaiKtW2T/FQoIweLCGqdaySH7kaxO+FwPNhCgqnMpypDgJVHu0859vlOUakffRICSlpokYsTstJ1gpT5ItxxJpDVD9jQlvnlrrMqP8Ixa4h7Fc4WryCNecjvHlAIRRgZewKi9MzLE9cYXFshv34AIP7B8R3skhnNmYjwKmWYis4jii4DAp7JIPHDCV2mAytMlVfI10+I1U9IV3OEC9ncVyJTWGMNXGSNWOCvdQgZ/EYbkhAky1C2QqNXQVr1WB/f4g1YZKTvhTiiIPaV8MNCXgKNBwFu64gujZXxDVuOm+5Yi8zraxxJbREUC2xunuFlb0ZdjMTvDi9y9vCdabsDL8q/YhoSG/agamQlxZRB/MoAyaj+gYzLBP3smxJoyx5V3nbuI7l+Bk/0XkuXmFhys93No741dyfka3cwmGSSCTCjRs3iHYZP/+HkHrdz/8ywG6vtfObPl8G0C8jn/6i6v/vBaB/0/k/D6v987Dyl7Hnv+ik+Ka6uq7L/v4+f/AHf4DP52vLLTolLZ2vbiO0zrq3ynIch93dXf7pP/2nZDIZNE0jHo+3/Yq3Il4mk8mvSRFam4KWXKVerxONRqlUKhweHgLg9/uJRCJt41FRFNE0jUgk0v7ekqV0Sk9aYLMlTykWi6ytrXFyckKpVCIYDLaNPluplYeqqm2Aa5pmMwraOdPdMnBtMect8K+qKvV6nXw+T71exzAM4vE4ntf0pNLSdwMYhsGHH35IPB7/GnveC2C2+qo1D1pguxugd54HTQb96tWrhEKhd8azF5vc/VsnQG+1t1WnbrDaXdfu1MvQsVVud+qea5fpEju91XSnizYOl7H73Z+7AXr3+HTXtfO9+3Pr/M6Nby83l57n0XA9lisaz0s6L8sGcyWdfEPiXqjG/XCdR1GbxwmPqOxSWVig+OWXlM+14/VMhtD9+4QePSL46BGB+/eRYzGo5ZFyz1Cyz5Bzz5Czz0HSmxKV+KMmSx69B7Lv6xsRx2H3zTqfzh3y5a7Dy0aS5dhNNGxuuXs8SNT59o0o354dwK802xwI9PZfTu2EcuEztmsv2RaO2NY8tsMDIMiM1UVGvX5GtXuMKtP4MToG1AVnCeynuI0vKHgvyQnHZJUBsnIMO18hftIgZFm4VPEpRRLeGUbdYtscYOXFEMU3UdQdm7CxhjJeQP8oinJHROz0qLID5qZJ9QsT86WEmHcwDA3Zspuh5mfvN8H448f47t9HikTaVXRxKXLwTtCfLFsEHYVRSyZtVYmYh+jmEoJzBnYflJQmGD/NgfZ1MJ4Zv8luKsWxX+ZMsHFWLYxnWdJ/vE/oiwzqZq4Jxl0PT1XRrl4l8O1vE/r4Y3wP73IyAi+FXRbOPakcoCDiMskek94hw9YO0dI+qa1jUlsZwuUijbiMNaRhDupYoaZMRUBCbyQw5LvI0kecijPsEGSd8tf04uNeGF8lTOkkxMZhoC1RwSvzVyfe8nBkHiO9SU3PY4s11A6JioBHjQQyo6S4yah3n2PrCi8r2leRNk2oeXWCegmfrwnGfYEyaqCMXVOxywF8jTAafurnrgwzqkNVaTB9sMpH2afccJcJBfKICQslVaXuamzmJ9gpjOJWZXxiiQFjnxvyMtf9GwSlCtJpgcJqmtMXQ4TfHtMQPDZGx1iYvM7y5BWWxmdYHZwknMuT3jrByFhYlkFeibPrH6GsBBl2d4j7MgwmdhmPrTHjrpAun5CsnNJXOSZRyqLaDXbEYdaECda0CbajI5ykklhhHU01CVcKePsC7rrI7vo4q41pDlN9+AaqOKMiBB0ULEK+CoPOAc/M+yTFU+5488zYy0wIG1zxrzAY3GP3eITl3WvsZsbJng1BKUawIdFnFNBEE8GQ2PrARFPKDJ0UUGInpP27TAlrjHi7nIpxlplmwbnO69pt5sp3GV6rcSt7yH898hGfzPwuT/p/jIiH/aMnZF6JDKYCJIV58sIMtpwmFosxMzPD8HBvu5V/n6kbm3U7JIB3yZ2L1oNfpNyLyrusHt2pmwD7pnXuz5P+XAD9MgB80TW90r9vgN4LPL1v3hfVtXXctm3m5+f59NNPmZ6ebrsB7AXQ4SujzssGt1ar8Vu/9Vt89tlneF7TwNLv91Or1XBdl1qtRiQSIRKJtHXnLaa3Bah1XW97ZDEMg0wmw/7+Pn6/n4GBgbYxaOvl8/kIBoNt0N6SpXSzxILQ1FYXCgW2trbawZjK5TKZTIZ8Pk+1Wm17h+mlgWsB9Rab35LsdG4CBEFobzCy2SzFYhFN04hGo20Nej6fp1KptK8bGxvj448/bhu5vi/o7QbTrfNa13ZuOBzHYWZmpm0U27q2G6h2gsVerHHre6cRafdmq/NYd+q+UVy2u+9u/y8y77s3Ib0Y//fZHHSe3/2korv/etXlIoDeuckSRZFCQ+RFSeNpQWWuoPGqrBNTHO4FLWZDFg/Cda4HHYRSgercHOaLF1SeP6f84gVKLNaUq7QY8tu3kRQZsbiMlH2KdPoFUvYZUmUTO3idRnSWRvQBjdgD8I8hdvxnWqlyfMKzL9b5fLXKXMHPW32Ck8gIU+Y293x5PpjQ+ejBAGNJrc2Od/ddKBRqSlUKz9kzv2DH2WJLNdkOxskbEQYthzE3xqh8jVHtNolOqYrngbvbjsRZdp+TFXbIylGySh9mpUbsyCJq1sCtoiol4kKWYK3MoZ1i6e0wZ/NxxE2ZqLyJ2n+I/p0wyj0FccxF262g7dZh26O2VaPyvIL5XMI7dvD5VOS6i6jqaHfuEPzkE/yPHzc9qqTTX7URlxLHbYlKE5RvojsCY5ZK33kUTt1cQrQPwU5DWYXjYhOMqwNtmYpXP8CKpMmM3WQvneLYL3GGg7NSw//lKek/3iP05QnKVg4QcBwXfD7Uq1cJfvghoY8/Rn94i72BOi+FlicVm2M0DEym2WPcPWTI3CFcPCC9cUx65wR/rUwtrWENalgDGmZAx1I1ZFtGd/oxlAd40kccChNso76jF49jMEWIITuMWAxzlgmzdK4Xf33mMR095lfHX3F1+DVidA9LLQMNDMEkRBE/FSz82KTxM82odxfVvs9KNc2fFoVmpM0KnNRdfFoFQy8RCpQJnhttioqNVQygWkF8XggPgxIyJ7JHTneIFzN8a+8LHtVekdIzyDETMWUhB2wOCwOsFq5QLgVR7AYx45Qr0iq3fCsM+Q6RC1XsbZGD19fQnhdRi2V2BwZYnJphaXKGxYmrLI1cxXVFBjYPCBxWmjpxMcKRMcixkWbQ3iOpZ0hH9xlNbHFNXmSgfEiqcka6ckyyfEbQKnMo9bHOBGvqJOvhcXL9fVQSYUS5TNjKw66EswZ2QcIJioSGC1xJrDAR2iBkFFj7X44zcrpCMHzG0WiK+oiOf9iG6z5cUUJ0XIaEXWpVnaOTPtaOpzipDhFNZpAkh7HyB1x/8L9FEOD07T/mNK9TS+xRC27jV9cZFNeZctfxgBVhmiV3hlf1m7yx7lA4nWK4pnC1dkLOqPN5TOeWvszH8hxuvIDiL4LgNSMTuQL2F3cw36T52/H/FSHlFNtT+JfF/xzViHD16lVu3rz5l8JOd6fOdaX7Hn3Z9+6n2t+Ejb6pDhd97167uo9dlF8vUN7r+0WpF+F06fl/WQx6r4XzLyL9PGDiIvatG0R8E5DozqPX8dZv+Xyef/Ev/gWSJDE6OvqOnrnTW0Yny9cLUHV+fv36Nb/5m79JoVDAdV2CwSCCILTBeKPRIJFI4Pf728ccx2mz1Z3AWpZlAoEAh4eH7O/vMzQ0xODgYFt+EgqFMAyjHRio5fGkE6x21td1XSqVCvPz8xwdHbWNNKE5f6rVKrlcjnw+T6lUajPinUxpi4VvaeZbbe9sS2uD4XlNt4alUqktb2kFQBJFse1XvdXXT5484erVq++M00UgsfP3TjDdqR/v3swpisLU1FRPbXerfZ3+1bt/62bnOwF7Z/omr0Gdn7vfu+Uq3amXQWXnhqT1vbvcXje2b2Lbu/uns8+7DWYvY9J7baq/Ol9gp67xsuLnRdlgrqixbSpcD9S5H7K4F7S4FzBJKQ3q6+uYL15gvnxJdW6O+u4uvhs3CHQYc2r9/YiNAlL2K88qcm6uyY7HHlCP3MeOPaQWuoknGl9va6PB9qt1Pnt9yrNDkVdeP6uJW4TtIre8Ax6kHT68k+DhtTiG8u6i9s69zHMRrTVy5lP2WWNfLbPlN9gP9ROr24zaPsbECUb1WQbEgXelKu7ZORj/EtN5SpY1srJGThmg3IDQQYVYuYHoVpDlClExS7Re4MyLsLg6xvHLJN6qRtg9xIivoz8JoD7QEa+6qBkLbaeCuC1Q325QeVmi+qWEs+vgM1QUx0PwRLQbNwh897v4v/WtpkeVkZGvFnE8ypy0gXjL17jieoxZOv2WSdQ6wTBXEBrbCE4SSjqcFOE0D8og+AJtMG5G0xyP32IvmeDYL5PFwVm2CH5xSvqP9gk+OwfjwjkYDwTQZmaaYPyTT1AeXGOzz2SeA5Yoso1LFpUwBa6wx6hzyEB1l3DhkL61E1J7GTTPwurXsQY1zH4Ny9CpqQpqXcNwRjDUD7CkD9kXhtjE+5pefMILk6yHqefCHB1+pRffLjt8MrjBd8df0D+4jBM4oiGZSEKdABWCFJFwqRJFZIgY1xh0H3NqXudZWecnhabR5o7l4Qk1fOdGm+FgGSPYDPBTq2oIlSA+J4QsBLA8lawkkFEdBK/M7OYLvl2aY0rcQotUIFVDTdYomSHWC1McFAbxLJGAUmBY3uWWvsRMcBN/o4C0W+Fo6TqNpyLB3RMy8ShLk1fPXzMsjs5wGowxuH1IZLeAVxQpeyEyeh97/mGS9glp5ZBk6Iih5DbXjUVGrF0SpSzp6jGp8imxap6cGGkCcXmS9cAYmb5BKqk4aDUCzinygYy9JmJnBGxdwjdcYTK1zlSo6RGlkZdxDgRqOYlw6RRTVXGTKlz1geXhHTbQ6ha6YWGpIcyaH00TCMWyGIaJLYvUBI06ClLTEoGiFSVbSyHaDn1uhglvk7ibZVMcZdm7ypvGDV7XbzFfv8WWOIobEEj4M6S1I+65u/y14gpOMEtdP8ETPFQziVKJ8yoUYkUNIJsC/8MXR/jCPyRYyhHOmgS9HSRqCAK4nsBv5/4PFOtNRwYPHz58h2D6y0jdQLf7Pn7Z792pe136pu/fVI9u0uuideyi/HrhtIvAeue9uxcR1mt97k6/MEDvVVBnQ1rZdgKXv4j087L2vc69bPJcVM5l5bXAheu6LCws8KMf/YixsbG27KHXAHYPSrcsofXZNE1+67d+i+fPn1Or1RBFkWg02vZC0nI3mE6n8fv970w6VVXbRiGt48FgEM/zODk54eTkhJGREfr6+ujr62NwcJBoNNoOTNQJurrr2kq1Wo2XL1+ysbGB53nMzjatxVvtaAFx27YplUpt9rtWq7UlHZ2Mcwuot+QtLf/nrXa0jEFrtVqb2W9p2FssdqVSwTRNPM8jEAjw/e9/v+1+sddcuOjP0/3HaoH1zj4Oh8MMDQ2908etz61+axnU9vLP3m0A2Q1Se9W3u569PnePV2vOdeffuUHs9b/oBZa7z+nsx+4N8EXXtlIv49iLzuvVJkEQsFyB1+WmVOXF+UsAZoMW98M1ZkM17gQbKGYJ8+VLKnNzVOfmqL54gaiq+O7fbwYBevCA4J07yIaOXF5Bzc+h5JpyFamyhR263mTGo/dpRB/g6EN019Z1XUq7Bzx9tsvTrTrz1QgLwasUAmlmzA1mgyU+mPLx7fv9DEbknnKk9vjUMliVLzlggX35jF1DYCc8AILEiCkwLg4xpt1jRJnqkqpUwZ6DxlNqzhdkvUVyUoOsMkzBVTAOSyRLNqpdQZCqhKU88XqWCn4W98bYnUtjL/kJWacEoquo92S0xz6k6x5KtY62XkbaBXvHpvKmROVzAXvDQ1ckNCSEhoNy5QqBDz8k8OGHTY8qV660Pap4eFQ5a4PwFigXXJvRmkG/VSdunWJUlxEbGwhODMoGZEpwVgBlAIyvmHEzluZw/CZ7ySQZn0TWc3GXLEJfnLTBuLyTb4Jx20EIhdCuXyf40UeEP/kEZidZTpZ4zRErlNkBiiikOOUKewzbB6Qre0RzR6RXTkgenSKpNtaAjjWgYqV1TE3DlmW0mg+DSTT1OxTED9gTUmxifU0vPuGF8VXDVE7D7Bx8pRf3vCq/PrHAw/EXBFNr1PUcrlBDOzfcDFDGwkedBBoT9Hl30OofsFrt5ycFsW20ma87BLQyhlEmHCwRCJbRgmUQXGqlAEYthEYz0mZRkMkoLmWlztTeGt8++YLbzhJRfw6SNcS+Bp4ssFcYZjV/BbPiQ8MkpWSYUVa5FVwhLR+hZooUV/ooPE0TXDmipOmsjU6wON002lwcnWEjPUbi+IzEzhnymUPVDnCmJtnxj+LzTAaFXRKBDAOJXa6Gl5mob5AqnevEK02deA2NTXGcNXGSVd8ER8lhiv1JPJ+HzztCPRax12QaewINRUEbMhnr2+RqaJlUKINbFXD2oZT3s2WN8dq+y7PaE5brN2m4Ct8K/oT/LPU/xQiY1IwQtq0hShKhYAWfr4QtC1joNAQZ2XNRbJVSI8xBI4btQMLJMuFtMerunMtTrvDWvs7b+g1e12+z4F3HDKhMyKfcEzaZFPaI6tv49X00JYeEQ8GNES4MEiyGqYkJSoEFaJyi52Ui5j4DlS3GSjtobg1LnsAWp7DUaSxlioo0QaD+hlTxN9h1P2Kp/isUCgX6+vr4/ve/33YH3HnPed90Eet70T2/FyHauk92rzndqfO+2IknO3/vBsHd+V1Up4va9U1rVa/YF5cx/p11u+j8yzZMfyEAvbsi0PvR+V8ESP95gPNF53UDqfcp57LJ1MqzXq/zp3/6p6yurjIzM/M1t22dny8b1E7wsba2xm/+5m9ydnbWZorD4XDbSLLRaCCKIn19fW29eIspb8lbWq79JEkiGAxSrVbbAHZoaIjJyUmGh4cJBoNtg9Zu4NTdFy099/LyMi9fvmzr4O/evcuVK1e+BoY7gXo+n+fs7Kzt+7xlBNrKuxWYqF6vt69r9aVt29RqNWq1GpqmEQwGsW2bSqXyjlu8lla9VCrx5MkT7ty501Mm0TkfusegBWZ73RRam4/+/n4SicTX+qnbCLGTQe9k0lv93DkfO18/z3+wlwFv5/zqZq67f/95APr73JDf5+bYa4PS2Z5e6cgSma/6eVnx8bLsY7GqMao3uBcwm6+gyZjewNnfw3rxosmQv3hBbX0dbXoa//37+Gdn8d2/jzo8jOyWMEqvUPPPUfPPkXNzeJLR9Khy7ne8Eb6NJ3612W1vKMsVVl+s8flCnrlTlTfiEBupW6SsE26JRzzod3lyO8GdiSCaLL4jEXvnXuCYuOUXHNXn2BP32NHq7IQSFIwwA9UGQ40wg8IVRqSbRAkh0Nxs4zXAeQuNL2nYX5D3XpMV82SVIXJiAOWoQCrnYtgVECsE5ALxRhbHk1nOjrE514+5ECaQLxEKLaNeq6N/K4h8G2TBRlsrIu8KONs2laUylc88Gste072hpCCadeSxMfzf/jaB73wH38OH6DduIHSAAJP8Owacp6zjehajNT8DVoOYdYq/uoZYX0FwQlDxwUkZzoogdYDxxgHVWJqD8VvsJxIc+yRynou3WCP82RHpPz4g8PwEeTcPQvP+JESjaDduEProI0KffIx9f4y3kRxvyLBGlR1ELASGOGSKA4brBySre0RPT0ivZEicnoIfzHNm3EpomJqOJ0gYtSC6cA1Z/YhT8QE7QpgNKl/Tiw87YaRimNxJiLX9pl78TRYmIyf86vg8M6OvkKLbNJQSIjV8QtO3uIxDhTAu/YSYIW4/omjd4Yuin58W4W0Z9i0PRbKaRpuBZoAfPdgM8FOrGEjVIIYbQhR8VFE5leBUtYkXjni8/ZRHtVcMqftIsRpen40crXNWTrBauMJJMQ11j7CaZ1zc4pZ/lSuBNYx8DntT43huAuNVEdeqsT08zOLkdZamm/7El4avoFQbpDczGBmLmmWQV2Ls+UZwRIkRd5u4L0Nf4oCJ2CpX3VXSpXOdeDVDonSG6LrnOvFJVrUp9mMj5AfSNMIyPjKoZzbuukpjU6AmqEgDDYYHdrkWXmQgfIDguLj7UDnT2bWGeGvf4kX9A17X7lGoRxnWtphQVrgemmeyb5NIsIBqNLB1mZqiUUclSAGNGiWCDLFL2Q3geAqj7i5mzUfErDDprgMCK8IUi+413tRvMF+/zXP7DkV/mFFOuCOsIMRzJPRDrta2iIuniEqdmuPDRKck+Sg5EQr48VVMhk9PGajsM2juMlHaJFrLkw1EKfoi5LKP2Q9P8O+mRwmYA/xgSUZTm0/LPc9r21w1nUFYJFL/e0Rpk+3Nf8D01K8RiUR6gsXudBHJ0mu9vGid6iahuvPrBtm90mWMdSdZdhkp1ItM6l7zWgD858W93U+opR6Sxs52dPdd54bpa9dcBtA7g7hclC5ilC87531Yv7/MdNlkaaXOQb9I/9qZXNfl5OSE3/3d3yUSiZBMJtu/dctaWp8vA+2t63784x/ze7/3e9TrdWzbRtd1wuFw2793C6jGYjH8fn97N9bSn7e8oXhe0096KpWiXC5TLBYJBALcv3+fkZGRNvvcvXnp1Tee19SKn5yc8Omnn1KpVLBtG0VRmJ2d5dq1a1/703Qzt7VajWw22zbutG37nacCnfKWTp/lLXa95bGl9USgXC5Tr9dRVbUd9bNQKHB2dsbg4CC//uu//o6LqV677RY73ilp6QSP3Ttdz/MYHx9vRxC9DFC3Ng6tcjqZhO4+vggcdzPf3ePSebzX+PW6kTmO8zXPP73a8D7sSPexy27wvTYzvTzI2B6smjovyr42Q56zZW77m2D8bqDKnYBJ0K5Sf/sW8+VLrJcvsV68wHMcjHv38M3ONhnyu3dRAj7U6jpqfq4JyHPPkMwd7NCNZiCg2AMa0Qe4xjB0LUCe53G2usUXz/b4ctdh3oqxFLmOpYe4XtvkbqjMB9N+ntxJkfC/awzeekmS9JVUxXrKvrfGjlJiJ+DnINRHrNZguKYz6I3SL9wk7aWQOY+hAEjCFjJz4D7DlN+SFY7IKilyUgwvWyZ52iBYq+IJ50acThbRcVivjrA6P0zpdRTjuE7Mv4IylkP/MIR8V0IO2uhrJeRdB2fbpbpSofIzh/pbAcUW0FUFqVpH6uvD98EHBD766CuPKsZX7L1F8Z2gP2ds0PBKDNdDDFg2CSuLv7KGVF9EcH1Q8cNJpQOMh8+Z8X3K8T4Oxm+yn4hzYsjkXA9v0STy6RHpPzrA/+IUeS8PgojtOIjxOPrNm4S++12CH38X8/4gr4JnLHDKGhb7iHi4jLHHuHfIUH2feOWQ2NEJ/WsZIvksTkTCHNCx+jWsmIapaUiOiFGLoUu38dRPOJRusYP+Nb34pBciVQ/j5MNkjsIsnOvFt0su3x3c4OPJlwwOvMYNZnDEKopgEaBMgDJ1NExiSIwS924jWE/YqozxpwWR5+dGm6ZjE9DK+IymPKXpyrCE5wnYpQB6I4Im+Kl750abigtOkbubr3icf841YQ0jXMZN20h9NnVXZSs/wXphknpVQxer9IuH3NBXuRFaJt3YR9htcPJ2Gr50UE/yHKZSTVnKVFOesjAyQ0kJ0L91RPCggl1RmjpxfYCCGmGksU3SyJCIHjKa2OK6vMhA+YjEuRvDZPkUX93kQO5nnQlWlUm2I2Pk+gapJXQM8RQlb+JtqtRXJWqOipD26B884FpkgaHwLqpUxz0E61Th0OxjsXGTl/YDXloPOTQH6VMOGVdWuRZ8xczAMvFQDp/PwtYVqnITiAt4NJCxkfE8ARDwCVWSnDDAAXHOOCbNmRen7AbpKx+zWL3BF+YHPK3fZ1saJlQrM8IecfWUdOiAidAGA9o+QamE6RlUBQNTMDh1E9RPdaRcjT7njEHnkCFrn8niJn3mMQU9SCkUoBL0UfYMarUY/uvHDP32EYl/m+PT1PeYn/ybba9qLbsun89HSdL5z1LfQ9IL/GPl3/Cd5O8Sj/8xCA6W+YTsyX/FyMjIpf7Qu0nM7vt3K70vQO/GAa17/EVPRS8rp/v8XgC917rTmUdn0MH3Sd9E/n4Thm21tVvO3Kp7KwZNz7wvA+idfrS/qfKd2XSf333ONz0S+HlSL6b+56nrZeX3mqgXnWfbNn/2Z3/G27dvmZ6ebnsiga/rzHsBp05mtZVc1+W3f/u3+dnPftYGqpqmkUgk2ixyS9rR8sLSClbUYmxb7Lksy4RCIVRVxTTNtnFjy8DxMilSr/F3XZcvv/yS7e3tdvsVReFb3/oW09PTPZng7nbbts3JyQmFQqG92WjtJqvVKvV6nYPGAD88e8wo89w2XgBf+U1vGb22yrcsC6DNwNdqNcrlMpIk8bf+1t8i0uEN4iKmufO9e+ff6ofONkxPT7+zA74MoHeOca9NUGfZnb9192OrLt0bvItcYPbajPQqu1f9L8ur1/UXlfc+AB2gaIvMV3y8KBu8LPt4XTGIyA73AlXuBZug/Iqvhnd8hPXiRZMhn5+nvriIMjqKfu8ext27GPfuoU9OIrtljPI8RvElWvEFauElnuRrsuOx++d+x++AZLxTX0EQqOXyvPpimZ8tFpjLGbxVRtlJXGPQOuC2fMLDQXhyJ8nMgN4OAtT9fwaQ7FPq1jP23QX25VN2DImdyAASIsOmyJCbZkC8yYA3iuF13KzdQ2TvBRLPqYrzFKQ9ckqQrJSkUW6QOK4RtqoIXhVNLhEji2HX2LUHWXg7QnY+gbotEPetow3so38riDKrIKUdtI0y2r6Ns+FgbZiUf1bHeiUhVTx8hopUbSBGoxgPHhD8+GN8Dx9i3L+PFA63q1ej3AbhLd246eUYaoQYslwSZo5gdQOptoDgylANwGkVzkogDoIeAtHEre9TSfazN3aDg0SMjKGQt11YsIj92SHJPz4g8PIU6aDQBuNSMol+61bTx/jHH1GYTfPKd8JbztigzhESChaT7DHmHTJg7ROtHBHfP6V//ZhQpUg9oWIOaFj9KlZYp6aoKA0Jo55EVx5gKd9jX5pmG4H1Lr34uBcmWA1jZsPsH4R5fdzUizuexa9PvOX+xBzR5DK2ngPBQj833FRoUCaMTRLdm8Znf0ClOsvTYqgdaTNT8zCUKrrWlKcEg2W0QBnZsKiXfchWCMMNgWBQFhQykkdRqnFlb4WHh8+467wl5TvDSzZwB11Ev8NRYYCVwhWyxQSi6xCVzrgqr3MzuMqUuox6VKS4MoL5eQDfxgn5YICliSssTc2wNHmVhdEZ9mKDpPbOCO/loSBQ8YKcaH0cGf0M1vdJK4ckQscMpne4ZiwxUm3pxJvylHC1wKmcYEMYZ1WeZDMwzmlqELMvgq7mUEtF3C2FxpKMZem4CUgOZ7geXWA0vI1Pr+AcCzRORTKVJCuNGebtB8xZj9mpjhMUC4wra1wNvuHW4GuSkVMCRhVHlzFlnVobiCvYiAg0Xen6hEobiMfIcUgfp16SiuvHbBic1RKslSZ5ad5jxb2KJDgMOzv0C4cMhA4YDW8zoO8TlgpY6JjoVPFx4iU5aSSR83UGyscMOYeMVXaYKG4yUtrDUjSKwQC1kELDkNioz7A51s+R1sdzexY543JjeYG//sMvSVUWGTvdRrDA24H/4tf+51R8YcqNDLU+lWoizrWRJa4NLDAZWEEXLDYrU8RK0Nf/Bs+VOD76K+TO/lP6+vpIp9NfY6B73at7HbsMuF8Efn9RkHuRBPOia3ptBlr5tFKnA4pvqmsvrPY+7elVx9bn7rX7Mt/07wXQuyt3UUN6Veqi8zvP+0VB+kWd11nWRUCoV+q1sXjfSZHJZPjDP/xDJElqT374SmvVKW/oBKzd4KqzT+r1Or/5m7/Jmzdv2gBdlmXS6XSbVW5F0wwEAm1DytY7fDWGreigLXeFN2/ebAPdQCBAKBR6R+LSXZfudHx8zKefftpm513XRdd1vve97zE4OPhO/7V+75RztNruOE7bLaNpmgiC0HbBWCgU+EfL/wOKThARl/9J4j8noRXaGvROBqGVV0u3XqvVqFarbSb+V37lV9pa8VabOse3u/87bzS92ATPa2r8WwairXSREWarzF4A/aL51QnIuz3QdObTbYTcfdO9iNVu5dvNml/0v+5+otCr7pdtCL5eF9iuKcyVDF6UDF6WDbZrKjO+GvcCVe4GTGaDFmnBxFpawnr5EvMclDvFIsbdu+h37+K7dw/9zh2kUADNXEcvvsAovkQvzaOYu9SD184NOR/gJT8A/8g77DiA5zgcvF7hs7lDnu57zNcTLMdvIcgSNxo73IuaPL4a4OH1GGHt62PVTk4VwXrFqfuaA+WAfd1hO5ykqIUYNBsMNSIMClcYEq8RJYzAudTJySO6c8jMURdfUpQ3yckSWaWfqgXRgwrRsoVMFUWpEBVyBOtljkixsDbB8YskwoZKQtnGSGygPTJQH+jIYy7qTgVtt4a37WGtm5S/rGG9kBFyDj6fhlxzEHQd/e69Jhh//BjfgwfIqVS7WXWqZNl8x6NKxTtlwI4wZLokrQLB6gaytYDgulANwpl1DsYHQAuDaOE29ikl0uyN3+QwHidjSORtEN6axH9yQPJPDvDPnyIdFEEUsB0XKZ3GuH2b0Pe+h//jDzm+HeWVccISOTZocIJEkBJT7DDsZug3d4mUMyR3z+jbOMLnVKklNaz+c+PNoEZDUtBqMoY9iKo+oaB8zL44yia1NjPe0ouPOGGUUpjiaZjN/SDzGYnXWZgIZ/nVyRfMjL5AjWziKGUkLPxChSAl6qhUiQIDGO4dHPMJu+VJPisqvCzDjgmO18CvlvD7y02jzUAJLVjGcSS8cgjNCaESwEIlK4ocyzap/B73t+a4X33FuLKDHK9h97lIaZuyFWIjP8lmfgK7LuEXywyzz83ACjdDb4ll97E24hSepjDeZKkhsj46zsL0DMtTMyyMzrAyOIU/WyWxfYZyZlO1A2TVJPu+IWKNLIPCLrHgKenkHjOhZabqG8RLOVKVE/qqx8TLOcqSny1xlFVhig3/BEfxISoDCVSjgmqd4W0r1BcUrJKGHZGJjOS4EX/LWHiTcCCPeybgZDzOyjHW7Gle2/d4XvuAjfJVBM9lTFnjin+Be0Nz9MWOCRgV0EWqsk4NDQGPOirnVkAIeBiUSXLCIAeEKXBIPydeAooidk3iUB9krzzAod2PpegMyftM+1cYUA/4o9wPSPpOGdT2Cct5GiiYGFTwcepGOa2m2N4fpb4fYETY4e/E/2smSluMl7aRPId8METF8FFRguTDA2SCMaq6h65XMDAp1UMIEoi4RFdzfPK/+5SyF6BRUzEqUJddDq8lyN6M0ZiQEEddxsIbBOUiy5UZFs9usHh0nVIxyg+TH7FuT/M3Vv4dd/PL/NHfuoEVCfBX/2iTsYpHJBJhdnaWeDzeXjcvIuHeR/LxTSx25zndv12GATsBbet797UXrTPvU+fOMrp/6yXL6axrr3Z244TLPne2zefrisrcWebPA9C7K9erYd/0e2fqJbj/edNFLHcn+O0876KyusHoN+0ou5nuhYUF/uiP/oirV6/i8/neAVat81sa6e4J0A2GW/1SrVb5J//kn7QjfrYY9Hg83ga6rT9XyyC05Ue8xaS3guBIktQG+Ddu3OD69escHx9zcnLS7quW7/NYLPY1/+Xd7P/8/Dxra2vvAMdQKMQv//IvEw6H20Cxs+9bdelsd0uCc3JyQrFYbGvqW9r5/8XcX+WoFsdFZNjI8IPYn5GqzWFZZrvOjuO0NyAtI9J6vU6hUGj32f3797l+/XrPse2cP53RUTvHt1XfzraEw2FGR0e/Nje658lFN57O1GtudoPdXjv/1py6CPxfduPs3Dh1trMXU975e698uv9nvW7CliPwuqwxV9KbxpwlHQ/OpSpNdvxWwELOnVKbn2+DcevtW+RUCt/sbJMZv3sX7coVZK+MXnyJXnrZfC/O40o+auF7WOFZ6uFZGqFbCIqv/VSp5Q/fPM4w9/kqn69Wzt0cTnIYn2Tc3OWunuPRqMyH99KMxSXggk2H5yJZKxTslxxJWxxoFXaCQQ5DfcSsOoOWRp89TB/XSLtpZKFZB4EairCAzBy2MEdJXiUn18gqg5RsheBBiXixhuZVkCSTsJQn0iiQE6K83Z9g91mK+qJBWjolEF1CuyOiPvYhX/XQMlW0bQu2oLZVo/y8SvWpDEc2hk9DsT0ERLRbtwh+97v4P/ig6d5weLg9Tg0ssmy941GlzDEpO8KI6ZG0SoQqmyjWWwTPgmoIzmqQLYPYD0rkHIwfUEj1sT92nYN4nIwuUWg0wXjyR/skf3iAb/4M6aiAJ4g4nofc349+5w7h738f4+MP2L0ZZF49YZkCWzjkEYmTZZodBp0M6eo+4VKG9NYpqe1jNLmOlW5KVMyUhuXXcAQJw9IwnFFk/SNOlO+yKyTYoPquXtwLk26E8QphTo9DLJ/rxbdKHt8d3OK7088YHpjH8x/jiVU0wSRICZU6ZYLUiCN7E1B/Qrk6y8tCnKclgdUqZC2XgFZtR9psGm2WkNQ6jbIfpRZBI4CLQUGQycguYj3H7c3X3M/OcYNlQqEidtrDHQJPEtgvDLOUn6FYCSPTIMkJM9o6N0MLTDmL2FsKxflhpOcmUqHKzsAAC1PXmjrx8RkWh2ZouAqprROMY4tazSAvxTjwDSF7DcacLeL+E5LxYyZjq8y4yyTLZyTLp/RVm24MXU9kWx5mTZhiTZ/gIDpCaSCNGLLR68e4exL2WwXzTKcWVAmOlLiWXGAyvE48dIpbEvCOXQqlIOuNSRbsOzyvfcBK5TrVuo8RdZNpY5HZoTmGk7sEjDKi7lGVjXeAuIOAgIiAh48KSTIMckCQ0jkQTyIUPEJ7ZfS9OupxA9WpEzCKeAmBpZlpSIJfK+NUJSyfjiBAHYUKfrJEObPjZPKDZDNRalmdfCHGcaGPg9wQDgLjkS1i4SyBRAliHkGjwK9E/y0+qYamVvAJVVxRxMRAcD1i2zlSr06ILhUIbpeR9hTqgsD+9T4OZweoj6v40wWGIzvElRPWq1OsZq/y6vA2q9tXMV9pxD8/4bBvgrsDc0TUHO7wE2xvky2fDIMxNq4PsTsSB0FgeO2Qv/Un/1fS6Qhm7jH37z9gYmLiUka817HLsFG3m8TOtbPXNd0A/SIg+4sSuJeV2Zm66/w+RFOvJw/vA9CBd0i1C+NZ8A0AvdFovFPAN3XSNw1urx3JZY34puOtPC8qtxtUXpbfRUDqoh1h57m1Wo1/9a/+FYVCgYmJiXcC+XQOWgsgtJjvXpO3sx6VSoXf+I3fYHt7uw2wFUVp+j/mKzDZYtFbwLwl/VAUpc0gS5KE67pMT09z69YtNE3Dtm02NzepVCrt+rUY7FgsRiKReEcf1eqDRqPBp59+yvHx8Tt1T6VSfPLJJxiG8TVDic42d4NRSZIwTZPj42NqtVrbc4ssy2RNmc+OhugTtzm0Evwo9wRdqPJY+yNGvHkUpfmkoBX5tOXa0XEcisUiuVyOQCDAjRs3uHfvXs950vn5IkPL1u+dAH1gYKAd0fWiTdz73FguuwlcJDnpnFOtV2s+dNan9blXPp0bxV7gvHuD9U2b1s5zATJ1qcmOn4Pxhcq5MWfQYjZoMRs0GZFN6qsrTTB+zpDbx8fot25h3LvX1pBryThKZQW98BKtMIdWfIFi7lEPXqMWnqUeuU8tPItrDH7lLeT8v+fW6xy8Wefz12fMHUu8cvtYSd5Gp8Ftd48HyQZPbkZ5OBPBkHpLejzPQ6gfUbeecySscKhl2fUp7EQGkD2BwSr011OkvKv02cPoXivsvIMsrKEKLxGll5TVFUpKgTO5jwJ+tOMSyVwNn1NBlEyCUpFYI0dF8LOUnWD9+QDmmwARM0ssuox2rY72xI98U0QrW2hbFcRtj/pGg/KrCpUvZNxtB8OnoroCQsNBnZkh8J3vtN0bqlNT7T6yqZNju0M3vk6RQxJ2hGFLIGWVCVc2Uc23CF4ZzBBka5CtgNAPcgREC8c+oJjqY3fsBgexKCe6TKEO0usqqR/ukfjRIb5XZ4iZIp4g4noe8uAg+t27hL//fZRPHrNxTee1csIyJXZwqeLRxzFT7NNvZ0hW9gmXzuhfPyF5kEHSXcy0jtWvNsG4riN4Aobpw2AaV/8eR/IH7AhB1im9oxef8EKEzTC1bJjDwzBvD3Vengq4Xo1fm3zLg8kviSaXcdUcomDiE6oEKdFApkwEhxSCfZua9W12ild4VtR4U4Z9CyTq6B1Gm0awjBqoYNcVhEoIzQ0jCT5MFE4kgSJVruytMLs/x93GWwaMQ9ykQ31IQora5MpxVgvT7BRG8RoCQaHIpLjDjfAyN5V5fId58otjeF+AsZfjOBZrujCcnmFxYoal4ascBVKkd04InOvES+c6cUvSGa9vkDQyxCMZRpObXJMX6S8dk6hkSVeOSVVO0Rp19pV+1oRJ1pRJdsOj5Af6ISrh846w98FdVKge+jANHWPYZCa9yFR4lVT4GKHhwqFLuWCw1RhjybnJXP0xi+XbnJgp+uVdpowlZgefM5neIGgUkQ0XUzaw0ACPBhouHh4SEi4+yqTOpSkByuwzwKmXRCx6RHfz+PdMpIyD7Nr49TJuQuBsJE4treAFQcq66PsWofUK0Zd51KMGFdnHwsMrvHhwD+XI4WfGtwi6RZyazG8v/nfQdItUKkMoUkAKOLiGhD9QZNS3xU3fawbVXSJSHkSaQNx2SWxkSc2fEl6sYGzYaCc2tu2xdWeIw/tDNCYljFSJ4cgWfeohW+YEy/nrvD24werOVYrrSQILFjePX3Pr8HNunH5JfzyDNeZj4+YUix/fZWewn9XYJG/jd8j5AgSzZVJ5k6gg83QsiuC6/Cfb/yV/deyf4yHwxR9+C93++3z729/+2lp9Eebpde/vtVZ8E16D3tivFyDvBdw7r+leczqP96pvd3md53TmdxFI725n9zp72VOC7nJbn8MdssGv1fN9AXp347o/X5LNpb91N6xXGZeV+b7AoVe5vY71mgyXbQA8z+Pw8JB/+S//Jf39/SSTyQs3Bi0g5bpuWxvezXZ2JtM0+Wf/7J+xvr6OKIrtcPd+v/+dvFreTkKhUNtQ1O/3oyhKW6qh6zqJRIInT56g63q7XkdHR+zv7wO0pSKtuuq6Tl9fH4FA4B39dbFY5Cc/+QmVSqXN3Lquy82bN7l9+/Y7kTu7WeeL/GSLosjp6SnFYrEdIbUFOlua8kqlgllr8Na8zY/y30byajxS/pAr6ls0TWk/Kmox6LVajVwuhyzLXL16lUePHl0Kplt/zO6nRa3vnX9ax3GYmJhoetK4YI70utlcxEb0Yqlbx7tBeefms9M7THcQqe5ruhnwbga9sw4XgfOL/mu2ByvVJjs+V2wy5NmGxJ1A0+/4/ZDF3aBFoJrHfPkS89zNoTU/jxgKNXXjs7P4ZmfRZ2aQhAp6cR699BKj+AKt+ApX9lMPz1ILz1KLnLPj8lfa8dYcrewdMvdsiy83a7wsh1kMXOE0MsIVa4u7/gKPJw2+dTfFcFgEvn5T9TwPnApe9SUZ9zWH8iH7RlOqUtaCDFQb9Fsh+twp0s4kITdA09+ihyTsoQrzSOJLTG2BknJCTomREyJIpxWSpzX8jSYz7pNLxO0sDRTWquMsvRih9CqMP1chFVlCnyigPQkg35XQvDraeglxy6Wx1aC6UKX8mYS97mKoMqooI5o1lPEJ/B9+iP/b3/7Ko8q53M3BJs/OOwaceXaJOmFGLYmUVSFc2UarvkXwsmAFIduArAlCGqRoG4zn031NzXgLjNcE5Fdl0n+8R/zHR/henyJmSniiiAMow8MYd+8S/qVfQvj+A1amZV5LJ6xSYQcBlwZD7DPBEf31Q+LVQyK5HH1rRyROs7gBsPoNrD4VM65R0zTkBhhWCEO8jqn/gAP5PtuC/DW9+LATRquEKZ+G2dkP8+pI4U0WxkM5fvXqM66PPkUN7eDKJVRMAkIZHYsSQUyieN4IlvUtCpX7vCmkeVkS2TSh3HDxqxV8RolIsIw/WEINlpFkm0Y5gNposuINQSMvSGREh2Rum3ub89wtzTMtb6LFqtQGJbwBj7qjsVMYZTk3Q8UMoGHR7x1zzb/Kbf9rhosrFNeGaHzuw7d8RlHXWR2dbLsxXBq5ylp6gvBRiehuvkMnniarxhmpbdOvHBANnzKQ3OW6b4GRyh7xcp50JUO6miFoljhRk6wLE6xJk2wFxsn2D+AkDfxSBvu4gbugUtn2UVF8KEN1rvSvcjWySF/4EFm08Q4drLzKbn2YFecaL+2HvCrNsl8eISadMKEvM9s/x9WBZSK+PIrRwJJ1LM5d6Z5LUwRERFz8lEiRYYBD/FTYY4gTL4FY8prBoPZMpBMbwQOfVsVNCpwNx5pAPADSmYuxbxFaLRN9mUc+samqPramhtkeGKfmaaTsU8bULQb8+wSjBaoJA+Iesr/BQX2QV7U7/J8r/4AJ3zo3fK8ZUPcJSUU8EUx8iA2H1MopyVen+BZr+NYt5FMbXI+Nu+Ps3xmgNqUQ6CsxHNlhxNhm1xxhKXeNt4e3WN+ZIrsSwzdfYebgLbOZ59yuzKH3Nyhfj3JwZ4DM1RSrfVOspqZZSUxxHEgxkt9lLLfH9exbprPrVK2HaPIAsryOL3RALJVFiRwSDB4iiQ6iZON5Altvvo1Q/E+4du3a19aJXvf3XmtWrzXqfVMvfHcRKL/IBrIXU98r717XdTLY3dd3k1fd7evGMO9DwnW3rfNzp23c1667DKC3XN9dVlhnoy6q8J8HNF9WZivvXju6X7SsFuDpLqNXarHCz58/Z3l5maGhoTYw7ZSydOYtCEIbqF7mY7p13u/8zu8wNzcHNCVHsiwTDAbbYMx1XUzTxLbtto4caAN0oO1y6eOPP6a/v78NMKG5CVtfX28bU3Z7GFEUhYGBAaLRaLtfjo+P+fGPf/yOH3NFUfjwww9Jp9NtjyUtwN/qh5YuvFAoUKlU2u4eoSmPCYVCbTa9Vqth23abFW40Gu+4lhREmReFKX5S+A54Hh8GfsLd8Cqi0Bz/arVKpVKhVqvheR7T09M8fvz4HZ/r3XOh1Z/d4LZbAtL6rWUM/D5z5SIWoBPw98rnMnagE6R3vnfebLulRt3ldt+MWu286NzWeBZtkRdFjbmixlzZ4FVJJyw3I3PeC5rcD1pcMUzcrc2v2PG5Oerb2+jXr2PMzuI/l6wofSnUyipaYQ69+AKt8ALF2qcWvE4tfK8JyiOzuPogYoc3HAC7UmHj+TJfnLs5fC0Osp66Q8Qucls84kGfy5NbMe5NBNDlr2/sPc9DwEU0l8nbLzgUN9nXquwGQxwG08StOgNmU6qS8q6RtONInGsivVNUcR5ZeElNfU1ZPSCn+MlKCZxCndRRlWDNRBYq6EqFmJtF9Dw27RHevhkn+yKKdmDTF1rGN5xBfexDnZXR/A2UzTLyloO9YVNdrlL+TKSx5KKKErosI1bryIOD+J88IfCd72A8eND0qHJucORik2evI+jPOjl2CLpBxiyFtFUlUt5BNxcQ3GOoBSFrQ84E0iBGQazhOAdk+/rZHbnGYSzKqS5TsgTk+RLpP9wl/pNjjLdniCclPEHAFUXkkRF8s7OEfvBL2N+/x8KYx4J0xhomB4CEyRh7jHhH9NePiFaOiWVzpFePiBVzNCIyVp+OlVYxYzp1RUGzBIxaDE26S8H4Ffal62wK9rt6cS9EXyMMxTC5TJi1vaZefLvs8dHQNh9f+RlD/fOIvgyIFYxzVtxBokiYmpegZt+mUn3CdnGG10UfSxWBTM1DE2ro+rnRZqDpU1z1V7BrGoIZRvdCCBiUBZWMCIKV4c7GW+6cvOAmy8QDZ9T7BOojMoLfJVPsYyV/lf3CEKLrEvHyTCmb3AovcqP+HHvbwHyexJgv4NQbbAyPsjh1rWm0OXqVhaGrCBVIbp+2/YnnlATHeh/p+jFDwg6x0Bmp+AEz4UUm65vEivlznXiGWDVHUQ6xKY2yKk6x4RvjLDVMLR3Bp57gnJq4yyrVVT9l0Y/Q7zI+uMH1yAID4X00w4Rjj3pW5LDWz6pzldfOfV6WHrBVnETDZNJY5m56jmuDCyQCZ6h6nZqidQBx5TyOQJMR91MkTYYBDtCosc9gU5pSgqHdA4J7ZcQTF88V0QwTL9EBxH3nQHzPIrRaIvYyj3zmUNb8rF2b4iSZJuwVGbJ36NcOCAZLiBGHcsKHGHOQdJucGePQ7edYS3PgDGDIVQzFxC9XcEUJEwPZapBeOCH+Jou6WMfdETFO6mhOjbcPbrI1O0JjQiYZO2A0tsO4sclRrZ/F3DUWjm6ytjVBdjGE+qzE9YMlHpw946bzFmHQxvw4zvGVAfbj/Wz3j7OWmmIlMcVhsI/hwh5XcmtMl9YYLW7Q+FmD+4XXfNl3HWFQ4vroDnrSQk9aSJJD4TROMZuiWOjnp+OzLKmTfPBnp/zSnd/FdS3W5/4OAd8g169fb8cI6WaFL1rPutejbzqn19rV67fLQGyv67vx50UMdjeeu8gNYqfevpO86l4vOvO/qP3f1O7OTUgsFrv42ssAeq1Wu7SwiwD6+7gl7FmZC4D9RWV2srMXAZr3KafzeCfQ6VWXzu+e51Eqlfid3/kdAoEAyWTyHTazu/69mNheO7TOdv3whz/kT/7kT9oeWSRJwjAMBEFAURQ8z2u7KFQUhVgshuu6+Hy+dzYbN27c4MmTJ21degsUep5HpVJha2sL0zTbG4zOuqiq2g5iBLCxscFnn332Tl0HBwd58OBBW94CTSY7m81ydnZGPp/n5OSE09PTtheZVj+22PoHD5qauEKh0AbWrXY5jkOlUnlnY9NoNDDNGq/L03zZ+GVcQeXj8Kfc8r+hZlYoFottX+szMzM8fPjwF3ri0+2BxvM8DMNgamrqvTejlwH07ptCZz7vA9Dhq5vOZU+BWvm35ub7A3TYNCXmik12/HlRY8tUmPHX2lE5Z4MWKbuA+epVmyE35+cRJAnj7l18s7P4HjzAf/s2smSiFV6gF16gFubQivO4coBa6F6THQ/PUg/exJO0d9vpeRTXt3j28ohnuw6vrBiLkWuU/Emu1baZDZf51tUA376bpi8oXnh/wDqgWvmSQ2GZAzXLnl9hJzyI7MFQVaC/niTlXaPPHkTz1HMQX0EV3qCIL2ko85TVHQoKnMl9WFWX+EGZSNVEFaoocpUYOTSnxp43wNv1KQ6fJxC3BPqMDUL9O6gPVNQHGmraQdssI281cDYdqitVyj+D+htQbNA1DalaR4hGkO/cRXn8GPnuXaQbNxg5t6lwcSmw/07Qnyxb+Fw/ozWtGYWzvItWXUB0D6Dmh5zTBONCHwhREGrY7iHZvj52Rq9xFI1wqimUTAHlZYn+P9gh9qfH6G/PEM/KTTAuSSijo/ju3yf0yz+g8v1bLAw7vBWzbGBxDBiUmGCHIS9Dn3VEpJIhftIE4+FaiVpc+QqMh3UcUUQ3JYx6GkV5zIn+S+zKE2xgvqMXn/DCRKwwjVyY46MQS3sBXp4KOG6DX7vyisdTnxGJr+ApOWTBxC+UMTDPnRpGsNxhStYHnJYfsFzoZ6Ess2NCw3bwqWX8/jKRQFOeogXLCJKLUw6i2hFUwY+FRlYQKbplpvaXubf7kpvWW0b1PYRkg+qIhpByqVhBNvPjrOSvYtUMfF6VYQ64EVrijvyc0GGO8uthtGcm8kmRvVQfi1MzLE9fZWnsKm+HZ8grUVLbp+jHFjVLpyDHONQHCDolxuwt4oET4rEjpuNrTLsrJEs5kpVT0uduDBuCwrYywpowybo2yVF8mMpAHJ+vCIUyzrJEddmgbAdx0hLDQzvciL5lOLyDP1jGO/NwTiFjJdlwp3jj3uVF+RHr2Ss0XIVxfZU76TluDbwhFTpGNywasoIpGHhAA+XcWFNCwXkHiKvU2WOIjJdCKMHI7h6x/RzeKbiuhKrXcRNwNhyjnlbwDJBPHIy9GqGVIrH5AlLOoWj4WLp+g3wiTqSRZ9TbIq0fEgiWEKIuXgKcmIAnCVTMAMdumj19kKrmx5R1ykIASXCRsRHwCFfz9L8+IvY6j7RsIxyAVnPQShbzd26zNTtGY0IinjxjPLLOlLFKthFnMX+dhcMbbOxMkFsMYTwtM7O3xIOTp1yVlxCHPaw7fvaujXI4NMhWapS11CSriSn2gwMMFfeZyq8zUt0hwRnSRpnGogWGx5PrbxgYypJRQvjiDVS9welhkKM9P8f7QQ62fextaVTMOOV4CHe8n/wHVzm9MwaiQHrzlF/7nfn2E+5AIMDg4CDT09Pouv5eYLP79/cB6O/DaHcTS98E1rvP6y6r857feU7nE+fu463UvR5ftE52t7e7Pr3wX6++aMVR6dk3lwH0ltu67ka+k8F70Ps/z3XvM7AXMfiXAfX3fQxxGcjpTC2g+OrVK/7kT/6EmZmZNnvdYtBbcomLAFMrn4vAv+c1jTF/+7d/G1mW2xEzDcN4x1OLZVltcJ1OpwHarntEUSQej/Orv/qrxGKxNkvc6We8pdve29vDNM135DPQBH8+n4+hoSF8Ph9LS0s8e/as3S5d15mdnSWdTuN5HrlcjpWVlba+vTWxWxuCVhtbf+5wOMzDhw+5e/cutm2TyWQolUrveIhpGZO2+gC+ClrUHAvYEW7zk+JHWK7Oh8E/Y6T2E2pmGVEUuXPnDjdu3Og5lhf9BS6aT67rEovFGBkZ+dr1vViIixiAzvHvzr97HnTn1frc+t7t1aXzSUHrlc/n2d7e5saNG+2nK7006Kbt8aqk8qygnoNyDceD+6Eas+Ea94MWN/0W0sEO1efPqTx/jvnyJfXVVdTJSYzZ2bZkRR7sR6uu4Su/xCg1DTllc4966EYTiIdnscL3cPSBr/VNI19g5fkqT1crvMz7eKuMspW+RbqW4bZ8woNBgW/fSXBjUEMW342Y2t5kO2Xs0hzH9kv2pAN2dZudUIqyFmCwajNQD59LVaYI2AYCAtBAEZZQhBc40ksq2gZFxeJMTlNpKIQPisRLFrpXQZKrRMQCAbtCRkjx5mCanWdp7GWVtLxDLLmOeldAfWigjrvoO2WU3Rr2mtv0qPK5izUvIlVcDENDtmwEw4d06xbKBx8g37mDfPs2YjzeHEdcqtIJRXUPEoVzML6J5mmM1Hz0mxax8h5GdRHR3YG6AXkXchaQBmJNMO4dctrXz+7oDIeRKGeaTKkqor4oMPDvdon+6RH6YhYxew7GFQVlbKwZbfVXfkDu+zO86W+wJORYp04OlzB5Jtmh3z0lbR4QrpyRPMrSt36EQRUroWP1aVhJFTOoIXgCuqlg2IN46nc40r/PjpT+ml581A1hVMKYZ2F2D8K82dd5kxUYCxX4teufMjPyFD24hyCVUKkSFEp4CBQIU/HiFOo3KVSfsF24xnIpwFpVJGt5+CQL3SgRCZTbRpuK38Q2dUQrik4QF4OiIHEiOKRON7i78ZpbhXmuyBsEokUqgyqNYRlPFjkoDLKcm+G4nEZyHBJelhnfOnd8LxjPL1JZGkR6CsZGlrNQiJWJqXM3hk1/4tvREaJ7eYIHZeyKQlkIc6z14woCk7U1UkaGaPSEscQmM8oS/aVmZM10NUOqcoLsOOypA6yf68T3wiOUB9NoYQupUqCxKlBb1ClUI9QSCv3DB9yMvWE0vE0onIcieKcOWTPKljPBonebucpjVs5myNejDGub3EnNcXPgNUPRPXTdxFUkqkJTZlZHpan1EpFxCFAizTEDHCDhnAPxJF5ZYHR3j/7dI9wzGduTUfR6UyM+HKWWVkA7B+K7FuGVEtH5PGLBoxAMsHD9FqVwmFgjy6iwSdo4IhAsQ9TFTYAbE/AQKJkhjrx+9vQBLE3HlH2UBT+KYCNjAx5GxaRv5Zj0sxPkRRtx10V3GxSGg8x/dJuTm/HmA6WAgyuJfK/+Q0L1Em/zN1g8usHWzjjF5QjG0zJTm0s8OPmCCX0D+4pG6XGI/EiCTCLFZmKclfQUq/Ep9kKDDJQOmcpvMGJuk/aOCSol7JBAPaYS8CrE5CwxL0eklsVQaxTPYuROYmQOQuRPEvxZ42PmxIc89F7j+UzKKR9K0uIgNUAmmkQrmBgHOaRSldMHU+C6JP/NM6K/8wYzdIVrxhHxIR/GsM6gPcy1q9dIdXht+nlSJyhurdXda9w3OQS5DKD3Oqc7r8ueTvcC+a114qJrO/PozKuFYy46p/vY+9SzM2ZOd3pvgH5hBv+eAfo3dWYnQHof9r4XO99rMLvLaUlL/uRP/oSdnR1u3LjxNYDQPTkuq3MvkH56esqnn37Ks2fP8DwPy7KwbRvDMAgEAm1f4I1Gg2KxiOu69PX1oaoqPp+vzeQ/evSI+/fvt1nWzonWCZprtRpHR0cUCoWvgcyWEebIyAhra2vMzc212fXJyUmuXbtGNptlfn6ezc1NTNNs/zG7/YfDVxG3RkZG+OCDDxgcHGy3JZ/PUy6XqVarTTmL8FVkU8dxsCyr3YaW5MV1XYLBIKIosVge40f5DynUdWalP+Km9owPnzykr6/va2Peq99b51z0hMN1XYaGhto3tPdlFS4a916by16yms78u9vR7cqxG6DX63U+++wzFhcX+Xt/7++1Lcdd1+XQhC+zMs8KKs8LKm9LKsNGg9lQjfuhGg/CNcbFCtab11Tm5qg8f071+XPcer3tc9y4dw/91i1krY7R1o6/RC+/wpGC1EL3sML3qEfu0wjeRFC+0o57nodn25wurfNsPsPzQ3htp1iO36KhBbhe3+ZupMrjK34eXYsQ1b2eLAieg2QtU3BecihusatV2Q0EOQqmSVgNhmoG/e4o/cJ1Eo0YgifgeQ4Smyi8wBXmqGrLFJU8WSVJ0fXhPyiRyJsYXgVJNgmJRcJ2kZwYZTE7xdqzQcy3fpLOEcnEMtr1OuojH+oM6MdVlB0Td82htlGj9LSB+VxGzDlNjyp1F0QJ6do11A8+QL57F/nuXYS+vuYcwsOSshSUHYrqLiV1j5K6j+QK9Jd1JhCIlQ/wVd4iutvQUCHvQa4GpIA4UKfBIaf9/eyMzHAUCXOmKpQqIvrzPAP/dofoT4/Rl7IIuTIeAp6moYyP43v4kOBf+WUOvz/F24TFklBgiwZlbBKcMMkefc4JyeoRoXKW1EGWvu1DFKWBmdSx0hpWUsPyqci2h27qGM44lvFLHGgfsi0G39GLD3kB+u0wUilM4STM5m6Y+SOF7bLHd4a3+P71HzOYeoukZxDFCj6hgo8qVfwUCFNwhsmajzgsPmK92M96WWHfEsC1MdQyoUCJULDcNNoMlsEFtxpGdcPIgg8TlVMBxPIht7YWuX38gmvOCn2BY+p9ApUxH2LUIV+OsZGfZCV/BbuuEHTLjMp73Aq94XbtS9jy437pJ7BwSlUQ2RidYHF6hsXJZrj7pf4raNkG0d0cFEQqXpBTNUVZDjJubjCg7BONnNKX3OeGb4Hhyj6xUr4Z7r6aIVCrcKSm2BDHWZOn2AmOUugbQEm4KPUs9XWw3hjk81HMqEZ85JRb8ddMhDeIRc+g5kHGplgNsuOMsezd4IX5iMWTGxxZA6SVfe4kX3Cz/zWjiS38egVPFagKBh4CDRTABWQUGudA/IgBDhCAPYY49lJ4ZZGR3T1GdndwszJ1VBS9gRMXyA5FqfUpoIJy7GDsWYSXikRfFxBKHqeRKAvXbmL6AyQbJ4xKW6R9R/iCZYh5TSAeEXBdkaIZ5kAY4FDvx1I1qoqPKj5UoYGE0/TsUijTt5wh+fQUadmhVtOwxgwyt5Ls3h6EAmh2Hanh0vAU9u8NYKk6ul2lfqCxmrvCQaWfquOjGvHRSMn8X/7B/4jJygbuVZWTmRQH6UE2E+OsppvSlL3gIH2VYyYLGwxbu6S8E3S1Sj0iIQVc0t4JUS9HWMwTJ4ssOdhlma3dYXKRKGU1wL4xwNzxbXzzHmZDINOX4nQkTTURQvHVoSowsrvG3bPXPMq9oHzDwBkREQqw8X+cRNN0SokgJV1CXDzlv1T+IQ4SI8pL/u4//BcIkoC4IjM933zCfllUy8vi4XSvVb0Y6YtAeidO6sZ/7wPQLwLtrbw7j10E1i+6vjOfTjKtm0TrLOuytb9X3pdtjC4F6C198M9T2PumnxegX9Rpnb93P2a4DHxdlm/3AHZLdloDtL+/z+/8zu8wPDzc7uRux/rfBNA78+xMxWKRL7/8kpOTE3Z3dzk+Pm7bBKiqSjAYpNFotOUK5XIZx3GIRCKEw+E2QPf7/fzar/0afX197wDlFnveCdChyUrncjnOzs6o1WpfA4GxWIxGo8EXX3wBQDqd5ubNm+zt7fH8+XOy2WwbmHf2X2dfqKpKPB7n2rVrzMzMoGnaO31WKBQwTRPTNNuMeau+QNvfued577DoLcmP53n4fH4WiwP80ekTSl6c//7dQ/6jGzk02Wvn0Wsceo1L55+zNS+mp6ff0e5dxhD0AuLf5Mqps73ftGltjU3nOd03qefLW/zdF1EsLcz/bDyPLznE05zC07zCSU3gbrjB/VCNh+E6d4MWvrMDKs+eUZ2bozo3h7mwgDo8jP/+/aYh5927KGPDaNU19PMgQHrxBbJ1QC1wHSt0Fyt0Dyt4F8cYeKduoihSPzll8fkGTzcsXpaCLOiT7KWuMWztc1s95f6gyAe34lxJSUii8E4bW30uNQ6p1Z5zJKyyr+bY86vsRAZQXRiqigw4aQaEmwx4w19JVbwDZO8FCM+oyG8pKRmySpg8EdSTMqmzKv5GFUmu4pdKRO08ZTHAanWShbkRSvMhotUifbG3GFNF1Md+tJsiWqmKulXFW3epb9Yov6hT+UKGIwfDr6LYINgu4vQ06uPHyPfuId+9izg21gbjNSlPQdmlpO5SVJqAHA/6qz76qxaJ8iEhaxVV3MazZcSCAPkaeCkgBjSoc0imf4Dd4ascRyKcqjKVioTvyyz9/3aH6KcZtOUzhHylCcYNA2ViAv+jR/h+/QdsfzLGQtRkmSLbODSw6OeIcQ5I2yfEK0eEKwXS2xlSBxlEn0s1ZWClVay4Rk1XUWsuhulH865Q9P8q+8ojNsWm8WZLLz7uhYjVwrj5MCfHYVZ2g7zMSNhug792/RkPJ39KOLKBqOZRqBAQygh4TSDuxTi2bnFWecx24RrrpRA7pkipDj65is8of2W0GSij+Czsqh+pHkEliCNo5JAoN4pM7i9xd+sV1803TOi7yHGL4lgAd0Cg7qjsFkZYzF0nW4mjOHX6OOF6cJm7fEHsqED9RYLAfB6hUGVncIilqZkmGB+dYWF4hqrtJ7F9hnxmY9p+cnKCMy3BkLXLCDtEQ2ckEofMhJeYqG0RL+ZJVk9JV4+JmgVyaoQtaZQ1cZJN3zjZZD9Cn4bu5bC2HOw3OrnjCOWQn9BIkZvJ10yF10hEM4iCg5CxqZR19p1hVr1rvKw95M3xbXaqY4SlHHeSL7jV94rxxDpBowSady5NEWkgI+DgIaNgE6RImiMGOcBFZJchjr00TlliZHePid0tyInUPA3JaOAmBLKD50BcbgJx365JqAXEK3CYTPL2yi0ahk66fsy4sknKd4wRquDFPbwEuCEBpyFRsCLsi4McGWlqqkZF9lNDQ2kBcc8jmCvT//aI5HwRdUvEsjXyIzKHt1LsX+tHxkbN2whVj4agUgn4yaWiVMMG4aMCeqZGrajyPH6P7cgoFd3P/bWXfLj6U+4UXyEEBI5i6a+AeHyKndAw8bMs8bUc8p5DNRPg2s1XDD/cJqSWSLkZouQJCiVCUhFDNDErAcyCD8FfJyyUiZUL1OoaT5XH/D/P/rvsxGPkY1Es2cBTwKuIGDmLgewBV4qrXC8ucMt5jRG2OIvHKCX8mDEdVxZxkDnOpvjRP77FiZtCHO7DSXjoqRrJ/mMGBvaJRc8QpWbE7caJzeT/6wbf//73vxGE/3nSz5N3L/B80bHL8oCv1s9O6XIvZv2iPDs3Dr3W786NSTeh9j4Y+RcG6NVq9dKMfx6A/r7n9qrO+4LcXtd/027monw7J0OvHVmj0eDHP/4xy8vLXL9+HVVVvwbm4d1JeZnT/856VioV5ubm2N3dRZZlisUia2tr7fHodm6vaVobzKqqSjKZxO/3I8syw8PD/OAHP8Aw3o2U2GKkOw0hWu0WRRHTNDk4OCCfz7ev6QwP/PbtWwzDYGBggP39ffb399tAubOM1nUtBn54eJgrV64wOjqKrutf03e33CN2+jNvAfFWfq1Nhed5bQa9M9iC4zRvPI7jYNsOtdgH/Cj/IVt5nb9755i/MXOMJjk950rrWPcfsPW95Srz6tWr7THvfFLQmiudHmw6ZSTdLja7AXr3XOt1E+iVuudWJ5h1HId/+Adb/D+ERyApyJ7NX0nXeRRzeBRtMKNVqS++pfT0KeVnz6g8f46TyzW14/fu4X/wAP/sLKrPRS28QMs/R83PoZXmceUQVmj2HJDfpRa8AeK7oYvdWo3jN2s8XcjyMqPwxutnJXUHURK5ae9wL17j0dUg96f8BJTeDIroVsB8yam4wKF8zJ7PZSecpqL6GazYDNQj9HlT9LvThDw/AgICBVThFaLwHFN+RVHZIy+rZKUknJn0ZaoE6lVkqYIhV4g6ORqCykZjjNdvJzmbixLMWgxEFvCPZJoylXsSulND2yzDukt9s0HllUX5cxl320b3aWieiGDVEcfGkB8+RJ6dRbl7F2l6uu1RpSYWKKq7FNU9Skrz3aVBXzVAX7VOsnxI2FxFE7fBAS8vIBQaOHYc1w0jeA6ucsrxwCC7I9MchyKcqQrVkoj/yzP6/80Okc8yaCtZhHwFVxDA50OdmsL/+DHKX/8lNj4cZCFUZZUyuzgIVBlmnxGOSNUzxKoZwqUifRtHJHJnuH4BK21gpVTMmIYty2iWi2FGUIQbnAR+jT3lDhtCg3UKbFJEQWTUDeOvNl0aHhyGeLsTaEpUwln+2u0fc2XwObr/AFEqoVPBL1Qw8ZEnTKYxylH1HgfFx2wVB9iuqBxbIjINDK2pEw8Gy+jnHlQ8W8KzoqhuCFHwUUbmzLVJnq5yd+MtN7KvmBbXiYaylEcMzHEDDJfTYorV/BXW85N4tkjYKTJlbHFPn2M8t4y7EEd/WsU4yHIUT7A8cYWlKzMsjs/wdniGQ98g8d1s05+4pVOQomS0PuKNM8btDeKBE6KxE6YTK0w7aySLWeKVbDPcffUUUzLYUYZZFSbY0CY4SQzg9gfRlDz1XZvGG5X8boyiL4A2YnIz/ZYr4WXSkSMUvQEnDrWizKHdzzozvG7cY/7oHpvlKSTB5nb8Bbf65plKrBEO5JFUB1PUcdtA3EVAQqZBiAJ9HNPPAQ4yuwxz7KVplGWG9w6Y2NlEydlY6IiGg5sQyA1GmkBcBOXIxrdrEV4qEH1dxDNhe3CYpYlruJrCQOOAMWWTpD+DEa42gXhcwA2CbSnk6lH2pSEyeoKaplOW/DQEFZU6Eg54HpFMgb43GRLzJZRdiYqsURxX2LvVz9FkErVRR807eDWBmqRRCQU464/iSiKRwwJy1qZaMsh4SZZSVzmNxHm0/JSHx3PYKZmGT2Uss816apKV9CTb8RFWfFMY+zXS26cIe1DJBDg9S5E7i5L0Z3hw40tuTb1ion+d0dQWfaFjyvUgWSGCWHfw1aqE61UcR2BBv85P5W/zSrzFsdSHpep4MlAR8OeqDBX2uV5Y4Jb1iquNZbyIxHFfkmIigO2XsW2ZYjZGcXOIV4dxNqI3qZYDhK0yUqhOX+qIvsQh4WQWUfBoFFWcWgNpQAJRwCnDwz9exE7avF2a4q9c/W8xNjZ26Rrz503fBNDfB4xfxLx/U+omXTuJ3F5l9yrzoqfeLSlz5zreiwzuPt665hfWoJfL5a8d+/PssN7n2ouq84sC9MuATS9j0M7yLnr84bouGxsb/PSnPyUQCLQjh3YC9PedON1tcF2X+fl5VlZW2sDPdV12dnY4Pj5uG4sKgtAOJtTSu7e8uaTTaSKRCIqicP/+fe7du9euW+dk6wbonfIIaLLppVKJXC5HoVBoX1Ov19nc3MSyLAqFwjvMdqvtLR2+3+8nmUwyNjbG6OgoyWQSVVW/NsFboNu27XaAoZZP9E6A3uvxUq1We0fu0zq/BdofPnxIKpVi/jjIbzzvZ+XU4L93+4j/6HoGn3KxwW43SG/1kWEYTE9PvyMZ6mxz59h3byo6Pfj0YtB7+WHvZvAvmjud5bXmjSRJ1Ot1/tF/8c8JfraIzywyPznJP/pwBGF5uSlXmZ9HTiYJPHjQNOacnUWfnkSx1tDyc2iFF2iFOeTaIfVgUztuhe5SC8/i6P3v1MtxHMy9fd682OX5doNXZpTFwBWO4pNMmLvcNnI8GJF5dCPKWAR6/kU8G8lapuS9IqPssW9Y7IbCHAdSJKw6g5ZBvz1CmusknRgiImAi8wZFeElNfklZ3aYgO5zJKRpll9RBmbBZQREraHKVqJdH8Dx2vBHm16c5epZE2fcYDi4SGthDva+gPlAx9DrqRglx06Gx0aCyYFH6VMZed9BVGU1SECsWQn8/yoMHyA8eIN+5gzQzg3BuB1IXS5S0/XNWvAnGHUySVpj+SoNU6YiIuYoqbCF4Nl5BRCjYOI0YrhsG18FWzzjq72d3cIrjcJScrmKWZEKfZej7N7tEfpZBXc0iFKtNF3XBYBOMf/AB/I3vsfqtfhb8ZdYwORJsVEqMs8OAd0KqniFSOSFWKJBePyRaKdIIS1gpvQnGIzqeIGBUQa/F8aSHHAV+hV15mnWh+pVe3DMYsEOo5TCl0zBbe2Fe7evslOGT8RU+uf5DBhJLyNoJslAhIJQQcSkSJuMm2bducFS+z3bhFjvlIAemRK3u4VOq+H3NAD8to01Zr2FXQsiNCIrQZFKzCCiFXa5vL3Ln4DVXGksM+g9w+j3ykxFIuFStADuFURZyNyhUw+iOxaB4zO3AK25U59A3JdQvRYLrGUqaxsr4FIvTTZ342+EZ1pJTBI5Nggcl7LJCSQxzovahuHWma6uk9COisTOGk1tck5foL2aIlvOkq003hniwpw2yIUywqk5yHB2i3hdF9ZewD+vYb2VyGxFyahRlsMG1/kWuRhabnlNCNThzsQuQaaTYZJq3zh1eHNxnvXQFyzO4GXvJ7b55phKrxIOnyJqNJWptIC7i0jTWbBAm39aI11HZYZgjt59GRWFo/4CxnR38+UoTiOtNfXcbiAPqkY1vxyS8WCDytohTF1gZmWJjdBpBFhlq7DKmbZEIZNDDJl4c3LiA54eGqZKtx9iVh8nqUSxNpyQFcQUJlToiLoLrEj3I0ffmhOjrKvKuRDmgU5xQ2L01yNlwFM2qIxcd3LqIpeqUIkHO+mOotQbhowJizqNkBjn0p9gdHgTXY3p+lbsnrxg82sV/UkYIKETNMiMHu4iuy9/+P/3fye0nqG6FyB7EKRxGqWb8eFmPyYE1ntz6jJvjL5lILzOePiQZPqZh6VglkVoNdEUk6hYpEuSZNsufSd9hUZwhK8VpqArIHkIJIvk8w/l9bhTfcNt6zYS7QSXu56QvTjnmxzVEnJpMuR5g72CGzTdJXnAFS0kSdMoEjRJ9fYekBw6Jxc4QRAfH0lHKUC4X0SI+vLCEaenkD6MMlI7glovguXzrt3/CZv8MLydvM7tr89dH/+afSxHRSr1IyPfRerdSN6N9EQbrJrUuUk30OucyzNf9+0V598ILnakTiF+ETVv98gt7cekF0Dsz7k69tEat4z01oz3SRQ1+X4D+TUxjd7rMx+ZF8pdGo8HTp0+Zm5vjxo0bbYlG6/du4H8Zc95Zf0EQ2N3d5fPPP6dWqyGKzQihLd31+vo6pmm2A/EYhkEwGGxLVVreXOLxOIlEAl3X+eSTT9o7426Gvxuge15Tq1ytVtv673K5TKlUagPler2OJElsb2+TyWTwPK8dxbPFkkciEVKpFH19fSSTSQKBAIqifC2oTjfb3gLW2Wy27Wax9d55Xqu9rbp36tRbAZ1qtRqSJJFMJttGka1xeXPs55/M9fP62M9/+9YR//H1Y3yK3ZOt7mT2W9/j8Tijo6Nf+9N3um/qlhN1P7Ho/O2y3XyvG0GvnXr3uZ15WZbFP//7f5+rP/kJMjTB1p07hB8/JvDwIYH799HCEnLuGeo5O64W53GVyLlnlaZ2vB66gSDp78xbp1Jhe26JLxdyvDjVeCMOsdp3D79ncdPbZzZZ59G1CPdGdQylB6Pguoj1A6z6czLyOkd6kT2/xm5kEM3xGKwK9NVTpNwZ+pxBNFQkCWRWkIU5bOkFZXWdglIhK6cwTZnYQYFYpYomVFGkKhEhj+o0OBD6eX04w/bTPtiQGdLXiKU3UO+A+kDDSNqo2yWkDZvGuk112aT0mUxjwUETJTRVRarUEOJxlNnZJhi/fRv51i2E81gBdaHSlqgUlOZ7QyqTMCP0VxzSpSMi1VU0YQuBGl5BaoJx+xyMOy62esbh4AC7/ZMchyPkNY1qUSL80yP6/vUOoZ+doK1nESsWrgdCOIw6NUXgW9+i9h9/j9UHCRaMMuuYnFHH7+WZYJc+75SkdUykkiWaL9C3cUCwUaEeVbBSOmZSxQppSK6HURHR62ks5TscBn7AtjTAulB8Ry8er4ehEObsOMzaTpiXRwqeUOdv3v6U2fHPCIe2EOU8OmX8QhPo5bwIO/Up9qu32C08ZLc0yH5VI2cJaDTQjRLRYJnAech7LVjBqasItQiKFwJBp4CMaRWY2HvL3a23zPy/2fvzIMm2/L4P+9w9932rzNr36r379VsGs7zBOoMhCRDLgABMDB2yKdE25VCEAhQpWUEzzJBCtHaTFM2wRNoERREmOQNyMAMCGMwbvNne1nvXvmdVZVXuy7253c1/ZGdNdr3qfm+GkCPk8C+ioipv3XvuOeeem+d7vuf7+/30J8xoB3hjOtW5KP1xBUcSOGuMsV5fZr8xi2jaxN0GS/4t7ljfJ37WRH1fIfS0gtMz2ZuaYnVhmfX5gcPmam4FW5eJ5msIdQGDIBU5RV9Umetuk5PyRKNVMskjVnxrjOsnxPTGeRhDj9nl1JNmV5xmS5rnJDyBkU6gRXo41S79JwL1zSg1IYadFVnKbnAl+oRcKI8/1oaGg1N3qPTjHAozrDk3uH9yh83GClUrwUr0CdfSj1hMbpAKnaFoffqSgoP0DIi7uAiomESeAfExCnTxnAPxnqGSOy4weXhEpN6gj4rgc3DiAvVcmF5aQXBBKVj4DttE1pqEnzaxbJkns1c4yM6giBZTziFTnj0SgTJquDuQpcQFXA/0DY2ylSSv5Gh4IrRVL7oUAEH4ARC3HOL5GplHZ4RX+wgnIq2El+asyuG1CRrpAJphIukOtiXR8XhpxEPUUxECdYPgWQuaAjUzyklojMPJLGO9Myb6R2QaBbKreXKreVJHZWLNFmGnja2AIYoUtgJ8/xOfY+3GLYSUzdPGdcbjh5RaSfKdKeSQhW6GqNQTGOUA/6fP/XW+sPh1pHYLr2DhweLQnuQr1s/zx8abHBgzNNshEq8d49W6+E2DHMdc6a4x0c0z098nptVQFRNvs4N6amG3ZIyGD9ouH2ReZft4no7uZV1dohxJQsAlPVYgnT0lFisjSjY9x4PkCAiCgys7CIOUDjh1D+ZukN01kWZtllo+xaSR54r8mFcn7iFmoRgPszs2w+bEPB3Ni2YJ/N3mnQ+Dko9hF+euoV2Gqz7uAuDjgOkXlfmi+oye+1FylsuOXTz3Mjz3MrB+GaM+BO/xePzS+sKPCNCHdhkQv3j8Rdvuo5W8aC9q6MexF3XcqH3UQ39ZPV13kKjnd37nd+j3+ywvLz8XP/xHYc6H1ul0+N73vsfp6en5QBtmJRVFkUajwcHBAbVa7bmY6MA5iO12uwQCASYmJgiHw3zuc58730IZLhRGg/NblkW326VYLHJ4eMjJycl5Jk8YAFNd159rW6/Xo1QqnY+PQCDA3NwcS0tLTE1NEYvF0DTtvF9G+3U0Lf1FIDlkmKvVKu12+7x+w1CJwzoPNeijrLqmaefn2bZNr9cjFAqxvLxMOBy+9LmslXz8g/s57p+G+JUrJ/zS8jFB7QdAfBQQj46roc/BxZj5l8XQH14/mqRp2NbLpC2XjftR9vwyoP6iHYBhuYZh8A/+/X+PXzO/iiDDt/Xb/Mzf+o+J9NfOAbnULdAPXaM/kpXT9mQuNoTm1i737h/zft4ahDkMr1ALj7PYO+BmoMmrMx5eXQkx5v9w/H9BEBAdHToPKAmrFJQzjn0uB+EMHcVHtm0x1g2RtOdIW7OEHD+CALJ4hCo8wJXv01Y3aKo1anKMpu0jfNwg0ejgdXVkpUNIaOK32xTFJE9rS2y9P4657mNMzJNKrqOt9FFf9+CddNCODKS9HtaOTWezQ+u7Ir0nLool4PFoyO0+gs+PdPMmymuvod6+jXLzJvKz96lPm6ZyRFMeOHE2lEN6YoNYL0rOcEg1z4i2t9HcPQTRgKYEDRvHjOI4EVzLwdSqnDwD46VwmJqq0amLRN4ukPlqntA7JdTd2gCMA24ohDgzg/TqXYR/++fYvBFlXWuxS48WHSJUmeWQlFMl0TkjbNSJV2pk9k/x0qEb99BNaXQTKj2/imJaeA0V1Ryn6f0pjn1vsi+G2RF+EF98ygkR7ITp18KcFcKsHgZ5UpKYT5zx8zf/gLnMQ7y+ApLYwo+OLFg0CVGwx9jtXCXfvMNR8wrHephiV8K1XDyKQcg/6rTZQlIs7HYY2Y4MnDYFlYZpkjhb58beOtfKj5gVdkgFz2hN+WjOhhDCDg09wl5jlrXaVdodHz6nw5R6xB3pPSZrB/gfi4Tu19EqTY4ymUFSn4Vl1qaXeZJboSoliOVryGWbruWjJsdpyBGmuvtMu3tEI1WSiVMWQ+vM9A6INRsk2mUyRpFIr0FFi7EvD+KJ5wOTtJIppISD2+piPXWpr4cpm0n6aZW58R2uRh8zFdonmGhBx8WtWTT6YY6YYpOr3D+9w1r5GgUzx2x4m+vpBywmNxgLnaB5e5iS/Bwj7iKi0X8OiBv4yTNBwRmj0/Yyli8wcXRCvF7DQQCfgxuHei4yAOI2qAUT30GHyGqD8HqLjqDxaPY6R+lJPPSZYZdJzwHxYHmw0BhGTJGh2/ZSslMcqTmaniBt1UdLDCIJDgp9RFykvk1iv0z6UZngmoVbEmlmvDTnNQ6uTWGEPXhafYS2i+UqtH0+6okweixA5KyBv2Rg6QoVO85+YoLiWIK51h5jziljlQLZp4dk149JnlSItZoE6dGXQJdFWmh0HRE5ZKEETcSoi7oI0jUFddalZQVZr63w577yL6iXY4iKQyDVIhU/Yyq+x3JojUXPBveV23xgvErByNLu+xAkh1C4QSZ5zHxkmyntkLR0SsY+Y6x3SrJTIlzS8Z128BU7aOU+ZlNmuzvHqnCVe/5XeOS/RjmSwA1BZqxAeqxALF5GVky6thdHkhCxEXERBQcXgV5HwywGqB2l2N2OwpmP1FGFG8pjplIHqMkm3ZyP3cwMm5kFSskEAb1NsmagndbwtWS23kjRDAT4wpHI/1pY+NC88zJ7kSzzon1U9JbL7KIM5WVY8EcB6C+718uI2YvE2WX2cXa5L5b/J86g/5vayxza4HnW8UexjwPuP85guQyo27bN9vY2f/iHf8jU1NR5qveLEpcfxfb393n33XefY4yHMcWHSX/K5TKbm5u0Wq1zLbosy+eyl263i6ZpTE9PMzY2xs/+7M+eZx4dNcdx6Ha77O3t8ejRIw4ODuj3+yiKcg76hyDYdV1kWWZsbAzDMNjb20MQBFqt1jlI9ng8eDwe4vE4165d49q1a+cgdrRvLi5kLgJT0zSpVCrn9x0C9CFrPnwGQ+35sK/8fv/54mG4kzA9Pc3ExMSlUWRGP2+WPfy/Hk3wXiHCLywV+JWVY4Jq/7lzhjozURRZXFx8FjHmed356Fi5eK9R3fnLpFWXOa9eZPQvgvSLP8Pzh188juNQ+OP/hOuNv4MigYuI48lgRl+hH72LGX0FM3gVV1Sfu6dZq7F7b5N31lvcr3p4okyym7lF3KpzXSpyd8zltatRrmdlVOnDC4aBVGWdpvuIMznPibfHYShCMZAk2emT7fpIWxOk3WUSVhQREcEtoYoPEaR7dNQ1WuoZNdlPnQje0ybpahuf3UaWDQKiTshuUZOibOgLPL0/jfE0RMoskY0/wTPXRH3di3cJtDMDZb+LtWXT2+nR/L5L5/4gvKHP7xmEN5RkpKtXB7HGb94c/ORyCIKAJfTQ1ROayuGAHZcPaUsVomacnAGZZomovvkMjDeh9QyMW1EcOwKmS9czAONH2TmKoTB1VaVblYi9dUz6a3mC75TQ9moI7d4AjEciiLOziK+9QvFXPsXuzSh7PpNjxaEvdkkKRWY4JmFXiLeLhI0myWKZ9FERRenTGYLxuIrpUdC6Fp62B8Wao+T/HEfeT7AnKuzQZE9oorgiOTuMxwhjVELkj8M8OgyQ111+Zukhby5+k3RsC0WtoAk6Pgz6gkrNjbLZXeLAuMZB4w4FfZyztobeB03o4/PqRIMt/EEdNTBgxa2uF6EfRSWALXioOwJq7YArB2vcyD9hwVwn5ztGSJuUF1PYGYG+pXLSyLFWv8JRcwLZtEiJFa57H7PcekR01yT8XpvgYfFZGMNF1p7pxFcnltkLzRAq6HhPO5g9jYYUo6IkSPfOmLW2SQRKROMl5mPbLLjbxBu1c514ol1BV/wcqhNsCXMceKepJ9IIaRWxb9BbdTHWAhSaGYyUl+nxQ64nHjEd2CWSrCO4DlRs9K6PAuNsi8s8PLvD4+INjnpTpIIFbqYesJRaJxs+wudtY8kSNhIW0jONuIhG7xkQP2WMU1oEOWSCEztLu+0jc1Qkd3RColFDEiwEn4Mbg3ouRC+tIpgu6omF/6BN5GmD0KZOUwnwYP4mhXgOv9NmXthh0rtPLFRBiQzikLsxAVcQaLd9FJ00x+oYLU9owIiLAWTBRsFEwEHumKR2KqQeVQhs2FgNieaEl/q8n4OVHKZHQzV6CG2Rvqhg+P3U0lH6XoXYSQ1vtUu37aEopNhJTWFEfSy1dkjbZ4wVTxhbzZPdPCFRqBBrt/Bh0pOgJcm0XJW+JCKH+qhhEzEO6hKoV0WUrItR93BYmeT9yuu8W/4k2515ToU0vlCHycg+12OPwOPyuH+D1fpVKu0YpqDh8XaJxUtMJfaZC+yQU45JUiRnFkj3isSaVXpHXiYqJ/hKHeSqTc+Q2RdmeOTe4H3/XR55r1MKJRCDDpnsD4C4qvbpOF5cQUQUnMGuguAOGPG2hFWUaRzFWN9Yob2jkG1VeU15h4X0JsqYST0ZYm9skt2xOU6SGXydHt58iVDTxYyFyc+HkIwen/+tDf7Sj/0XhH0FNk9e4ZubfxFTlfiJV954aTbLy+xHAeijc9JlmO/iOS/6/KL7XkZ8veyay/Dai5j7Hwb0v8wuK/dHziR6EaC/bHXyw9rLQu78MMD84qrkR2XeL9Zj1EYZZ9u2+f73v8/6+vpzzqHD63+Y/hldAPR6Pd5++20KhcL5/13XPWecZVlGURQcx6FSqbC1tXXObHs8nnOgPJTFDKOkfO5znztPQjC0RqPB5uYm6+vrFAoFDMM4H6xerxdFUTBNk3a7jaIoRKNRrly5gmEYfPDBB7RaLSYmJrAsi42NjXNpCQyYfEVRGB8f57Of/SzXrl3D4/Gcg9LheRf7avhyGYZBq9U6B+fDn6GGWxCEc+nLaBQaWZbRNO0cvAcCAebn588zfY5KSy7a8KXer/v4R48n+d5xjJ9bLPDLSwdEtB8AdVEcZEwdtumjxs3o2By998tW6qPy/zPw6AABAABJREFUl+Hvi/W+DJR/lBSm9ugfM7Pz7yMIApXEL8CP/e3ny7QsKk/WefdBgfePHB6aSTbi1zF8ca5Yh9yOdHhj0c/ry2GSvud3AVzXxbFtJPOYbu8ep9I2J1qDo4BGPpzDY7uMt0XGrAxpd4WMnUVDBbeFIjxCFO7TVR/SVE5oKBJVIY5UbjNW0gmYz5w4JYOI3cCQAmz3Z3n4dIHa/RhRvclk5BG+6Qrqqxqe6yLeRhvloIM9BOPv2XTelxGqFr6AB6XvItgO4tIS6htvID0D4+Iz2ZIt9DHU03O9eFM5xJBKhM0Y4x2RTKNMVN/CY+8iSDUwpIEkwYzi2GGwBLqeKsfZHEfZGYrBMHVVo1cRiP/REemvHRF8r4y6/wyMCwJEo0jz8wifeJXjX/sxdpZD7Hn7FGQbhDZjnDDpFohbVWKdEmGjRapQJFUsI3hsOgnvAIxHVWxZxNux8bYDOO5VzgKf49Bzm13BOdeLx/CQ6ocRm2HqxTC7RyEeHHkQ5Ta/fPsb3Jh4n1AgjyzX8aGjYKIT5NCcZL19hf3WLY6bS5wZEapdGcmx8SgG4eCAFdcCOlpIRxBd7E4UxQk+c9pUsPQK00er3NxbZan1lCnlgFCkRnkxQXvSi+B1qTQT7DTmWa1epddTCTkGi9oWt8z3SB03iH3QJrxVoicI7EzPDoD47ACIr6VXkGs2weMWjqHQEsKUlRQBu8VCd4uMp0A4WmEytc+yvEGqUSZmDHXiJWxB4kjLsi3Nsq/OUIqO4WZ8SEKb/oaDvurntDRGIxZkbOKUG8mHzAU3iSWqSKoNVZtuR+GMHHvCAo8qt3hwcovD7iwBf4sbqQcsJdcHiYD8Oo4sjABxGwERzzMgnhFOSbtnNAiRZ5JjO0erHSR1VCJ3VCDVLKEKPUSfgxtzaQylKV0XrWDi2+8QfVonsGVQCsR5OHOTUiRF2G6xIG0x6TsgGqoiR80BEI8KOI5Au+3n1MlQ8GTQtQAtLUhbGIQuVDARXBdF75PaKZF82MC3adHvKzQnPdQWQ+Tnx7BlGVU3cXsifUlFDwWoZqKItkOsUEOtmxg9P8dKlu3sLLLUZ8HYIe2WyJyckF3NM7ZdIFGsEW3raFh0RWjKCi1Xw9JACT8D4klQVwTUKwJSzKVVCbBXmeF7pU9yr/Y6+9YMFTlGJFQl5S0jCyYn3RzbjQUajQhuW0TwWkg+BwQRW5CwNRkpaHMt/oD/YuXfI9ktoRX7nOWz5EtT7OizbFjLbItzmBGVa77H/LL6z1AjfcZDR0x7D1Bck2/ab5KVjrgXv8lj31VMW0XERVYsJNHGdQX6LY1+yUu74OVsJ0NlM0G02eRT6h8zn9xGSfdopMIcZCbYy06TT04Q6OlMV/bRD0X0gz7TwSRfL3yCqi/AZHaVWzObxJJVJu080919blXWyWjHCAKYlspvfe/v4TgOr7/++g8N0D+uvUwOfTGQwug1HwcDfpTU+uNccxkOfZnM5TL7OJjvRUS0KIp/cgD9R7GPu9L6Ycr5qOMfBzBdZh+nfrVaja9//esEAgGy2ezHlu0M7eL5w88nJyd861vfOtd6j5Y1jBwiy/K53KHT6XB6ekq5XD7P+Oq6gwyXsiyjqip37tzh85///Pkiot1us7q6yr1798513qZpnoNNQRDQNO08rng4HObq1ausrKxQqVT43d/93fMEQlNTU9y9e5d/+k//6bkD6bBNQ1mO3+/n1Vdf5TOf+QzRaPRc8jK64BmNHe84DrquYxjGczKWUefTUeA+rOcouy1J0vkOgt/vf2E88cu028M65JtefuvJJG8fJvjZuRN+ZfmAuLePKIr4/X6uX7/+Q2/dXXymL7vmMqnK6OfLNOzDz5d9OZmmydtf/zqF/9t/jDQe5v/5uW+g1/r8H7zvUzptcK/h56k2w0HmOrlekRtahVcnJT5xPc7VtIwsfXjxK1hNbOMDztwnnChFjrwOh5EMHdlHrm0x1ouQdhbI2LMEHR+iaKEK64jCB/SUB+jKAQ3FpComsesmmbMmoV4HVTTQZIOo06AvqBw4U9zbXeb0/SSBssl06DHB3DHqHRnPKzKefhd138Ddsunt9tHvmRjvKrgnFt6AB9UREDo9xNlZ1NdfR71zZ5CJc2EBQZJwsGjKx88044e0lDyGUiRgRcgaMtlGmYSxg8feQ5DK0B6AcdeK4NhRMF3angb5XI6TsRmKwSB1xUO/LJD8/QNSXz8m+H4J5bCO0OkPwHg8jrywgPOZN8j/udfZWfCzp/U5kyxkQWeSQ3JuiZhZJtauEjaapI/OiNVquAHoJL10EyrdqIoAeA0HbydMV3yFk+DnOVSX2BG753rxMSdApBvGqoconYbZOAjx+EzhRm6PL1z/BlPJp/i8ZyjCQKJiolB2Eqx3r7ClX2W/cYOikaPc8dDrgVfsDjJtBlt4A4OY4pq/g9kLIJoRFNdPX9Aw+j0Spxvc2Fvl2tkTptkmFSzSntSoLsRxYy6drp98c4Kn1Wuc6mNoVp+sWOAV4T3Gy8dkHhtEn5ZQWjr74+OsLQzS3a9NLvMkewXdDhE5rCE0BNpukIqcAATmu1tMigdEolUyyWOWfOuM6wWircZ5PHHVNil40+xKM+zKs5yFs/TTASSPibVj037ioVAYoxqOEc+VuZF6yEJog2SsiBy0oOZgtkVKbopDaY6n1Rvcy99hrzuPqLlcTT1iObXKVOSAkL+Bq4DFgBUfMOICXrrPAfEaUfJMkLfHaRphYsdVcvlTxvRTPEIH2WdBzKWeC9FPK4htF/XExL/fJvq4jm+vTT42zpOpq9QDCaJWjUV1k0nfIZFwFSlq4cTBjQg4pojeCVJgjDNPCl3z01KDdAQvqtA/B+Jao0dqo0zyUR3PjkNb9KBPqpSXopzMpMEVUAwLpy/RVTy0okFqmQi+ZofIWR2p6dAwQ+x7JtnNThPvlZnrH5BySqTyp+RWDweRgsp1ol0dyXVoi9CUFHRXxQmBGuqjhCykMVCvCKhLAqIfqsUw25UFvl38DI+MVzhyx2nKQVKRIlG1imkrHBgz7Ddn6NcUVtob3Am/z0J0i0i8yr35O2QiBZKBIn/vnX8Xox5kVt5i2d5gsnOI1LQ5a4+x7i5R9Kbwh9vc9t1nxb/GbGCHJf8GWaVAz9YwHQXLFSh4x9hU59nUFmhoYRxVQJBcHEeko3vplHzoRyFKe2nKmwkyrSJvat9iPr6JkjFppIIcZCbZG5vmIDWJr99hurzPRPmE3Nke6UoZVJf7s3fY1+bRfRKTkQIz7iHjrWOm+4fMiHuYtsqpO87T+BzHvQyp72m8MfOvGYvt8v7Wz/Lw8OfQNI3XXnuNUCj0kXPYxbns4+K5y4D0i6TIf1IE8Mct+0VBPUbZ9Y+q148K0IfH/r8G0C8r6kUA/aNA9I9yfPj3y9j5l937ozracRzu37/P06dPmZ+f/xAz/VHlXCbvGLKrb7/9Njs7O+fOk6P6K0EQUBTluRTtQ6BbrVY5PDykUqkAEAqFBiygbXP9+nV+8Rd/Eb/fz8nJCd/5zndYX18HBiB66Ejp8XjOmejh55mZGe7evUs2m6XVavFP/sk/IZ/Pn0s1Jicn+dKXvsSjR4/45//8n58nSho6iw4lKoqisLy8zM/+7M+Sy+U+FMt6VPpiWRbNZpNut3sOvl3XPQ+bCDzHqI86iw77cQjOI5HIx96NeRH4PW5p/I9Pp/jWYZqfni7w69fyXJkKsbS09LH0aJeNh1Gt28vG9IvkOJdJWV507fAe9Xqd3/30p4kcHlILZdmY/iT/8Of+Nqbi5aab527S5MeuRHh9KURYvSRajGNC+ylV8x4n0iFHWpd8MHwuVRnv+cjY02TcFWJWGBwHWdhFEe5jKQ/Q1W2aik5VitNrS6SOa0TaHTTJQJXahN0GAEfCBA9OVjh4L4uSF5nxPyWa3Ue97uJ5VcWj9tD2ddiy6O+Y6I/7tL6n4OxbeP0qqiAjGh3E3DjKa6+h3LmDcvs28vIygqbhYKPLhUF4QyVPUzmkJRfwWSGybZWxeoVEawefs4col6ArQsPFNSMDmYolontqHOXGOclMUwyEqCsa/SKk//Uhqd87JvDBMzDe7eOI4gCMLy1h/tQn2f+Vu+xOedhTTapSFy9Npjkk7ZSJmxUiRo2I3mDsqEDIaGGFJDoJD92kSi+oIts2Ht1FacepS5+gGPtZ9pUJdgRjoBd3LcZHsm6eFMI82Q9y0jb509fe4Y3Z75KM7KApFTzoqPTRXT+7/XlWO1fZbtyk0Jqn3I7Q7ErIjoVX0wdOm8/kKZ5QCxcJpxtFcYMgeNEdAW9xj+X8GjcOnzLfXSPrOUZO9zhbGaOflXFEkWIzzWZjkY3qCnZPIkqTa8pjFptrjK01SD8qETircBaPs7GwxNr8MutTSzwev8Kxd4LIceOZTtxLXYrTFv3MdHeZcXaJhSvEE6csRTaY7uaJNuskjCqZ9hnBvk7ZE2NfmWJHmuU4MEEnFUYKOZiHFr3HKqcHaUqBNP5cixuphyyHVknHTlFjfWi62LpLzY2Rl2ZZa1zh3sErbBnLmJrGcmKVldRTpqL7RPw1BNXBQsZGfBY1Bbz0iFIjI5yScotUiXHoTpK3J6i2o0SPGowdnTFuHOMXdVRvH+IOjWyIfkpB1AeMuH/PIPq4jveww2ZygfWJFZq+MCmrzKK6zkQgTzhcQ4zauAlwQwJ2V6LVDXEiZCl54uieAE0lRF/U0OgNsmo6Lr5Kh9RGifijJsq+i+HzoU8rFJcSFMeTiH0HyXCwbZmu5qGRCNOMBwkXm4TKTdChasfZDsyQz+SYbh4w4Z6Q7BdJH5yQWzsms3dKvNogYhq4jksbaCoaOipEXbRwDyVsIo0JaNcElAVwRZHyWYy18hW+U3qTp+YNCoxheUSSgTIBSafZD7HTmqfQyCHWHW64D7kVuc9cZJtkrIQn3qGfVtBjfuSGjVMVsVsyZ0KSQLlD78TLXmsW3fRzkJphMnjIK8H3mY3tsChuM+vbxUOHIzdHSwgy0c+T9+S4r95izzNNXQxhdIPE02UcW6Sre+kUvbSOwhR2cpxuZZhpH/Cm+hbz8S3UdJ+zTJLN3CK1RJj99BSKbTJZyZPSi4yVj6nlFczwAoX4IvWwSCK+SVopMdnLM9E6Ydo6YEo6pN4Ls1/NUWgu8PXjn2D19CqNpsRrqTxn2iyvi09oHK3z+qs6f/qn/j7g8odv/285OLqJJEm8/vrrLw319z+3XcaY/0kRuy+6H3x4kXAxkMlH3fdlRNuLsO5lC4EfGaBfTFQ0eurLwMFHsYMXK3kZyH4ZALrs/It2WUdcds0oUBq95rK2tNtt3nrrLUzTZHJy8kPnX7z/qI0yxaMATRAEms0mX/nKVzAM45zNHgWdkiShKMqHgN2QMTZNk0ajQb1ep1qtnstdcrkcv/Irv0KxWOSdd96hVqudy2WGdfb5fOcviM/nY3Z2lqWlJVKpFIqiYFkWb7/9Nt/61reek9Hkcjm+9KUvoSgK77zzDl//+tep1WrPge1hHUVRZGJigi9+8YvkcrkPLT6GL0y/36fRaJyD8KHZto0kSR9yDh2NKT7sk3g8zsTExLmU5oe1UcZ9OAYKLZX/aW2KPzoY4xdudPg//6KX6Rc7Xl9ql42P0bFzcRx9FHi/yJy/TCZWqVT4V6++SrxUouGL85/9W79HIXeTf+eWzd94o/t82Y6D0DvE6LzHCZscKQ3yfpV8JIfXcpjoyuTsMcaEa2TsLIorIbjHSO49LPF9DGWDplKhqoQx+l5ix3XizTZeDGSlTZgmimtSEDM8qV5h/b1J3G2NKW2bVHoDbaWP9qqKL26hHugI2ybmjoXxtEfzuwr2loVHU9BkFVHvICYSyK+8gvrqq8i3bqFcu4bg9+MKDoZ8RlM5pCHnB5k45WM8doBM28t4vUKitYvX2kVSitADGi6OGcGxwrimgO7VORrPcpKephQIUVc8WKcO6a8dkPr9EwL3ysj5GkLPxBFFhGQSZWUF/QufYu8XbrE7rrIvm+hShyBVpsmTdCrEexXCRoNoq85YvoDfbNOPKIPsmwmVvk9B65t4dBHRSHOqfoZD/2c4VBIcKB32RR0ZkYwZQWmFaZZD7B2FeXAQIOgv8os3/4jl7ANCviNUqYEPHRuJMzvNaucaT/UbHDaWKelZah0Pjgma3CHk1wk/C2WoBnVUb5d+N4JkhZAFPx1XQWiUmDhe5ebeGiv1p4xL+0SiA3lKczqIEHJo6mEOWlM8qdygoifw2D1m5V1udO8zcVAi9+CM2N4ZLa+Xrbm5QRjDmWWejK+wEVvCW+rhPRvoxJtClLocJds7Zt7cIuU/I5IoMxfbYs7ZJ9GoEjNqpNtF4t0aTS1IXh1nW5zlyD9BKx6FmIRdsOg/kTnbSXGiZNFyfa5lHnEl/IRs9AhPsg8dB6fl0rKDHMnTbOrL3Du4w0bzCoYaZCa6y5XUU6aju8QCFSTVwhLkZ1y4O9jNoPsMiBdIuSVKJMm7Exzak5TaCQKHBrmTAtPtQ4JCE83fRYi5NLJB+ikFqemgnpgE9gyij+pIpxar6Sts5xYw1ABZu8CSZ53xwBGhcB0h5gyAuF/Aass0+mEKwhhlTwLdE6ChhrAFGY0eEhaC7eIvtkmtlYg90hELYIR86NMahZUk1VQUpWOfO2oafj/1RJhu0EPspEawomO1Zc5IsR5dpB4OstDYYUwokuwVSe+ekFs/Jn1YJF6rE7I62Ca0RajLHtqKghh10MI95KiFnBPQrgsos2B2ZIqlJI+LN/hO7U023RWKQhLJZ5H0lpAEh0onwXZjgUojga/V5hXtfW6EHzIV2SceraAk+3TSHrp+DaVi4dQkbF3CbQl0G17OSln2u9N46bAQ3OJu6X1mhD1UX49eUKWZC1J6Nca+NsWJPEaxl6akpzjUpuh4NcyWSqioEy9VKZ8lqRSSVItx2m0/PtUg3q9wxVzjTeWbLEQ3kVMmh+MTrOeWOMhMUo+FcRDpdTx0LQ9es02SEl5ZoiT4kByTaeGAWXmPKSPPhH7MrLPPuHRMyUqwb02xJc3xQL7BhrPMWmUF/wcSVcPHmZjGdkVEbD7h+xaRlM5ydINXYg94I/AtxjJFJNHCdeHpxpu8c/9XcV2X69evMzs7+7HnstG5+2Xk1GhAitFjF+3jSlr+pOxFQUxG5bdDexkAf5Fs5eK1F6UzF/FfOBx+YV1fCtC73e6lx1+0pf5xAfpopV/0/3/T45ethF4Epi9eBz8AyKNa28PDQ9566y3m5uaec7y8rE2jjoAf9TAPDg743d/9XUzTxO/3oyjKc2H9RkMTXsaij/b5ME55p9Oh1+uRyWSo1+vouo4oimiahqIoeL1eIpEImqYRCASIxWKkUikCz8LFDdtdqVT48pe/fA7uh5FVEokEv/Ebv4GmaTiOw7179/ijP/ojisXiechHGDD1w36am5vj13/91wkGg5eC02azee7kObpAGfbh0GF0OO6G7Pow9rkgCPh8Pubm5s6155fZxRX06As7dLYd1m2UWS93PPzB2S3+p3sefumOy1/9vMN86uNHIbrs5X3ZWHwZqH/ZF9pFll3Xdf6T3/xNPL//+wRWVEJ/4WeI/sRf4k+H55HtJmbrfQr2I46kU/Jel8Nwhp7sZbxjk7PiZFkmyzxhAghuDdG9j8M7tKQnNJUCNdlDww4TOmmQrBv43DaKbBAQW3jtDiU5yXpriUf35+isBpkQ8+QST/EstNBe1fBN2qh5HXHbxNoxMdZ7tL6r0l+10EQJj6YhGV2EQBDl9m20Z06cys2biNEoLg66WByA8SEzrhyj2F7Gun5ytRrJ5g4+cw9JOQXLhQY4/TCuFcIxRVo+g3xunJP0JOVAkLrswT6xGfvqPsk/OMF/v4x81EDomziShJBKIa+s0PilN9n5U9fZy8gcyiY9USdKmSnyxO06sW6JcLtFvF4hc1JEo0s3qtFLaHTiGrYq4un10VoKdmeSI/WzHPjeYF8NcKh0OJbahB2VSDuI2whTKUbYzkdYO1V4Y/4pP7n8LSbiG3jVIh6hhUaXJkG2u0s8aV9nvXGds9Y01XaETl9CcUx8nkGmzSErroVaOI6G24uguEEc0UOv0yF+vMaN/XWuFp4w42yRDBbpTGmUF5NYKQHTUim0xtiorbBZXUI0XVJiiZvWPabP8kw/PCO9VcC1+uxOTrO+uMz67BJPJ5Z5kr6G2VEJHus4uowuhKjKCaJmlfneFjn1iHC8ymRynwV5i3SjQkyvkWqXSXVK9CWFI0+OXWmGfc8UzVgcJy5j1cF8LFDeSnDojiNkBK5kn3It8ojx8AH+dAccF7fp0La8FORxdtpLPNi/yeP6LZpyhLHICSupp8xGd0gES8iaeQ7ExUEMFHx0iFJjTCiQcMuckebIHefAmqRgjOHNd5k4OWa2u09ErOPxdRBiNs1skH5SQWo4aMd9/HttYo9q2BWJx+lr7I3N0pO9TDiHLHs2yAaPCUUaEHdx4i54BUxDod6PcCqOUfLFMbQAdSUMgvAMiNsIpkPwVCe1Wib82ICajB71oM94OV5KoYeDyG0bugL9YUbNdARXFIid1PDXDLpdD8dyjtX4Eo4Cy8Y2CbFEyiiR3joht3lMOl8i1mwQsHv0+2CI0JR9tL0KctxEC/WQYw7yJANGfAI6DZVCMcOD4h2+1/oMO+I8dSmKN9AmotboWypnRpa9xiz1RphUu8TdwDtcCz9lPJInEq8jJiyMjA9HkJDLNk5dxNEl7KZIoxZhrzpL0UyTU0+4FhxEzSHl0EoGaMRDtIM+BNehbymcihlO21mOGaeqxOiKKr1jL+39AL0TL3ZVxmlImC0FUXDQpB52T2LSOeQ16R1eDb9LKnNKfnKCzewCx+kcjWgQRxTpdr04pkjA7qDJfXCha8t4XYNZaZ8ZaZ/J5hGT7SNm3T0y0hkFK8OuPcOGtMRTaZkjY4690xVaDY1W3UupmcKnmkhJg1uhdT4lrZLy7zIV3mA8tMNiZIO25WettsJadYXT1iw3G/uIUoRPvfaPcF2Lr737l1m9mUDsu3yhdZOlmYWXgs3h/HNxbrvoM/VxsN9ldnEu/mEB+8dl3Ecj2f0wJO6L5Cmj143i4Rfhz1FCcnjsZfKilwL0obb5YuWHlRmt0Cjj+MM+pI9i00f//qhBdLHMl0XM+Ki6DkGyJElYlsW3v/1tKpUKMzMzL3RQuGyb5DJmfvTv1dVVvvGNb2DbNqqq4vf7gR8sEoayl6GT4mjdL7ZveHwIjFOpFLOzs+flDKUyqqqet+FFntaO4/Duu+/yzjvvnDP43W4XwzCYnp7mi1/84nl0Gdd12d7e5hvf+AYHBwe02+3z48PFhaIofPrTn+Zzn/vc+UJjWOdhuUNwP2zv6PMdauaHfTOs41BOM7zPcAH1IvthvgRGz1FVlatXr1LravxX35D4H74j8mduuvy1zzssjUQkvPgl9qJx9lFs+ahdNo5eVM/h/4eypb29Pf7m3/ybRNxN/vpfPOGtpU+DIGLKfk6CCUr+BKmuyXgvQNadIStcIeFEEd0uivAE130fQ75PU85Tk6EhxFBPDcYqLXx2B0XS8UkGQVunJkfY7s1x7+kKtQcxxswiU9FH+GYqqHdV/Esu2pmBtNPF2rbpbPZoflem+8hBtcDj8yK3TQRZRr55E/W111Bu30a9fRspncZxHdpS+Vyi0pAPachHSI5Muhthol4l1djFb+4hKQWwbWiA2w/j2GEcU6Th65LPjVFITVL2h6jLHpwji9y/3CP+Byf4H1WQj5+BcVlGTKcRrl6h/Os/zv5Pr7CbkMjLPRxBJ02BCQpErRqxToVQWydRLZEulZCFPt24l25SoxNVQQRvx0Rraej9RQ49n+XAe4d9ReZQ6VCR+iRMLz49SL8W4uw0wtphlKbZ5gtXv8Pd6XeJhw7wyDV8tHAEkWNznNX2NR40b5FvLlAxMjS6HkTLQZM7RII6ofOY4vpAX92NINlhRLz0bIHg6Q7z+VWu76+x0Fkjqx0hZ/qcXcnQznnAA9VWjL3mLI/LN2m1Q/jdNis8ZbG6wcJqgdxaHl+tztHYGBsLi6zPr/B0YpnHuWuUxRSh4yZCHTpugKoUR3VMFnqbTLFPOFZlLHnEon+LbPOUWKtOol0h0ykiujan3gx78hT76jSVcAor6cHqOZiPRaobMQ66U/TSKsvZda5HHzId2iGQNhAUF7fh0LNUivIYe915Hh3c4EH5NnUpSSRUYzm1ylxsm1TwDNXTxRRkXEAARFx8tIk9A+Jxt8IpGfLuOIfWFAetCTxHJuMnRyz2dohJVXw+HTFm08wF6ccVpJqD56SPf9cg9qiO0fLyMHOTfHISS1SYYZ8l7zrZ0DHBSBM3Bm7cBVXANAbJfE7lDGVvDF0L0FDCiLho9BAFG6nrEDxukXpaIbzaxjIUWkkvrVkfxwtpul4vctvG7Yn0ZA09FKCWjqK1e0QLNTzNLroZYF+dYi2+RNipMds/ICWUiTfLjG0ck906JnVSJtZq4nVMul0wZJGG5KUbllFjz4B4wkGZBvWqgJwGo+QlXxznXuku3+9/ikOmaKl+Qr4mXqlLu+8n35riqDFOu+FnyjngleC7rETWyEWOCcRbkHTRU36kroNYdnAaIm5LwmwonFazrLeWEYA5zzY3Aw+JR0v0UiqNeIhmPEjX60FwXPqiSssKUDKTHLqTnMhjtIwInX0fnUM/ZlEdsO0tBbOjoKldFNHEbEssutt8Unqb14PfR5vosjMxx/bYHIXUGHrUjyOJdHse5J6F5vRQZBvbEjEdibDbYFbZZ5p9xhsnTHXyzAm7JKQKeWucbWeOVWmZbXeew9o8Wycr1Ctx6i0ffVsmKTSY9FW5EttgOrxFNrRNLrTLdGSHmdAulV6C1cpVnlavcFCf58c0h7A4jixEeauS5EErwq/mCmS1Nt1el6bSo+5psz7foJVywIFPnUzzC6FPnc8jo0D8Ikt+EbuM7mIPbTQfyIvmvJfNcxfPu+yaH9WJ9GVg+WI9R9UeF5UWo+WNEokvwrcX5c2jZf+JA/RRFm8UKL0IoH8cAHLRXiRr+WHKvrilAB8NzkzTPI8kYhgGjuOcS0IeP35MMpkkEokgCMKHQuKNtn3UGfIigL44+N5//32+//3vn9dpGLJwCDpHX5hRRnpY9nBrZrTcoUNmIBDgtddee24b5WIfvOglbLfb/M7v/A6np6coioLrujQaDbrdLp/97Gd58803P7RKLJVKvPPOO6yvr9NqtWg2m8/JaiKRCH/2z/5Zbty48Zy0ZRjbfQjQh20frdcwU+rw+HD8Dc8f9sXExATRaPTS5/syu2yMjcpnAoEAV69ePa93sQX/zR9J/P0/FvnZaw5/9XMOV3OXP+NhuaP9NcrOf5wvros7NpcxGaPmOA7lcpl/+A//Id/5znf47OIZv/LFBnvpOd6ZuIvq+PgZ5+cZc7IoDkisI/IBbel9mvI+daVLTUwglHuMFRsE+gPduEcyCDtNWnKAfWuGD3avUng/RaypMxe+R3DqDPW2iP+6iFZvo+x1sDZsuts9Gu+IdO+BZDh4Az6Uno1gO0grK6hvvIF669ZANz49jYtLR6zSUA5pyoc0nslVBERSnSgTtTrpxi5+cxdZLoBrnYNx1w7hWBI1X5d8NsdJaoKKP0hD9OAemuR+Z5f4N07xPSqjnDTAtHAUBXFsDOHGNQq/8ePs//gCu1GBgthFFJpkOSbHGWGr/sx5s0WyWiRRriJo9gCMJ1S6YRXJsfG2LZSWn6pzk0PvZ9n3rrCvwIFs0BUcEj0/cjOAUQ5zVIjw5DDMeGKHz115m8X0E0K+UzxiEw8d6k6Yze4VHus3WG1c40yfoNENY/ZEFLdPwD9gxX2BQUxxT9DAtHwI/QiyEMB0VdRqgezRKrf21lmpDOQpoXCNykqC+mwYN+rS6fo4bo6zWrvKbm0OxbIZd/NcNx4yv3fE3KN9ooUi1XCQrbkF1heWWZ1e5lHuKnvBOfynbZSySc/yURdjWILCbHeHWWeHeKhEInnGfGSLqfYRsUadeLtKplPEZ7Yp++IcKJPsKDOUgml6SR+2I2I+heZGiL3GLM1kgIXcNjei95kNbRFKNxH9A0bc7MtUlSQH/RmeHFzj3tkrVKQM3kCHxeQGc7EtMqECmreDJci4uIPY0udAvMqYcErUrVEg84wRn2a/NYFwKDJdOGTR3CIplQj4dMSYRSsXoB9TkKs22nGfwM5AI14x4zxM3eA0lsVBZF7cYsm3STZ8jD+s48afAXFBoGdoVK04p0qGqjdCSwvSkMPI2KhCDwkHqW0TyjdJPyrj3+7T66sYaQ/1uSCFuRSWpCIZDo4l0lU8NCMhGqkQwbJOpFhHaVnUnDDb3jn2olNkeidMOcckqRCvPgPi28ckC1ViRgvFseh0QFckGooXKyahxkeA+NzAWVMMQfM0wEFxivcqb/Ce8wYFMUdXU4j46giuQKMTYb8xQ7GRxtIVFsV17kbeYyG8RTpyij+uY6dEjLgPtWEiVMBtiNhNkXY9wF51ju3eHCmpxFXfE1b8T9ESPfSkj0Y8TCsawFQUcKEjeAYyH2uMI2GCUyFF+zREe99P99iHXZFxmhJmU0XAxetpI7o2pqFyzX3MZ+W3eC3wDvp0gJ3xWXYyM5ylUnQiXhxZwOwpKD0L1e0hiC6WJeGYAgmxxrS2z7R5wHjjhOn+IXPiLiGxxb41yaa7wJq0zEFvmu3SIpsnyzTqMRqdAJpoEg1WmZRPuaKtMxHeZjJ6yERkn9noFln/MUetSQ5q0+Rr0xw0ptnvTLFpTrFaukG9E2WwpIT/OvbfE4946EWgqrVp+vq4YxqdsIseMBFsgWDbgyA61AJdcOGL9Vd5M3AT13XPd75Hd2Ev/ozOa0NwPoqFPm5OmMv+d5HIvIy1H/18GTk5PP4irHgx9PNlNhp84kXE2EWFxcvaeZEwHiVYh2GtL7324wL00ZuNNuIik/5RW/s/qr2ojJcx6JcNktEOgh8k66nVahiGgWEY9Ho9er0enU6HbrdLpVKh1+sRCARYWlp6TsNtWdZ5mMJhTPLLpBOjdhFMffe73+Xx48fPhRL0eDznDpfDxcDQWXLIZg/beXEhMGSfh5FfpqamWF5efi4k5LD+FxdUo/2Zz+f58pe/jG3bKIpCt9tF13U8Hg9f+MIXWFlZOb/v6AvT7XZ58uQJ77//PgcHB3S73fPn4PF4yOVy/Pk//+dJpVLnoN8wDFzXPY9vDpz387BNnU7nvA+GdR8NtThsx/j4+Hl8+h/GRr+ERu8xXCwkk0nm5uY+9A5UDPjb35T5e38s8eNLDn/1cxY3xj/80l4ckxcB9ke9O5ddN3rexXFlWRZvvfUWX/va13Acm9iUy58ev8fm61co+5N8ugrzkzotZYem0qAqRTGbLmMndUK9Lh5RR30GxnuSRt6d5H7hGrvvZPGXbBYCD4nmDlBvuPjuSHh7HZT9DvaGSXe7T/M9gfb7EkLFxBf0oVggdnuICwtor7+Ocvs2yq1byAsLIIl0xfozIJ5/BsYPcXFI9uJMVhuk67sE+vvI0gmIfWiC2w/hmiFsW6bqN8lnxygkJ6j4BmBc2OuS+8oe8W8OwLhcaIJl4agq0tgYzt1b5P/CZ9n/1Bx7QZeS1EalxiR50lSJ9KtE2nUiRot0+YxIo4brE+g8A+O9gIJqmXgNG1GPcMbrHPjf5MAzzb5icii1kVyBaCcIjRC1Yojd4wj7ZZFPzr/PJ+e+Ry66g1+t4BVauC7smzOstq/zoHGHg9YstXaSdldDMh00zSAS1AkGWmhBA0+oBQrY3QiyM8i0Sdsgnl/l2sE6145Wmba3SPrPaM96KC8l6WVkHEGk3Eqx3Zzncekm7Y6fqFPlRu8Ri4Vdlh/uktk/oi8J7MzOsr6wxNrMMk8mrvA0cRWxDt7TDlZXpSlG0cUAE7088+YWY94Twqkqc7FtZux9EvUaUaNGulMi1qtR94TJa+PsyjMU/GN04kFMTcJeg+Z6kP3iDOVYnKnsAbcS91gIrBNJ15CiDuguVk+gIUc5sqZYzV/h/ZO7nAnjyAGH2fg28/FNxkLH+LwGpqiA6yAKLiIOfjrEqJClQJgGJ2SfAfEp9loz9Pc0Zs/2WLE2SMunBP0txJiFnvXTjyrIFRvPcZ/Alk7kaZ28O8Hj1HXKkRSC47Aib7Do22AsUsAbMQZAPOriOgK9toeyneBMTVP1RGlqIVpyEBUTVegjujZKyyJ82CD1qIq2b9FzNIysRmUhQnEyieuICG0X25HpaF4a8TBGxEf0pE6o3ERsuxTdBBv+JYqhONPdfcaEM5JWhVilQm7tiLHdE5JnVaIdHcF2abdddFWmoflwUgJapI8W6SElXdSFQfhCZIF6IcROcZZ36z/GffFVSlIKxwMBVceyVUpGioP6FNVmDLHrctNzn9uhe8xGdklGSmiJDmZKoRvQ0Mp9hKqL05BwGhLVepxHjZs03TAz8h6v+N5nInCInRRoJEM0YmH0kB9HFLAFibbjo9KPc+zkOJaylNsp2ocB2gcBzDMVpy5hNwdsuNfTwau2cSyBfkvhrvgBPy3+ISuhJ5zNpNnNzbKfnqKcjNMNq6CA05NQTBOZgWbbMmUwHdJKmWltj6n2EePNE2asfebEXTxCj117hnVhkS3mOdYnODwdZ/tskbNGjpoZZpwjvBGB1MQ288FtFu0C44F9cuFtFoJbRLQ6h81Z8o058o1ZDlozbDTneb98g4PWOFFvlZn4DtOxfSZ8p8xMPiGWqPDdwps8qt9iKnlMKNGgG3JxbJlg2UU97uKri/hbEq1Kgr+18wvYSPxHk/+Mf3vub4Dkw53+H0jlls79vEbn1lF8N4r3RkHp8H8X83y8KEfIi+a4FwHmy2TUL7MXLQwuAvuLJOrFeX2INS4j1UbL+LgE25BAHCUeBUEgEAi8+LofFqBf1uDRBzU8/rJrXtaIj7rmo7Y+huW8aAV3cdB0u12ePn1KqVQ6z345BIPNZpNKpUKpVMLv93Pt2jUymQyiKJ5nqzw+PkbXdTRNIxqNnntDf9xFiSAIvP/++zx48OC8v4cA2+v14vP5zgH66IpuOLgui+s5HDSSJJ2D9Bs3bjA+Pn5et4txSIc2+jK89957fOMb3zhfdAzrFw6H+eVf/mWSyeQLt21s2z6Pt/7kyRMKhQLtdhvXHUR2efXVV/kzf+bPYJomzWbzuS+CUQfT0XoN9enwA8dR0zQ/5Cg6Pj7+XN1eZh+18Bvtj5mZGTKZzHPnjI7/ehv+uz+W+TvfUvjknM1f/ZzJ7YkPv9CXAe3LGIqX1e+iXfwS63V1BP03EJ37fOUPP0HstsHs0gkIAhYSdTVCp62RKNSJGR28YhtVMgjRxBVEjoUcT2pXePLODPKRwqLnMYmxbbQrfXyvyHiVHsq+gbtp0ds2ad2z0d9VcI9NfCEvqish6m3EyUnU115DfeWVgUxleRlBVemJTerSwYAdfwbIbfrEe0mmai0ytV2C/X1k6RikLrQE3F7wHIyX/TZHz8B42RegKXiQdtqMf3mf2FuneB9XkE8bYNm4moaYzWJ+6i4HX/oMe69Nsud3aYotfNSY4pC4WyParxE2mkSNGplyiZDepB+U6Ca8dOMKlkdC6/fx6C5Oe4wT6RMcBD7NnpZmX+5xLLUJ2ipBI4RZC1E6C7NxGAKxyE8tvcP13H3igSO8ch0PbSp2nI3OCg9bt1lrXuVMz9HqBHDMQRr0YKBFOKAPQhmGdDzBNr1eEMEMIeIDRyB8vM1cfo2b+2ss6GuMqXmErEPpShJ9wo8bcGm1Q+Sbkzyp3CBfn0Sz+8ybG1wpr3Pj6SaT2wdobZ2DiXHWz+OJr/Awc4OWHSJ4ouPoEjohGmKUhFliob/JhHxIJF5hInHIvLJNql4hqtdJdcokOyU6qpcTzxi7yjRH3nGMaIieX8PZcdFXAxycTHISzpIdO+Zm4gHLwSfEUxXkpA0dF7srYEgBjt1JNg4X+eD4LsdM4/oFxiNHLCQ2yIWP8PtazwFxGRs/7XMgHqT1HBDfqs/ROQgwV9rlmvWUMfmUoL+BHDNpZf2YEQWlbKEd9Qlu6QSe6uyo8zxNXKEWjKM6Pa4oqyz6t8hECngj7UFq+6iLawp02z7KzjMg7ovSVIMYkv95IF6ziOzXST6qIhegK6oY415KC1Eq2ThCH4QOmMOMmskIpioTP64SqBg4XYETMctaeBnDo7LQ3SMll0h0qsSKZXLrR4ztFkiUa0S6BrYN7bZLU1VpBb0IadDCPbRoHznloiyCuihg90Uqp1G2iwt8X/8kj+Vb1OUogtdCk0y6PR8nrRxH9XFarSBeq8vdwHvcCD9gKnxALFpBTfTppDUcUUQrmVADpy7Sr2scNSZ4oN/Er3S5Iq1yx/sB4WiddsJDPRGmEQvR8XtxEegLCi0rSNFMccw4BSFN9SxB5yBI52jAhtsNCas1YMMD/hYeuUOvp+I0JT4hfo+fln6fsdgphakMe9lpDlMTVOIRIk6DXOGIueN9ZvN7TBUO+e+++L9hY2wJybTJaEWmtAMmm0dMtI6Zc/aYlXYBgR1nlnUW2Xfm2K/Ps3W6wnZxlooeJCg1SVlFxpVDJiJHJBJFErEymcApk748i5ENJMFmx5hjrz3DgT7DTmuWp6Ur3Du6i2lpTEf3mYlvMxk6ZdxbIxXo4fGJGJKfphag4YGm38RULUJWD2/dj2D4cQUfhx4fT1NBem2N6JbMwttdSk6Mo06Ack8kp+2x7Nvgr+T+c5Z9q7gIvN/8BXbcXz5P7BcMBvF6vedSU+C5XCSjTPTFeWuUGf5h5rCLzPdFUDxa/mh5F3fZR8u6yLJfrOtlUfVG63wRoF9s8+j/RtUIF9s8ev1Q/jP8LQiD0NYv7Jc/CYA++vmjtEEvAiEvAtQXGc2Lxy/b6ngZez56jm3brK2tsbq6eu44Kcsytm3Tbrep1+tsb2/TbreZnZ3l1VdfxefznSfx6Xa71Ot1CoUCpmkSiURYWFh4LonNZXaxrg8fPuTdd989Dy043C5SFIVAIHAudxn2rW3b53rri4BveGxow8/BYJC7d+8SCASeW+mOelBfBHlf+9rXePDgwTl73mq1AFhZWeHXfu3Xnossc7FNwwE+jMhiGAb5fJ7t7W2KxSIAv/RLv4TX6z0H2MO6DL8IhnUShB84pw4BOQw04cMso6OymGw2+1yG1xfZZUN/9IW7uPi8evXqc1Khy8ay4zg0u/D3v63wt99SeWXS5j/4mT5vzL6cQb+sPh8HrF/GLnS7XXbX/+9cXfxP8UgmkmvTtjw88S0N0m0X6vjtNgHRQHYtToUUq/oyDx8s098MMK9skk09xbPYxvuajC9soh3oOBvmILzhI4vW91XsPROf34MmKogtAyGdRnvtNbRXX0W5eRPl+nVEv58eLRryIXX5kIZ8QEM+pC8axHpppqo6Y7U9gr19ZPEIQe38AIxbIUxbpuJ3yI9lKSRyVHxBmoIHdUMn9+U9Yt86w/ukgnTWBNvG9XiQxscxfuoTHPyvPsne7RwHXou20CBMiUmOibp1ot0aYaNF1KiSLhfx9wx6YZVu3EM3ruJK4On18bZEOr1pjpRPsx96gz0lzL7UpiT2iJk+PK0gnUqY40KYrWONudQaby58n9nkOkFPEZ/QxHYFdnoLPDWu8bBxhwN9mno7Tr+nIlk2Xs0gGmrhfxZT3BvSsSUJuxtBcvy4jkKgXCB7vM6t/TVWzlYZF3cJRFtUr8SozUWw4hKmrXDWSrNZX+ZJ+TpmVyNtFbjRfMTNjQ0W1reIVMqUElE2FgdhDFcnlnmYvcGxZ4LAqT7QiTsB6mIMn20w39tihl1i0QpjqSPmvDtkW6dEm42BTrxbxBUETn0p9pQp8tokjWiYXtiDdSjSfuLj8HCcA+808bEyt9P3uRJ4SDJVRE1bYIHTcemKXk6FHFtH83yQf4UDex4nIJMIllhIbjAezhP0NbAkGdd1kAUXGQsfbeJUyHGCH4MjcgMgbk6xWV/A2A8zU97jpv2InHxMKDAA4nrWjxmWUYoWnqM+wa0Wno0u654VVuNXaHlD+ByD69pT5gMDIK5GuzhxAcIublek3fFRdpKcetLUvBEaWpiu5EVzewMgbjuo1R7RnTqJJ3WoSHRkFWPCw9lSkkY8jNh1cbsCpvjMUTMVQbJsYkc1fLUOfVPlQJlkMzSHoJjM9/dJyIPINfGTEuPrecb2T4lX64T6HfqmSKftUPdo6DEfcspGi/TQIiZSxkVdBnVWoN+QKRXibJSXeaf/SVaVaxiKH1GzEF2BZifEUWOSs8YY3baHiFDltdD3B46a4TyRaB0xadFJehH7NmrJgio4DQm9FmCjscyONU9WPeVV4R2WfeuISYtmIkgtFqEVDdDzaLgIdFwPdTPCqZXhWMxy1stQP4jROQzQP/U804bLmG0Fr69NwNdCE3sYhh+h5fJZ8Vt8RnkLf9zgdCLDXnaKo9Q4nYBGTj8iflRDOnbp1z3UO1FOyLLpX6KmRPm92k9hjik4YREmBSZ8R8xIB/RR2XTm2WSBw94Mu5VF1k+X2S7N0LMV7obe543Q94h7K/gDOrLHwqP0CGpNMoECi+FNOraXbWOefX2ag+YkW5VFPji7y5PSdVLBErOxbaZDe4x5CkRCVRKdCi05SkOJ0PZ6UXwdGuMBXFlEa9gIgovjSPROwnTVIMVAkLIZoWaEcAoa9qlGt6IR7pZZVLa4HX3MXc9jljzbjKs7eIUW25151jtLXA+eMq28Bwh8o/qXyPdunc+7Pp+PGzduMDk5ic/nO1cKjAaugA8D9FFQPTonXZxLL5tzLwL0YfkvigIzxAWXyYhHzx0l7i7WcxQ7XjY3j547WteLAP0yUP6iNg7bNHrt0K/w0uv+TQD6xUqNsqAfdc3F614E0D/qXi8CWRcfOjwP0G3b5vj4mIcPH9Ltds/jf3s8HhzHwTAMSqUS5XKZbrfLysoKCwsLwCBZ0TDNveu6FItFyuUysViMK1eunIcuvKwtlx3b29vj93//94EfSG6GDLjH48Hn8z0HvIcv0iiLPjqwLgvpCAMG+MqVK88B+2FfXnxm/X6f3/7t3z6PzW7bNp1OB0mS+NVf/VWuX7/+wuc0BNqjbPhQO++6Lrqus7W1haIoZLPZ52KwX9xKGwXopmnS6/XO6zrMHDoK3AVBYGJi4nwn40XjabSOl63IR79Yhsdv3br13Gr3o8a63oP//rsK/80fKVzPufy1z1t8cu756EAfZaNfLhft4o7VsD73N4v83S+/w6/89X+Ko0i03ACqYfITZ28j92y2OvN89/QTbGzN4s8f8ae0f0LkZh/Payr+nIV6pCNsmpjbJvoTk9b3NMzNPh5NxaNqSK0OQiiE+soraEMnzps3kaJRTLE9cCYVD6jLB9SlA3pig0g/zVS1zVh1n1B3D0U8RtAMMATcbgDXDNF3ZUoBgaP0GKeJHBVvgKbgxbPaIPflfWLfOsOzWkEqNsF2cL1epIkJmj/3GfZ/9Q32rmY41HqY1IlzxjgFwk6DSKdKpK0T0ytkKkVUu0c3rNFNeuhGFCTXwdProbZUGv0VjjyfYT90hz3Fw55o0BYs4t0gYjNIsxxm7yhMtanzidn73J36gHRoD79SxYvBqZlhvbPMw+YrbDRXODPGMLr+QYp1sUcoMAhlqAUMtFALxd+n3wshmkEEvGjNBsnjTVbya1w/XGPW3CLuO0WfD1BditEe8+BqUDeiHDSneVS6RaGVJWi2uGI84ebBKtefrjN2cojh87A9P8/a/DJr08s8zF5nM7qIWrEGOnHTS0OIIgAzvR3m7W1SgVMS6RJzoS0mOsdEG42BTrx9hub0KPkTHKoTHKiTVENxuhEv/aJM94mHk/0xtsQFApkWNzMPuBG4RyZ1ipbpgwhOG0xBoSRl2D2e4X7+Nlv9ZSy/h1CgwUJik4nIAWF/HUsSwXERRRcZk8AIEPfS4YhxjtwcB+Y067Vl9IMwk6VDXnHvMS7niQRqyHETfcyPGZRRiyZavk9oS0fcsnkSuM5GZBHDEyTsNLihPWYhtEkqeoYS6Q2AeNDFbYsY3QBFkpx509Q9EepaGFNU8bhdZMFEshw8xS7R7TrRp3UcQ6OrKrSmfZwupjACfsSOe+6o2QoFaaTC+OsGkUIDtdFDd/zsqrMchHMEhSZTTp64UCfaqpM4KjG+fkjmsEiiVsdn9eh2Rbpdh5rfSzvhQUnbeMJdlKiFnHXRVgTkLHTKKsXTFKvVFb5vf4pdbZGOrCEoLrYlU2snyDcmKDeT2D2FMSXP6+F3WA6tkw2fEIg3IeHSiXvQGn3ksgVVAbuuUKknuKffpi0HWBQ2eUP6HmOhAr24TC0RoR4Lo0cCWLKMhYRh+6mYcQruGAVhjGI5TXMvSufIj1UeaMOtZ9rwYKhJ0NdEdGwarQieZoefEL/Jbf991FiPwvgYB2OTFOJpfBjk6id4jztQlNH1AEUrzb4yzXZgAdXtkxWOyXqPyXmPmY9s8mr8Az4d+DY9R+W4n+WpcoWd1iJb5UXWTlc4bo2R9hb5sdB3WA6uo2ldZK+FpNioUp+wp8FU6ICZ0C7lboI9Y4Z9fZrd5iyPz67y/eNPUu/FmInuMBPfZcrdItE7wFZ0gm6NO1qVui/OaTzNSSZDOZkgWGnhPW5S6mok7A6yR+L4yhg1KUajGMUsa5RLScr5ODRFJvonXA8/5ob4AVc8q8z7dpnwndB1PRSVBJWxGEV/kvajDJ3TcXriGKrmOw8SMebZRpR9bIQX+VevSPh6Ll/4loHaG0T+mp6e5jOf+cxzMo7Rn4s+eBcxxXCOuki6jdqLiNQhyzxkmkf95kbn3YsY5+JcOKqpH/6+uDt+GXa6jPgdfn7R/0bvc/F/w7aMnjO816iU90P9828K0EcrdhmYuAzAXATa8GEN0MVwOKMP5WVbHucNuwSkjz7kUqnEgwcPaDab54y0qqrnaek7nQ4nJyfnmujbt28TDodpNBq02210XafdbgMDwGwYBtlslmw2e97hF1nlF/3daDT48pe/TLvdPpfPjLLEqqqey2+G0U9GHSNHwzCOhl0cSlyG4FdRFFZWVhgfHz+XrVxkYId163Q6/NZv/RaHh4fnrKzruly9epW/8Bf+wvkuwYuGz7COw3oO62bbNkdHRzx69IhkMsnCwsJ5HYYLgVFN27BOow6kpmkiCAKqqj53fFjOMFHRi8D5RZb84pgZ/RIYHvN4PFy7du2FMVQv2ujORLsP/+B7Cv/1HykspgZA/c1Fl4vVu2wl/lHv1MV3wbJdlv5GgFobPvXJP+balYfs52epHQV5Pf4ury6/T0beISpV8S84aKc6wlobc9PE2HJpfk+j/9TEI8l4PB4ko4egqqi3bv0AjD+LqGLRHejFnzHjdemAjlgjZKWZrnTJVkbBeAvaAm7Pj9sP0XNligGJ4/QYp4ksFU+QluDF96hG9l/sE337DM9aFanUBMfB9fkQp6co/fKPc/hLd9lbTnEit3GFKmlOyXJGyG4SadcIt3WSeolkpYIk9ulEvXQTGv2QgmKZeLp95Jafon2LI9+n2QteZVcSOZAMREck3Ali10OUz8Ls5n0EPPt8eu4eK5nHRH0n+MQGliOx2V3iiX6dx83bHOhTNDtRrK6M6FgEvINMm/6ggRLQ8YZ1LDy4/TCi40fqW8SPd5g5WuPW3hoL9XXG1EPsnEjlWpzmRAAnItDteikYWdaqK6yWruP2YdbY5WbxIXefPGH6cBfR7rE/M83q4jLr08s8mrjK08Q1el0v3kIHq6fQIkJX8DDRP2TB3GJcyxNJVZiJ7TBlH5Ko1YkZNVKdEmGzSc0X4UjLsa9OUg4kaUd9dFsqvUcqxZ00a84KSqrP9cxjbgXfJ5fI48n0ELzgtgcZM2tygv3CJA8Pb7LeuUbP78cbaDMb22Eyuk/EX8WWRXBAFGxUwSSAQYIKWU7Q6D0D4uPsm1OsVq/S3guSqx5x173HpHJANFBFjpsYYz7MgIx6auI56hHY0LEOFB4Fb7IdnqeneIm7ZW54HrIQ3iIZKSFH+wMg7nMHEp5ekJIwAOJVb4S6GsEVRDx0kQULqW/jOe0S36oS3NCxuxptv4Y+7edkIU1fVRHbYJsSXdVDKxKkFQsSOa0TOmsi6TZ1N8yWd4FSMEJCKJNzC8TsBpFmg+TBGeObR2SOzog1mnhsk3ZbpNNzqIX9dDMaasLEG+6hxCzkcRftioAYhXbBQ+Esw9PGNd7hkxx5p+hICogSfdPDWSvDcWOcRmsQ43/Bv8nd8PvMhzZJR84GjppJkV5AxVvpIpUdqAn0ahpHtQke9G/h03rcdd/nlvIB/qhBK+mnGovSiIYwgj4cUcJEoWkGKdkpThjjtJ+mmB9D3w/RO/UO2PCmjNVW8PrbhEINgt4mbl+k2ogSaTZ4U3qLhfAOUsTiZDzDQWaSlj9AslsiWSohlxz6VS/1bpQjYZxN/yIlNUnaOSXpLxKLVIjGKkRTVULJBj/X+VdcrW5Q7Kfo9TyIbQd/3xjEHxe6nDkpvm59Dp+/jasM9PaC6CIpFglvifnwzsBRsz3Ojj7HdmuOzeoCj09vce/sLn6fzlxsm0nfHhO9HSbL62Qbe3hEEyMUo6MGObk7w9l4mlYoRPy0TOS0gWxYSC2bg4VJqrEIZSdJuxrAKqsYpQDVUgy1YTElHHI7cZ9rkccseraYEfeIO1UqnhimR2Y1n6PoxjgLxiklUnSyIaSxQdQoXGh8pUSvIiG2bKQnOkrAizARx86FsXMRCndSdAMyggOfedDjzvFg7gqFQnzqU5/6EJ65CNBfRqwO59HRXfLhHPaiUIeXscwXy3wZSL543ugCYZQBH8UXo/YiXfrofUeJvFG7DBMMcduLfBL/xAH6y0DZZX9fFgIOXs5uvmi7ZHSb5WUgfXRL4aKZpsmTJ0/Y39+n3++fOyUOAfowE2axWGRzc5OFhQWuXbuGbdu0Wi263S7tdhvDMM511aFQiIWFBbxe70sHzWibhr8ty+IP/uAP2NraOnfuHA7oi6ERh/G9R0E8/GAQDAH58JiiKM8NOJ/Px8LCAmNjYx/qq1HrdDr843/8j8+dPB3HIRwO86UvfYmFhYUPvVSX7YoMwfPw+Xe7XXZ2dtjd3aXZbDI5OcmVK1eeY/tHJSzDcoZ9NFwR9/v95wD/8F7Dl35+fv5cu39Z31/cfbk4xuAH4H3Yr+FwmLm5ufP/jZ5/2X1GAfqwzK4J/+hdlf/yGwqTMZf/8PM2P7nsIAjPP4PLdocusvUXx/6wXV3TJfvXwjgI/OTdr/O/+1N/m5nMHqLgIJgWOaeIr92ms26z9legfx8UE7wBP4rpIDguyvXraG+8gXb7NuqdO0gTE9hCn4aUpy4NmPGGfIghlghZKaaqFrnKPqHOHipHCJ4m9ATcrh/XHIDxs4DCUSrDaTxL1RughRf/vQq5L+8TebuIZ72KVGkNwLjfjzM/y9mv/TgHP3eH/bkYJcVApEqOI9JUCFpNIu0GEaNJyigSq9VBselGvXQSKpZPHujFOyauHqXAaxwGP8W+f5Zd0SEvGgRsDZ8eolsNUSiEOS33mU+u8Ynpe0zGtgiqJTzoHJsTrLav8LDxClutJYrtFN2uD6HvoCldIsEWwYCOFtDRwjqi18bqhRHtIKKtECsekc6vcfNwnZWTNSbYxRdrUb6aoDEbopdScQSRihFntzHHw+JtynqSZKfEjdpDPrF6j8XdDcKtCsfZsWfxxJd5MrHCw/RNSnKKQMHA0WUMN4guBElZZyz0N5kS94gmqkwm9phWDkjVKsRadZKdMoleBV3zc+LLcKBMcuZLo0eDdE2N3mOF8laSp+2r2CmRq+mn3Am9y0RiH3+mgxAaAHEbkaYS4ehsnCeHV3lq3KDtDyN7TSajB0zF9ogHytiygOsISIKFKvQJPgPiOY6Rsc6B+F5/mqeVa+j7YaYqB9wW7zOj7D0D4n2MMR+2T0Y97aPl+wTWW7QKYR4Hb7AXnMGSFDKccsP7kIXINvFIGSlq4iQEUAdAvNkLURJTnPrT1DwRGmoYAX4AxLsW3pMu8fUK3oM+dk+lHVZpzAY5nUlhIyN0wLZlOh4v9XiYnl8jnq8SKOtgCJSEBNv+OVohD1m3QMYtE+41CDeapPcKjG8dkT4pEWs1kWyHtg4d06WaDGFmZLRED0+ojxq3UCYHjpqCB1rHPo6LOR4bN3hPeoMzLUNH8mG7Cp2ej+PGOKetMTq6FxGbG8FH3A7fZzq0SypaxBPrYKZkbFnEW+wiVhzcmoReDbLVXGBbnGdcPeHT1tvMenZwEy61eJhaLEozGqTj8+Ig0HW91MwIZ06GgpvhrJ6huJumcxTAKqrP2HBlwIZHGkTCNXyKQb+jUa1FSTeLvO59l4lQHjcCp9kMR8kssmCRNs4Illq4VQm9FaJopdjVZtn2L6C6PdLyGbFImUi0RjRRJZqs4o3qaPSZbh2SaxZItKpE9TqxXpWYU6Nsx2kJIRxZoC17qEkR6mKEmhRF07qkA6dcCW0Q1urs6TODvmjMs15Z5oPTuxzpE+Qix8xEdhgX95hqbDJ1tkZMLdPPhLA1jX5ew2yKSKUekZ0KifUzQodVBK/MN//zX0ISHExXoWKlOBXGOJCn2Weaqh4j1q5zLfiEG9GHrATWmNd2mOIQRxA4C6Qo+eLoQR+OJqJaNkm1RMAx+B9Tv0zTiCKUFaQqiJXBj913aP68hCF6aPWDdNJ++qhYuojp15CqbeTjBtJJHTvoofvGNIILV//uPXIdmVg0QmYsy507dxgbG7tUEfBxQPLQhvPpZQz1x7n+h7HL8OnF+XL05yKWuYjPLs7Lo2UOr78opbko2blsMTK0FwF3+BEA+osY68vOG9plAP1Fqxa43GHgsq2VFwH0i9dftLOzM+7fv0+j0aDf758nvxllqwVBoN/v0263yWQy+Hw++v0+uq6j6zqdTgfDMOh2u2iaxtLSEvF4/Dzqysv647Kdgp2dHX7v934P0zTPtd2jQHvIkHs8nvNERsN+GIYeHN1GGV21DZnpocOoqqokEgmmpqYIBoOXxi01TZPf/u3f5smTJ1iWhSRJfP7zn+fNN988jwYzfI4fBdBN06RWq3F0dMTx8fG5fj+VSnHr1i1kWT7XYQ0lLMOXebQc13XPn9Wwzv1+//x+/X7/PFHRaKSbUQA7/Dx8YS6TiVxkz0VxkDl16CA8qpd/kb1I2y8IAn1b4B+/K/NffkMlFYS/9nmLn73mIorPj/OPy5pf/EL4ygOJv/MW/Lk7/yGf/dy/RgAefO0VMrzNZz99TO/E5TufdAk3IQAIokjor/wV/D//88gLC7iSQ0M6oi7tD7Tj0j4t8YyAnWSqajNePiDc3kclj+BtQF+Arg/HDNF1VU5DCkfJDGexLFXPAIyH3i2S/coBkW8X0TaegXHXxQ0EsFYWOf6Nn2D/89c5mI7QkBuoVJnkiDh1gv0G4XaTqNEgpReJNJvYXujGvHTjKrYi4O338LRteu0cJ9IbHAY/yY4vw65gUhQ6RE0/SitEqxTmqODD7J1yd+IxN3KPSAby+KUaPVthvXOVR/oNVhs3ONInaXTDuD0BybHOnTZ9AQM11MIT6tB3vGCGER0fwUaNVH5jkPJ+f43Z7hYx7ym1pQiN5TBG1ofjB70T4FifYLV8lfXKFbROl+XGGj+28wE3Nx+RKR5Ri4bYXFhkfX6Zp5PLPBi7yV5gFk+ph1R36dh+GkKEsN1grr/NrLtDIlwkmz5ixrdPplEk1qwR71RJd4tYksKpP8mhNknBM0YzEqIteug9Vamux1hrrNBKhFlJr3In/A4z8W0CmTZizMXtgWOLtDU/J8UxVvMrPG7epuWLIfpsMuECM9FdEsEijgKOLSCLNprQewbEy2Q5QcImzwRHbo793gyPKjfR94PMVA+4Ld1nRhlk6FTifYysD1sTUU9NvAc9fJs6pWKGR8HrHAUmcASJCSHPDf8j5qNbxCJVhKiFGxdABFuXaJphilKKU3+GmidMQwmjYA2S+QgWsm7hP2kTX6uiHtv0bJVO3ENtLkRxIgmWiGCAySCjZiMx8D+J56t4q22srsyJlCUfzGEGGLDhDBaN4XqDzM4JE9tHpAplooaOY0On5WI4AtWxEO6YiCfWQws/A+IzoC4JOLZA4zjAUXmCx92bvK+8TlWLoRPEchVa7Qj5xjjlZhKrp6LKbV4Nvc+10BOmwvsDR814j15SHbD+xR5CBeyqTKWWYL27TFlJcFN4zCfc7xIPlujEvVTiUWrRCK1IEFNVfiBLsRKcumlOzQynJ2NUd1N0Tz7MhodjNaLBGprYxdADNGphMo0CN4NPyIRPscIihcwYjWCIoFUnUa/iqfbpNT1Uu3FOhBwb/qUBG+6eEfVViMSrROI1ovEqkUQNzdsh0y4y0zwgrZeI63Ui7ToJs0zP1Sg5SSxZBs2hKkVY15Z45L3GdDtPQi2TjJ6RiJbRJT/HTo6aGMFUFXo9D/+Pf/TvYAkKk7FDptRdJjo7TJY3mGxv4s55MBIxxK6D90gnsFvHt63j2TRQtw0kAXpjIdoTEVqLMfZz8+yHZjnwTLOrzpHvTeA2RCbdPHfi97gaesKif5NZeY+0U6SqRSn6EzRVP64kIok2smIR0NpEhQZxs4ouBiiJCeqNJK7XIig1yfVO+DsP/i+UxkIY0w6NkI+W10fXo+IIAgp9PM+yyKqOSe67HdL3uwg963zOXC1P8Nv5X0cTW/yM/B/xm6l/yY9FTvhu/zpPZv4yP/mTP3meS+V/6TY6V15cYLyIbHtROcNrPwoTv0g98XHs3yiT6MvsZQD9MrsI0C8D6aPSg48TMWZ4/aj1+30eP35MPp+n2+3S7XbPwe4Q1Hq9Xrxe72CL/1mSoqG0otfrYRgGuq5Tr9eRJInFxUXGxsbwer3PsdWX7ShcxjzDoK+/+tWvcnJycg68R6PKDG3I8o/268UBMhpicbh9MpTxDDVPsjyQMExMTJDL5fB4PB9icb/61a/y7W9/G8dxuHnzJr/wC7+A3+9/DtCP/r74LIbOtkdHR5TLZer1Oo1GA8uy6Ha7hEIhXn/99XOALorieVbQYVmjDqBDudFoLPjh8xuOi0QiQTabvXR7bFjH4SJm1EY16Zet9peWls6zrA53Nka3yS6Ot4sA/eI5giDgIPFPP1D4W78vEfLAX/u8zZ+6NnAGusiYX3zOo0z/aJnDH8Mw+Gf/7P+NGHsP11Zo5Gd5+vQ+X/wFl9OiD/2Rn/j9+yzXSnj/4udx//efewbGD2hKJ/itGJN1gYnSIZEhGPfUwXah48cxg3TQKIQ0jhMZzqIZqp4Auusj/N0Cua8cEv5uEW2riljVB2A8FKJ36woHX/pxDn/yCofjAQyphp8KkxwTdhuE+w1Chk6sXSWjl/DrLUy/PIgxHhswcl6zi6pDszvHsfIJDsOvs+OJsSN0aGMT7QWhEaZaDFM4c4hqW7w+9Zj5xDoRzykaBvu9aVaNqzxq3GFXX6DUTtLvaQimjUftEgk0CQQN1ICOL6zjaGD3wghOEG/HJH20xeTROrf311isrJOR8/QmZKrXYrSm/JgxGdNSKBkpduoLPCjeoWEEmWkc8PrRe7y+9gFTJ7s4CmzPzbK2sMzq1AoPszdYj63g6BJqqU/f9NAkiuKazPR3mbe3GPMdk0yfMR3eZdwoEGvUiLVrZDolZCxKgTh5bZwjLUsjHMVQPfS2NOqrEdbLK5yFMyykt7gb+S7zsQ1CYy2kpAsW2JZAX/NwVk2zcbjAo/ptap40gt8lGhhIYpKhM1BcbFtAEWw8Yo8AOilKZDkBOAfiu/1ZHpZuY+wHmKvtcUu6z6y6SzxYRo71aWd92IqIVjDxHHTRtrqc1MZ5FLhBwZdFcl2mpT1uBB4yH90mPExvHwdcsHSZhhXmTE5z6k9T1yI0lRCa20cTBkBcaVj4822iG1XkEvRdlXZSo7wQo5qKIfTA7QwcNfVggHoyjMfoETuqotV6dPseDtRJSuE4UqBH1joj5LYIt3TCtTq5rWNyu0ekzqqEOwamJdJtOLRUmXo2gJgBLdZHC/VQk/YghvicgNkSqRdCHFameGTe5JHnDmUlQcsN0Tc91Iw4x81xGs0wjiUT8lZ5LfwuV4KrA0fNWA0pbtGNa3ga3UHElAr0qxon9Rxb7iKuBz5lfocb4iOUaI9GLEQlFqceC6EHA9jSM1mKFaJkJym4aYrNDIW9LI2D+CCBT2PAhoNLKNogFq8SCVYRbZtGI0Kn6iPTOmUhsk0iXKYfUjmLJxFkl3C/RrTahAa02mHO7DS72hxb/nk89EjKRULhOuFkjXC8TixeIRypEbZbzLb2mGidkNArRI0G0V4NzelRdFIY4sCh1dUEDsQJ3lPvsuFZpOqP0AuqCB4XZMgKJ2Q4I+OcIsgu3Y6HViOEaNpExDpxysTFEn6fjhAQqb+lUW5nKJ0kKReSnNaz/PT6l3n15I/hrgfzJ0LYVzVcRKp/GGNbWGY3MM+2b4F9pmk2grzeepcr+iqL+lP86SrZ0j7BkzKZPwflWIJaWUW2LYJxF0XpU8rFibt1Ek4VRbSwiyKG4aWh+/j6UYy9nTi/96f/r0y9foA31KFaiVD1p1CVLh6lj4RNyKkzIebR3B7WiUOiXmZGzrM4t4Os2Dywb6BVQVkP8uS9z3LailPQw7Q6Kv1Gnxlll6uep/x07C3uSO8+m2Pg3zr8En/53/0/cufOnf+fAOj/S7OXAvROp/MjF/zDAvShXfTKfRGLfhmA+ai6uO7AofPhw4fnQHEIzocOhqPg9uKiYAjY2u02x8fHmKbJ8vIyuVzunIl+EbP6IgZ91DY2NvjmN795LikZLhAEQTh3dhguIhRFOZezDEHlsI9GnUdH46iP3ndUExUIBJifnyebzZ7vHgB85zvf4atf/SrZbJZf/dVf/VBs8VGge9EBt9frnS9iSqUShmGcJyMyTZNOp0MwGOT1118/37kYMv0XdweGGrJ+v/9c21zXpdfr0e/3z/t8YmKCcDh8qUTqIoi9+P/hYmyUcR8+t+Xl5fMoP6M6uovg++KuwsXxN1qP4T0dV+S3PxD5W78vo0rwH3zO5Odv2MCHWfPLtthG+38UoH/5K/8ca3ofxxTorsbY2Fxn+Y0JhEQT/5SJmmmhZbp4TZOJRpKJUoloex/NzSN4a4ALbR+OGaQteTgJ+DiJpziNZqhpAXTHQ+ztE7L/Mk/4u0XU7Rpi7RkYD4dpfeImh1/6LAefWeY446EvVghTJEdhAHC6DcKGTrxTId0q4+m16QUUugkPvbCCbFl4zR5yS6ZkXuVY+wT74VvsqkF2hTaCKxJshzBrYYqnAYxWmbnYBnfGn5AN7xKUK+iml7XOVR42b7HRvMaxMU6rG4Q+yK5JKNAiFGrhDRioQR0t1KNv+cEKoVgyqdM8mfwGNw7WuHK0yqS9ixpvU7yRQp/100l7cFSBZjvEYWuKJ6WbbFUXibWq3D69z5tr32Epv4m/2+BgemIQxnB6mUfj13iUvEHTieA9G8QT190QNjIT5iEL5gaT6iGxZImp2B6T9hHxao1Yu06qUyJg6VT9UU68Y+S1carBGIbfh3HoRX8YYut0gX3/NDPpfV6JfI+V+FPCmQZy+lkkKFPAUlXKjRjb+TmeVG9S1CZwfCJBf4Pp2B7p0MkzIC6iiBZesUNwBIjbSOfOmju9eR6Wb6PvBplvbnNbfMCstkM8WEaJ9TGyXlxJRC308e73kHasgZOr/wZlbwrV6TMnbXMz9JDZ6O4gvX3MxY0CJlhthZoV4VTJcBZIU9fC6HIAj9tDE3qIWKhVk+ChQWSrDnWJnqDSzng4W4zTCoUQOkBPoitr6OEAzUSIULFJpFBHbljodpB9bZJm1I/fa5CwywTtNqFGk2ilQXYrz8TuEYlSjWC/Q7cv0a7btEIarVwAKWOjhft4In3UlI0yD8qkQK8kUTuNsN+Y5pF9i8e+G5TFMQw7QLvnp9RKctrK0jZ84MJY6IS7gfdYDG+QDR8Tig4cNfshBX+5jVK0cKsCRjVI3hjnQJomrZT4bP9bTKj79OMylViMaixGPRqi4/PhCgIdx0vdjnDmpDgzM5wWMxS2x2kfBwYhC5+x4R5/h2i8SjxROteHV2oxzLJCuldiKpwnHG7QCXowAj40t0PEqONvtOnpXqr9GMfCBGvBZapKnJR7RthXJ5BoEknViMRqxKMlIlqdrH7KvL5LplUkatSJdOqE7BYtN0jFjeOqoPm6GJKfd6W7vCvf5cSXxfB7IeAiaC4BUWeCI+JUCIg6uNBsBXEMCa/dJSaWiVMiotaQIw6OLNFu+2n3vSAKaP4uliVTPEvxL97+Ilcnn3It9Yhc/JhwqIGq9RBxsV2RTt9Lqx3A3FcJPjKY2t3Dv1bH3Taxzhx6jYGU0QyBOgu+OyK+OfBmHTxxkCJABNDBPQXhGDgDqyixaszxnYVP8+QTVynOJahHwzSlCC07hG4G6VsqQbdFWjhjRt3llucei85jIoqBJIOAg4JJac/m3T/ysr23iJKYR0llqOWjaCWLSKvJVc8TrmlPWdS2SIhlCk6Oe8ZNNvtLzGfr/Jj9e6TsYx7bS/yD9hf4zd/8TdLp9EulGP9/+5/HXgrQh06Qz13wAnD5IsYYfjiAPrTLhPov0uhe1BC/SPPe7/d5+vQp+/v75yB4tIwhGB4CwmHYwyHoHQLSer1OtVplamqK8fFxotHoufZ82A8XHTA/jpmmyVtvvcXq6ur5/UYdK0Z1YEOn1lHP4NG2D6+/TF89CuqG58iyTCgUIpvNkslkCAaDbG1t8Qd/8Ad84QtfYGZm5rm+Hi5mhjZkuoes+dCJtlwu02q16PV65zsyQ4fTYDDIa6+9hqZpzwH0UUkLPJ+kaDQk0fAZDUG1x+NhamrqhTKj4TMelc+MtmloF3cmhpF8YrEYqVSKdDpNPB5/7tzL+vgy4D6838V+FAQB24EvP5D4T39vsPD6Kz9j8ou3LEThxWWOtm30b13X+drhf4t8dw8EEOsCQshCajtYOyozJ0dM6/vkQicIORckoO3FMYMYoo/jkI+TWIqzaIaaGkC3NZLfzDP21WNC3yuhblcRGzouAkQi1H7iVfb//Kc5/MQChaSII1RIckqGIkGnRajTHDhvtoskWzUUuzuIpBLX6AdktF4fr9nDbQUo2Dc58n6CvdAVdhWNQ8HAb3vQ9BDtSpjSqYTCHjfT6yyn14j7TlAw2OvO8US/yaPmTQ70WcrtOHZPQTBtfF6DcEDHH9TRAga+sI6pyLj9MILjJ1Epkc5vsni4xs2DNWb1LSLeIuUrMVrLQYycDysk0etrnOpjbFaXeVC8g92SWC6u8VOb3+LG3mOS9QKldJyNxSXWZ5d5PHGVB5lbHGs5PMUeri7SdoJ08JG2CiyYW8wIu8RjRaaS+0woeVLVCtFWnWS3Qqxfo+kJcupPk9dylPxJdL+PdtlH81GQg4NZ1tVlsuljXol8n2uxh8TGqihpBzRwegK2KlPXw+wcTrNWvcaxPIvtl/H6DCaiB4yFThA0G8f6/7D35zGSbXl+H/a5+xb7kpERuWdW1v6q6tVbu3tmqOGQnNZwRFIWMKZGNCnIgGkbEswxCMgGTFggYUgibAOibQgCZIGwBGkIyTQ55FDD6Z6lZzhL9+u31b7lvsW+x90X/5EvYqKys+o1F1s2wAMkKiri3nPOPfdE3O/5nu/v+zuXppiCQ1oYzYB4iMwhKxwny7xyt/mi/S6T/TTXBi/OGXFtl1LmPOjSrpkkooB24mPsu4R7EnuTKzy0btFTipiJw1XlGXezD9jI75LKDs/Z8Bzgcp7ePs5TV6s00mV6ah5XNtBj9xyIJxFayyd1MCa7MyIZS7iKyrh27pji6ibiJCbyZVxNZ5hPY2dMisddMo0RwjihF+c5MJfwCzIZY0g+HJBybdLDMcVml6UXRyztn1Dq9DEDD9uTcfoh/bKFs2IgVyK0tHcOxBcjlG2QFwScM4VOo8D+aIMHvMtj6zaNuIodpRk6WZqjCq1RidBVEcSIzewO9zOfcSXzksVcHTM/Ji6LxIqA1bCR2xFxR6bXy3McrNDQFniXL/nA/4Ss1WNYSNEulOgWcgxyWXxNJUY8l6VExXMgPlnk7LBGY2cRv2ES9/+IDU/nhpQqbYqFJobiEDoyrU4ZoSuQj/rUsnWMjI2rq8hyiBFPyI6GyMOYoZuhES+yo1/hpbWNhktZbmJlx6QqQ3LlLoVch0qqQSnssDnaZ318SHHSJW8PyHoDIiS6SR5bstAMF9102Ek2+O/5WV7q23TMPElKQDQjJDWiKpxRTc7ICkNU0cdxDfyxiuxGZIQhBVrkpTZmxiMxRVxXP88rkEioRoCshnQ7eQZOHgTIy10KWpeM2SeljUEUiRMBL9AYuSniM5HCsyHFxy2sR32EXY/gNMbrgetBmAFxAaxbYF0HfRWMEsg5oABoX4HwM6AOcVPgsF/j99If8Mn773N6p8ZkMcVIyzJKsgzDDE5gIkQJRdqsSMdsqy/YlF6xqhxSUjrnv7dRzDi2aE5y7Py6y9PPV/G4j1wpEDZEzI7DmnjG/cwPuW09YYN9FMFnnEkRLAg8OtR5tLfJq4HCwxMXQdFZ2XyHxXKOu5Vn/Plv/bcIDfjO0V9h+9v/Hqurq28NZPyX5f9z5a0AfTwez15fXD1dZAnh9W33eZbxn6e8KWB0vr2LmqKLIH0KbBqNBl9++SX9fn/GzF4GaKcgceqxPS99EEWRdrtNpVJhaWmJUqmEZVnIsjw7fx4sX7ZQeZO3J8BwOOQ73/kOp6ens/eCIHgt4HMepE7B9RRwzrd5UYd9MZBh3k99frxVVaVYLJLJZEilUtRqtRmwnZeeTOuYd2uZ1u26Lu12m1arNWO4p5q3aSBoNpv9EQZ9yrBP+zJtw7bt1yyXpraL03sEUC6XqVQqP/ZcepPm7OIC8LPPPiMMw9lOiaqqXL9+nYWFhdkYXpxvl0mwLmPwL5sPYRjzDx5J/Mf/WMUJBP7qn/D4hfshkvijji6XFUEQGA6H/FrrP0G+cwjA+//oIddfPkeIIeH8oUcKxssmx4tLnBRqNHM1eprFJNCofPeQxX94QuYPWyi7XcTBBASBqFSk9ae/ycH/+BscfLBBOx8jCB0WOaVCBzMak7WH5OwhC865RlTEx8l9pRfXRHT3HIy7oxInybscWh+zl77CrizSFFwyvoU4zDJspbH7AwraDvdqz1gvvCKjNBkEGR7bd/hycI+Xo+vU7RoTx4IgRhECsukh6fQY3ZqgZ8dIqYAgzCBEaVJjl6WjlywdPefdg2dcrz9lUTpksq7TfaeAvXbu+BIJIj27wH5/gwetdznsrrDaOuRf2ftdPnr1CWvNfey0yqvtbZ5tXePx6g0+q73Lq8w2Yi9B6se4ocmYDPm4y6a/y1bykkr6jFrlmDXrgMVek/xoQMnpsuC2cBSdVqrEkb5Ew6wwTKeYDE3GD9Ic7azykDsUFjq8l/8+9wqfUqy2UBcjBOsciMeyxMS12D9e4Wn7FofiNqGloRgOtewJ1ewJkhYQRwKSGGMJNhlhyAJNapzhoc2kKS+ca3zZfhdnP8W14TPuSV+wqe+cA/FCwKRqQALaqY+252IfWOy62zwxbzCUc2SiITf0p9zNfcFa7gAzNyYpABnABt/W6MYFzowqDatMT8vjSxpG7Jynt48i9IZHem+EdeQQOTKepjJctqhfqRCIKuL4PFDTNgwGxQyRIlE67GC1JiS2SFMoU7cWSEoxWWVEOhhiOS6p/phSo8PqiwNqh2cUewPUMGTiStjDkP5SGn9FQypFGBkPPeeh1mLUqyBYAvaJSrtVYneyyUPxHk+s25yGK9hBit6kQHNcYTjOEPsSsuZzM/+Eu6kv2cjsUM430fMOYVlGCkLMhoPUSgi6Kq1hidNkmUCT+ano97gWPUHIxXTyBdqF4rk+PJMmkiUCZIZh5tyHPajQ7FY43Vmms1cm6ih/xIabDrlij3L1PLBSE33csU69UUXqR+QYUsp2UNI+shCh4pIKxqRGY3xbpRuUOJRWeZa+QUcpsECTnNlDK9qkq0MKhQ6VTJ2q1KA6OWNrvMfy+JS83SfrDFHigJGQYiRkQIV0akigSPyj8Nv8nvhNzowqjqUhpUJkPSQljVkVjijSwRIn54G4Ew3RTtAijzw9imKTlDVCSoEfKQwnWYJQQVJjjLTDZGTRHRYIUUiLQwpah6w+IGWMMAQXhQAxiiFOGCQ5XoZXebl3lZX/ZJ+fffr3CY8jvB6MXJn95XWO1q+ymd3jzuozjDWwKgnkFHZzm7zMbCO5EX+q/Y/xXBVPUOkaOdrVIn9w+BHDKymWxy85OyjwMLzG0EkxEvO8+tmfIBWPWZBaXJeecV18yqq4T0VroqgBdmjSt/Oc2ku4nkp20sYZZtg/2eT5ww2oJ1TiETe057yb/Yzr2nOWkxNCScJPKew7Cg+SPM2/9Kcwiw4faJ8gCjHtY4H/7K9cpVZb4eFnPyAXN3h3ReXjmwlLpSY3rg4RLRDGcNy6SfbP/iGpVOpfylv+Byo/NkCfL2/y+P5nkZ3A24Xzb2pr/tyLzPp8X6ZOH1Pt+e7uLp7nzYDfPEifr2deauE4Do7jEMcxruvOtNvVapVSqTRzfrkIvC4CvcuG+rLxOjk54Td/8zfp9XoIgjADrPNBnpdtN80viqbHznunz4Po6XEX78N03DKZDLdu3XprGtr5cZr2b8r6D4dDTk9PmUwmM/nNlBmf7l5Uq1Xee++9mfvMdPdi3rs0DEM8zyOKIlRVnYHqabtTy0VFUVhbW5v52M/3cXptoigyGo2YTCbouj6TJb2JmZ6286u/+qusrKywurpKOp0miiKq1SrXrl2bHX8xIPQyScr8rsN8sOll5fzewH//WOQ/+nWNni3wV3/G58+/H6BIb3dRml7nb/ze3yP/079KHIqs/jdnFJZP+Sc/+xGOpiN5IaNUDjtQWfyHr1j8x03Sn7TPwfjQBkEgrFY4+3M/ycEvfMzhvRX6aRdF6FDjhCI9zHBC1h6Rn/SpeC1y4wGJFOMUDNyCCkKC4XloXsBgssKJ8B4HqQ/YTa+wK8ZMiEh/ZWk4aCmI/glr2R1uV56xmDpExGXXvcIXo/s8GdzmcLJGzykQeyJiGGOZ557iRmqClh5jZB18SYUgi+pKLJ8dsHj4nNuHT7l99IxV7yXiQkD97gLOloG9aBAZIrZrcjpe4ln7Jl803yXdGfPB4Q/4mRe/w/bpC9TEZvfKJs+vXOPx+nU+X3qXJ4VbuJ6J2vbxfZ1RksVIbNaCfa5GL1gyjqhUzljN7rM0apAf9CjaPSpui0SAdrrAiVHjzFhkmMowcQ0Gz3PUHy/yWfgeVtHmfvET3s1/n8piA20xQMhB4gtEsoTnaRydVHnRusmeeA3XsJBNj3K6wVLuCEXzCCMJWYiwRJusMJgBcRuTY5Y5ipd45tzkQetdnAOD66PnvCt//hUQbyIXAuyqgRCBduyj7rv0j4q88rd5ZlzHFlIUkw43zCfcy3/Ocu4IM2sTFwELGIPn6HQocmrUaFglBlqeUJAxEgdV8JGCAOPsHIjrpz5hoOCaKoO1NI21CnEoIl4I1JT9kOJhB7Pj4HsKdWmRTjqPXHLJiCNSvo05cUn1JyycNVl9fkDtuE5hMESIEyYTCduL6K1kCFdklEKEkXHR8z7qUox67XwROznWaXbK7DpXeKDc4aF+n2ZQZeRnaI9LdMZl3IlOEksY5pi7uS+4lToP1CzmOqgFD7+oYIxc9IaH0E6wuyZdu8SpVKWitvmG/wdUpWPsvEkrV6JTKNDL57Ct850IN9HphzmacZmGs0j9pMrJq2XGx7kLbPiIQrlNZemMbKqPHIeMhynOzpZQxwEZxmRyA3TDxQomaLFH2hmi2CFjN02dKs/Nq+yYV87ZcKWFlR2jVmyyi30WMg1WjUMqfov10SEb430WJi2yzggzsPEEjbFo4ckahumQMQd8Ed/l70c/zzP1Oj0ji5iKUUwfVfNZpEFNOCUtjJCFENfVYCKg+AFmbFMQ2uT1LmomJBIlhuMMrmeAlGCkXeJEoNcr4MQGJjY5pUfWGJDSR5iiMwPhYhLjRyqH8QqfDd7ni5N3edm4yklvhd6gSNBWSGwJSxuy1nvJh+nf41X2Njtc4yyooik+ihUgWyGRJfDt9X+MnrYx0g5b6kvW9T1W1V1Shx0mjwX2TpfYsTfYFbfYy1ylubKGfE2nZp7xTvyAbeklNf2MlDUhDkTstknfydGjwJm7SLtTJhkIjLsZBmdZ1GZE0e7wbuZz7qS+ZFvaoRh16EsGPV3ByWg0lktE6wXEBQFSCZJ6vtAJkGlTZuJYvNv6HKNlE+z5aI5AecFGy3tE2XPZTeAonB2LZFIx+VIAMvzt//yP87P/0/9yZo7wL8v/98tbAfo0cyT8qPPI1zHo8+WyJubfe9vNv8w3802s5Hy9F9neer3OZ599NtOeT4HgVJs9PXb62WVA0LZtoiiiWCxSKBQolUpks1k0TUNRlJkd4sXrvPg3X95k2Vev1/n93/99zs7OZguKed2yJEkzacj0GufbuKilnx4z397Fc6afl8tlbty48VrW0XnwPu3rRSnKtF++79Pr9Wi327M65xdD4/GYJDn3VL9+/fqP3L/psfMuMBd3A+bjB0RRZGFhgXK5/CPzZ3pt04XOs2fPCIIAXdcpl8uUy+UfmTvzsqbJZMKv/Mqv8NFHH1EsFtE0jSRJWFxc5Nq1a68lcZjWcVnw7vQaL353Ls6Hizse56/hu88k/qNfVzkbCPyvf8bn3/rAR7tk13Fa78nJCc+9/5jinUcIAiSRSByJnCmL9M9MFv/aD8j8yjHpjocAeMuLnP7in2D/z73P0e0admqMTpslTskyJO2PSNtjCnaPit8mMx4SagJOwcDLK0hBiBF6KHZC27nCkfw+e+n77JoL7EkBQixiTDK4nTRu38YUDrhRfMWV0kuyapOOn+fx5B2+HN5nZ7RN017E9XTwYzTJI5Mekk5P0FITjOwYzIQwSCOGFovNBktHL9g8esa9g2dsdZ+RsTo0b5cZXU/hLOv4OfU8K6ldYrd3hc+b79Fv5rh5+ohvP/sN7hw9JOe0qC8v8mz7Ok83rvPFyl2+LN2hLZXRWz6hozCOMwgkrIRHbAfPWVf2KZfqrBb3WQ7OKPa65CcDKm4TPXLppArUzQqnRpVuKoudWAxeZqg/XOSL8X0oCNwtfsoH+d+ntniKVvURC5BEArEoEoQKZ6dlXrSusR9fZ2zmkMyAnNVhKXeEZjiEoYQsxFjihLzQZ4EmVc4Yk5oB8ceTd3jQvYd3YHBr9PicETfOnV/kfHgOxIMY7dhH3g9pnC6y41/lhXEVD41K0uC2+Yh7xc+pZU/Qs+45ENeBETiuQUcocWLWaKbK9JUcCAJm4iALPoobYBy7WEdjtEZIEKu4lkZ3M0unVgRHAFvAlzTGaYtBKUOqN6Fw3EPreTiBzolSZZhOYVYmpKMxRuBhDD0y/RELJ3XWnx9QPW2QG40IY5HJSGQiQ38lTbIsomQjzIyLXvBRV2KUbYF4IjA+MWj0Fs519No9vlTepxUsMnBytCYLDCZZQlcBBHLZDu+mP+dG+ikr2UNyufNAzSAjk2pP0Jo+SVtk3E/RDsoM5Aw35efc8z7DMiZ0cnma+TLdQp5+Loevq+eLgdiiExVoBhUagwpn+0ucvVrCa5hEQ2nGhmcLfcrVBpXaGZY+RgoTOu0CjUYVxQ5JSxPMzISC0MNyhqixT8YZETgq3ajEgbzK08xNunKBBaFB1uqjFRy0qk2x3GHN2GdZOKE2OWNjdMDq5JiC0yPlTgCwRQNX0hH1mIw1ZCRb/IPw5/ltfopTbZHAUlAtD83wSUkjVoRjikIbU3AIIpnYFpHdCC30SMdDimobM+2QqDB20kxsixgRzfTRDI/+IMvET6Pgk5UHZLU+lj7GlGw0AsQ4QoxjCBNaSZmH3h0+Pf2Ap6c3Oeiu0xpWcLsGUU9GVTwsfYSljhGlGCdM0XEKSEqEbvnEhgSpmJXKIRsLeyxlj1nT99lQd1jTX5E7beM9CmjuZ9gbrvEq2WLX2uZoYRv/ZhFrKeZW/JCbwhPWlAPyZg9N93D6BuNhml6Up0+WxmCRsKvg9nUajUWc0xR6x2MtOeCD/CfcMh6zzj5WMqFTKNAsF5hYMu5aGr9sEJigmBGmbKMJHj3yDIM04plIrXGM2AFh4FMJ91lYClByEUlOQDRjxj2ZXjdH317lt37g8nxPQ1BuUCpf4e/9xu8jffiL/JmbD7CffI4X3eWXfumXWF1d/f87gP4m+eq/iDr/Rdf7tvJWgD4cDl8DDBdBxvT9y8qbXFbmgcybgvUulrexjNPP54+5CHx83+fRo0e8fPlypn+eB4zzuvOpVnqqV55PHBSGIZqmkcvlyGazpNNpUqnUjwRuzrPpU/D2Jm3yxcXMPIAbDof84Ac/4MmTJ6856syDcFVVX5O4JMkfJQWaHjPvOHKRNZ9eF5wHi66vr7O0tISiKLMxmQeT8yl/5wH/dLx838dxHAaDwSzIeCpHgXMbRc/zUFWVjz/+mEKh8Fp/kySZ6cqnIH0q45kfy3nm3rIsVldXURTl0l2c6Tnj8Zjvf//7AGQymZkkxrKsHzl2Cvx7vR71ep1SqTST4giCQLVaZXNz80f6/rZdpIvJF+YDkOePedPcSBL43stzoL7XFvgrf9znL30UYJyv0WbfoeFwyPe+9z2E5d8i9Y1dJCHE/eRd7NNrjO4dIfyDR/jPxjS+sU3r4w3CVYuMNqTGKelkQsofkZ1MKLotKl4Xw54QmBJuQcfLyKhOgBG5YCuc+Tc5kt9jL3OHHT3HkeRjBBryMIvbUcBtUdL2uFl6xXJ2nyQJ2XG2+Gz4Ac+GNzi1V+g7OfBBjCLS1oh0eoyRmqBnxmhZDx8dwiz5/oSV41csH54D8RunT6kIhwy20nTeyeOu6zhlnVgRGDkZjoYrPGnf5kn9Fkunx/ypF7/Bx3ufsNQ/ZFRI8fzqVZ5uXufB6m0+q7zLobWB0glJRgJ2nCZIVBajU66Er9gUdqjkTllZOGRZPKbcPfdZLrsdcsGAnpGllSpxYtRoWwUmokn/MEf7yxKf995jnE5xt/g5H+V/l5XFQ4yqh1jiXDaESBRLtM/yvGpeYTe5yVAvIhghKWtALXuMYU4IQxlJiEiJ5wBsgSaL1BmS4ZgljuIVHk3u8LBzF+9A553Jw9eAuJQPcaoGghujH/sI+zEn9RVehtd4pW0RxRIrwjG304+4W/iCxewZWu6r9PYyMBKwXZO2WOY4VaNllRkoWaQkxkgcZNFHmQToxy7pwzFSJyEQVJysRmurwKCYQ5wkJI6Eq2iMsinG+RSFkx65swHyMGQUp6irFSZ5nUx5jOWPUL0QY+CR7Q+pHZyw+vKQxXqTrG3jRhKTscDIFBmvZohrIlo2wEzZ6GUfdTVBWRcIOgKjM4v6YJHd8Ao/1D7gS+l9Ot4CXbtAxy5hj0ziUEaUIir5M+6lv+Ba+jm13DGZ7ABKCYkmkq6PUJohUUdmNMrQiUuISsx7wmdcCV7gpxWauTKtfIlOsfCVLEUkRmIYZWhHJRpOhWZzkZPdJZq7VaKucs6GJ5DODsiXu1SW6pQXm5jamMSROD2r0m5VUL0AU7HJGgMWgya6Z6P5LrrjMw5S56nsU9d4ZVzBEByK6ldseNnDqI6pZY+5Jr+k4jdZGx2xOj6mZp+RcYcoYYgna3iiSqyJmIaNoMGnvMOvxn+aB+IdBkYa2QzQLRdDdVgQm9SEUzLCCDGJCT0ZyY3QfA89csgJXbKpIZIZYwcmw1GGIFJQtBAzY+M6OkMng5BAWhqSVQak9DGGPEHDR4ojxChGikLGcZqXyRU+aX7Mw5N32G1doT6sMhzkiFoyQpxgGSNMdYyiBHiJTt8uEAsCpukSmyJYCbXKCZsLuyzlj1gxjthQd9gwXlFo1vEfhkyeJxx0l9gJN9jVttkvXadzbQ3pqsmyfsqd+Eu2pZcsanWyeh9t4iO2Y/RRQKYxInMwpH1WwjqZYB2P6Zzm+bXyz1Lotaiap9g3LXp/uoIkBoh+TC4ccNN7zNmVKr2VPF5WQdJjFMUnLY6wMemHOSbjDN5uSHIUshD6bGr7LKVOsRSbMCefx3LIAifjJeoti3ZcZTLe4uSHLf7SvV+hYAb8k717fL/9b/K7v/u7yLLMYrVKqnaV/yt/Di+1giDE/Juv/vf85O01fvEXf3H2fPxxsNr/r5S3yUB/nP5/Han8L3IM3qoQeRtAHwwGPxJ8Nh+k+LbyzwrQL9Nnv02zPS1vA/HdbpdPP/2UZrNJHMczH/F5wBmGIY7j4Ps+nucRBMFr+uwkOQ9CzGazZDIZLMvCsiw0TZsBr+nx8/KSi8D862RA83XBOaB9/vw5n3/+Oc1mcwZ0p+P3JsvAacDlFMTPS0fmz4uiCMMwWF5eZnl5ecbIzwdsXtxNmLY/D/YlScJ1XUaj0cyOcp49n7Y1XSDl83k+/vjjmVxnykRPNejzSY6m7PllfVEUheXl5ZlObl7aND9XwjBkMBjwB3/wBwiCQKFQmP2l0+nXMqPOA+dGo4Hv+7NdElEU8X2fYrHI+++//5rrzWX397IYisuCnb9uTlz8/HdfivzN76g8rYv8r37a59/5ZoilQULC58Pv8uz4AbuDNX73jy9h4LLaahBXAmQiinSocIaFQ9oZkZ0MKXsdym4PzbPx0ipuQSM0JDTbw4g9vEmak/AdDrX32MtcZ0e1aIoBKdci7qcJewFafMR6ao/t0ityWpOWX+LB+B4PhvfYH2/Sss99m/FjDM0hkxpifcWKmzmbSBeIggyGLbJ2sk/t8Dk3jp5y5+AZq/ZL4sWE+r0FnCsG7qKGn1LwA5XmpMKr7lU+r9+Hk4SffPl7/PTO77Ddekmixexsb/F06zqPVm/yae09XmSvEk0UpF6EG1o4iUkh7rAR7rKdvKBmHVGrnLBiHlHptckP+5ScDmWvw0hL0UkXODGqtKwiEyVFt56h+6jMg9M7NPQqN4sP+Wbut1lb3MOqOUhlQIE4EYkSkX4jzV5rk934Bl2lAmaCYYyoZk+wzBFBJCMJCWlxRF7oUaHBIg365DhmiYNojYejuzzq3SU4Urkz+ZK70hdsGa8oZtvnjPiijuTE6Mce/r7CUXONl9E19pR1xBjWxH3uZL7kbvEB5UwdJe+TFL6alyMB27doSgvnQNwsM1QyqEmInjgooo86CDCObMwTF2mQ4Ikak7xG4+oCtmkijiAOJFzNYJhP4xkq5cM26cYYYRwzSLI0tDJBWSSdH5PyJshOgjF0yfb6LO8es/bqkIVWm5TrYIcKY1dknJUYr1nEFQkj7WOlvwLiGwnyooBfFxnUU9SHVXaSK/yB/pM8SN6j45boOCWGkyzeRCWJJBQjYDl/wL3U51zJvKKaPcXKTYhLAlIYkaqPkVsRfldjbGfoCXmqyhl3kgdUkjq9TI56rkKncK4Rty0DQTy3cexHOZpBmeaoQv24ysnOCv3DItHgK2244ZAr9MgvdKiunFBc6KBLDu5Q5/BonUE/hxKEmIpDVahT9prIXoTpTkg8kXZcYk/b5Fn6Ol25QFlskrX66EUbpeKRKfe4YTxjPTmgNqqzOj5meXJM2e1geg6BpBBIMqEqo2oBiuFzLC7yXeFn+N3kJ9lXVol1EcN0MEybjDxkiRPKQhtN8IgiEdFNUD0fLXCxkjE5o49megSCRn+Yw/U0RDnGzDiIUsxglCWKZUwmZNQBaW2MrtjnPt1JiBRGyFFEGEgcSSt8NvqAz4/f5UXjGse9FXqjEkFbJRrL6OYESxujKh6RoDBwc/iBgmXYYAkkKaiU62xWdlkpHLJkHbOhvmJD3yHbabH3+RK7ByvnVqvKB7SUGiVvD2Epwb9ZwqxE3EoecZPHrMmHlLQ2WQZIvRitF2A1xmQPxpgnDsJZTHJ0HhAadyFyYZBPc7pWpblSZrycJSkI5MwRZatFtCwzWkzh5TQwQdYCLGmCSEw3KdAPc4z7JmJdQGzEbLgHbMiHlPQ2mhHgFVW0tI8dGezamzwLr/G5/S6PxnfY7VXpiotsyy94d/UP2VYO2PZ2+LD+A1KKzW6wxafDd/mvDv7nPG6H2Ok1RuYSoiAQxBCLKiIR/5PT/yM//8EVfv7nf/61Xfgfl1T9H7LM75p/XXlbDNqb6v5x63jT+xfLZRhuVvfbAHq/3/+RG/LjMt2XAfSLry8LmJsHxJeVy9jRN/VJFEU8z+PLL7/k+fPn+L7/WiKiJElmyYds256x557n4TjOjI1WFAVd16lUKjNwPvVKvwjApozqVI/9tr6/qc8/GjQYMh6P2d/f58WLF9Tr9ZnDzrzGfD4D57RMM5BOP5uCd03TMAyDcrnM4uLiax7u8/2d1jvPwE/bm/5/KkOZsuPThcBFgO+67iyp0s2bN9nY2JiN19QDfbo4mrY3Zc/ngfMUrAPUajXy+fxr82F6L+aBbxRFTCYTHj16xGQyQVEUCoUCxWIRwzDIZDKz+zW9rtFoRLPZ/JEdiqmG/ud+7udmQalvkq3ML7bmpVSX7arMp06evj8fFHuxJEnC9/cl/uavq3x+LPK//EmX967+OqfXf4VETBhHaV7KV6izSCHqc1/8hCXhmL6QJz0ZsdnZI6cM8PIaiSSg2y5a4jOaLHAS3WHfuM9OZotdWWMiRJh2mqhnII67ZKQDtrN7rGb3CAXYsa/w2eADXoyuc2ZXGTsZ8BOkJCSdHpJOjdG/ck+R0hF+YiD7Jkv1BitHL9k4fMq9g6dsN59iWX3q9yqMrqfwllWcgk6MSN/Ncdhb50HrHidHy9zZ+5J/9fl3uFV/TDroc7ixwrOv/MR/uHSfx8XbDOIsWjvE9zUmcZpUMmI1OuBq9JwVdZ/qwgkruWOqo+bMT3zBaxGJMu10gTOrQtNcYKil6HezdJ8WebJzi131ClcLz/hm7rfYqrwgVZsgLwAGxLF47qbR0tlvr7EX3KClLJGYoBoTFjJ10uaAIFKQhIi0OKYgdKnQoEKTLnmOWWYvWufh6C6PO3cITxTu2V+cA3HzFcVMG6kQ4lR0pEmEduQzOUhx2F7jRXyNI3kVJfTZUvZ4N/cZtwoPKWXayLmApABJCIxExkGKprzAUXqJlllmIltocYCOgywEaD0P49DBqHswFvAUjXHJoL69gC+qyEMIY+U8ULOUgRgW9ltYbZvEFugIeVpGkXgBspkhpmMjOmANHPKdHqsvD1ndO2Kh00ULfMa+wiQWGeQVnHULSiJmyiGVsdEqAepWgpgR8I4lBs00Z5MaL7nKb+t/gsfhXbpuia5TZDK2iFyZBBHDstnMv+JO6gGbmR3K2SZGziYsSRgjF6tuI7QS/L7OMMgSoLCtvOJG9BRZ9mlmyzTyZdqFIt18AV9XEYmxY5NuVKDpLdDsVDjdX+L01Qp2PfUVG56QyZyz4cVqi8WlOvlSB1XwGLTy7B1tMh5nUIOQAm1WohPS7gjZ9zFcn3GY4lSs8ix1gx1zCwOHgt7+ig130Ss2q5lDbspPqLp1locnrExOqNl1st4QgECWiWQJQU/QdI+2VOSpco3v8Cf4XLhLR8pjGC6WNcbSJ5RpURPPyAhDSAA/QXUD9NDFiGxSygjLmBArEv1xDts2QRDQTA8zZTO2U7iBjo5LWh6RUkcYyrkUQ0lCpChCCiLkIKQplHkUvcMPv5Kk7Hc3aY4qOD2LqCOjKAGGMUZXXRLxfK46joGl24hWQmSJLJSbbCzusFo4ZCl1zLq2w4a+R2l0wunnBfZ2VnjZ3eKB9AEvrLu0zWU8KYUgnGdwTmIBgYSC3uF28QF//f6/j9e3SNoihfaAxeM65UYb+SwkPobk9ByEJzYMMhZna4s0VsqMlnNERYW0OaGqN5ArIYOlLJOiQZwSkbQQTfGwhAlDMvSiPD0nx6SuIhzFVEZdrogHLOtn5NQBUUYizosYhkPbK7FjX+GRc4tP3fdpjBb4zL5HMWjzU3yPa+kv2baOWTePqLgN7MDgt+I/zh+EH/IouMOevcGknqKXFCjLTUphk8GowlG7TMV9wc9b/x3fvLXGbzw+45PsT/OO1mSr83t8/PHH/OzP/uzMweVt4Pyy+LvLPvtxAe4/bbmM3b74jH1TjOBlfbmII6bnv+2cN13Hm0jqaZk3/bhYfiyAPm38spvytnJxgH6k8QsA/W3b+29r47J64RyU7e/v8+mnnzKZTF5L3jOddK7r0ul06PV6uK7LZDLBtu1ZOnlN0zBNk8XFRSqVCul0GtM0Z3KH+fbnwfq8q8uPW6ZA9U16+inDPBgMODk54ejoiE6ng23b2Lb9I3rx6YJhCoI1TSOVSlEqlSgWi1iWNdNmX2Tk5xns+b8pez3vzDJd3MyD6mlf51niKauuaRo/8RM/QTqdJkmSmXzF9/0Zwz69humcuLgQS5KEUqn0mjf7ZV+EeTmT7/vs7OxweHiIaZosLCzMJDamaWKaJnA+9yaTCUdHR69lOZ060EydY7797W+ztbX1xh+m+T5f1seL3495Pf+0vO3LP1//93cT/oO/5/NFw+Bf/4X/mp/8xvfYUl5i4PBF5yPea7zEWjwmzoIYxhiuhxwHnDrLnHirPBM+YCe9RjOXRkRBHaUR+jGaf0ZZ32c7t0/WaNP0S3w5epdHg7scTtbpOEViTwQ/wTQmpFMjrNQELTPByDmEikTspyl3x6wf7bB0+Iy7R8+4efSUxfiQ9rUCnXdy+BsaTlkj1GUc36AxqvKsc4PHx7dZ2Gvw7Sff5YPjH7I4PqVdLfB8+zpPNq7z6cq7PCjf5UyrobZDQkdmEqdRkpCl6Ijt8Dmb8i7VwgkrxUOqQYNit0th0mfBa6EkIe1UgUaqTMNYYGBm6A+zdF8WePHiGo+i22zk9/hW7je5Wn1GtjpCqiQI6XNdfySIuB2Z41aNvfAGDXmN2BCRdZtCuk3G6hNGMpIQkxZHlIQOFRos0KRNiWOW2Am2eDi+x5PubeJjkXvuF9yVvuSK9ZJCuo1UiHAqGvIwQj306B4XOWxv8IJrnAo1jNDhqv6C9/I/5Eb+KYVMGykfEecAD5KxyDhMU1cqHGWW6ehFbNlEjz10XBR8tLaPduyh110SV8LTNIaLFo3NBeJAQhxCIKhMUiaDUgZ95FI+6GB0HQJPpiMW6VpZhGpMTusjOxGyHZMa2BTaHTae77N8eEK520WMYkaewlgWGZVU7PUUQh7Spk0qO0GrhqhbCYIk4BzLDNpZTp0aj8Xb/Kb6bZ75t+i6JQZ2FneiEfsyggTpzIDt3AveST1kPbtHMd1GLXiEWYl0Z4xe96AN3khnHKVJiROuK89YDQ+xDYPTzCKtfIlmqcwwnSZWJAQShlGGTlikOVmgcVblZHeZ+m4Nv6OfZ9HUbfK5HvlKm+JSi0qtQb7YBT+hebzIXmMLb2yghy4r3hHVsI7meqieB8E5G76rb/I0fZ2eXGBBbJDODNALDuqCS77Y4ZbxmI1wn+qkwcrohCX7lLLTRgt9AkUmlkUSTUDTfQZSmgN1hT9UPuAPhW/wPL5CIoukUiMyxpCMMqTGGSWhjSr4JBEoXoDuexihjSVNMNUxkhYz9HKMRimiWEbRAlK5MWEoM3Et5CQgJU1IqSNMxUEVXJQkQA4jpDhCdX3GSYpXyhaftD/iwdEddtrbnA2WGA5zRC2FJATTmqBpNoIEbmQwsVOY0gTZSohSAoVyh83FXdaK+9QyJ6xp+2zoO1ScI7pfGOy9WGa/ucKj6B6P0x9QT20x1vKAgCAmJMk5EE9rIxb1E1bEI1KeTdQXCXsyw1GGllnmf1v+P5BXOzRyFeqLFc7WF/m3f+m/wKqPaS6XGa7kCMo6uu5S05tkMkP6aymEjEB6MibbG5HqTNDbHnIzxLMVHn7jFtaXE/Iv+uTqQ1TNJ1yVkbYi/G+oBAUVNRegyAFH7jLP3Bt8br/LK/cKblfFbLZZ1etUUm0WjQYLWpOaeMZSeMLnwj3+SfgTPPJusu9vcObWOBvVGDlpsn4HvDOEd6psxS3ykyM6z5sMP7Oxqu/xxfgDQABi/vLif8g3763w9OlTxuMxKysr9Pt93n//fX7mZ35mtoP9JrL264jbefLqxy1vqu/i+1+HLy8jzObJu8sI5DcB+TcB9K9Tk1z2TJ+vR9O0N577VoA+dRG5rNPT976uYxdXMBfPvwjQ3ySN+actSZIwHA5ngZbz9oTzCYUcx6Hb7XJ2dkav18O27Rmw1DSNbDZLtVqlVquRy+VIpVLouj6zBbzI9MI5wJsC43mw/HXlYhKeyyQQ8zrmqSyn0+nw6tUrJpPJbFdgeux0x8CyrNnCYvqF832fJElmzHWSJLPPpoBx6gU/z+5ObRUdx5kB6vnJPc+4T+/FvP59bW2NW7duIcvyTIYzbWs+cHUqVZmeNwXysizPdjMuxh5cnAPzuwCe51Gv13ny5AnFYnEW7DuVt0yzqXqex+Hh4WwnZH4s5gNY79y5w927d8lkMrP23vSD8TaAfllQ6cXydT9YZ7//66z/P/48z/+NLX7nyz9GVWhw+xc/J6oJXz14PcSWwv7pBq+G73N8c5N/tHINUUlQu5AaumTFFivWAWvZI3xBYmdyhU+HH7AzukrDruC4JvgJsuCTTg1JpcfoKRsrN4FUTBBZpEYJG0f7LB+94NrRM+4ePmO9/xxvSab+7gLOFR2vpuJlNMJIpmsX2O9t8WXjLs4rgz/x+Lf4yYPfY727g5dVeHn1Ks82r/P5yl0+W3yXvdQWDIGRiBNaxInEYnLGVvCSK+IraukjVhYOqQpnLHS75Mc9ym6XVDSma+Zpp8+DNrtmjqGbpr1bYv/5Jp9P3mMhc8a3sr/FzepDcrU+ymKMkBVIEoFYkAj6AmfNCnvBVerSJoGhIukOWatLNtUjiGRkISIjjikKbRZpUKZFizLHLPPC3+bh6B5PercRzuBd53PuSZ+zZb2ikG4jFiLcBQ15ECEfBtSPaxx113iRXKUpVMiGA64bz3iv+EOu5Z6Ty/QQ8xFxFrAFkonIMMpQVxc5yizR0Yt4so4RemiCixJ7aA3v3Bqx6ROFMo6p0V/K0lkuIkwSmEh4sso4bTEqpMk2BxSPemh9Dy/QaMkFRmkLsZqQE/uIXoI0jkn3x5Qabbae7bJ0ckpp0CeKBYaBykgXGVd0JstplFxExhyRyk7QlyKUrYTEFXCOFXqdHCfeEp+L7/Md9ed45V2n6xZwHItgLBNHMqISkc93uJF9ws30E1bTB+Qz54GasS6QrQ/PAzW7Iu7EwENjiROuKDvk4x4tq8RZtkKzUKJVLGFbJoLI+Q5NmKPll2n1y5wdLXGys0x7f4FwoCIkkEn1KZbaFKodCrU25WqTfLGL2zM5Pl7ioLlJ6CiU3Tbr9iF5v4PsRyhewCRMcSIt8TR9nd05NtwsTFBLLkZ5zFb6FTfFZyy5Z9SGZyzbJ1TtBmlvRCxLxIpIooCshTiKwYlc5ZmxzR/KH/FFfId6uEjKmJCxBmT0IWWxzaJQJy2MIElQgnMQrgcOpmBjyDaq4jNJUgyGOXxfQZJjrOwEVfMZOykIwRQnpJTxOQgXPVR8pDBEDs9BeBIKHGvLfOJ8yOfH7/K8fp3j/hqdYYmgqxENZTTTQddtJCXCTzQmbgotclHMkNgSyZd7rFf3WCvtsZQ5YVU/YF3fpRbsYz8Q2H9W4+BshZf2Ng9S32A/e4OhWSEUFQQhBkEgiUQ02WVBq7MsHpEL+wgjgagnMRlYtPQy45JFtXRKpXBKpjRErIQECwpG1yHb7GGObSzHJWMP2JgcsOXt4C+rBGUFy7XJDsZYnQlmx0VuhAgtYAixB8lEhCGIToxQBGoQXhEZvZshWRdI58f4icKOu8VD5x0e2ndohGXicULRbrMk11lQG1S0FjXxlI3kAC9W+B4/xSfBB7z0tjlxl6g7VerDGiSwZB5T4Yhl84ybNx9wEtZ4+YMrTL4w+bTyIclAQ2gLSEaItTjCajzjmjTklX+Pw0mFnNDkf7b6f+P2zWs8efIE27ZZWVlhMBhw7949fvqnf/o1g4Z597F5/HYRH16G9d6G6S77bP7ZfhlRdRm4fhOTPv/elECcf/bOH3cZ1n0blv264y/uiF88xjCMH7n2Wd1vA+jdbve1Br7uJnwdlX/xnLdtmcyD0zfV8aaBgXMG+OnTp3zyySczNnw+gHPKhA6HQ+r1Oq1Wi36/P2OGZVmmUCiwtLTE8vIy5XKZdDr9mu58Olkv2gxO+/amldXFmzQ/+eedai4CuGmZLjDmdwpevHhBs9mcWT5OQe+8Ln46LvPtTQHplN2eXxzMB2XOO7ZMGfSpHGg+mPRi4qRp/6Z1aZrGhx9+SCaTeW3baZ6xn54TRdFr4wnnAaHlchnTNH9k6+xN4Hde297v93n06BGpVIpyuUwul/sR3f3+/j5xHKNp2msONBfva6VSoVqtcvPmzVkdF9t/W/lxwPn8yv3i3Jl/HfwXf43c0/8EcRP4M+D0TB62bvAr+38W17jN/YLG/2n0Ifsk3Fp+yK2lh1ypvCBr9Gn7ZT4fvsfj4TuzoM3EByEAyxyRSo8wLRsjO0bN+viyguzorJ2csXr8io3DZ9w7fMq106do1ojT+1VG1y2CFQWnqBPJEhM3xelwicet2xzsbXDn0Zf8qZff5Ub7GZrksLe1zrOt63y59g6fVt/jef46tmci92O8wMBLdIpxm/Vol2vJc5aNA5YXjqiap1S6bQrDPiW3S8HvMdAzdNJ56laFjplnFKZpHpc4ebrC97sfk7WGfDP7m7xT/ZxCrYdajRDyAgkCsSASDqDdLnDgX+VE2sTTDUTNI231yaZ6M0Y8Iw4pfQXES7RpUOE4WeKZf51Ho7s87d1CPEt4z/v0XJpivaSQ6SDmI9yyhtIL4TDh5HSFg+4GL7hKLylQitvcTD3m/fwPuZJ7STYzgEJMkgLGAvFEYhhnOdUXOc4u0dFKhKKCEbmogosaeWinHtpZgNLxCRMVO6XTXcvTK+WQBzGJK+KqBqOchZMyKB12yJ31UYYhk9ikK+cZFi20sks2GRO7IuooJNUfUz2us/lij9rZGfnxED+RGcQKo5TEsGLiLKcwLJ9saoiVt9GXQ5R1CLsCzolKt5fn2F/hD5Sf4teFn+Mg2GTgZPFsjdiRiRMJRfcpFxrcyjzmevopS+mvAjWLCVISkz0doLRC4p6E6xkoBGyKu6xJhyRiwqlVo5kvUy8t0M0V8DUVSYjwEpVuUKDlLNBsVTjdX+Z0d4nBcZ7QVjE0m2K2TXGhRWGpfW4xWG2QSo0YNHMcnGxy3FlBsiM2hocsOccYvoPiR0S+SDcp8srY4ln6Bn05R1lsks4M0co22oJHJXvGLe0RW+Eei5MmS+NTliZnFN0uIjGRIoIKkhoRqjJ1ucKetsYj6yY/4H2e2dcJJZmC1SVn9ckqfRapUxI7KARIUYgeeOi+i5lM0GQHXfLwBY3eOI/rnIMBPeWSzo5wPYMwkNEFB0ueYCo2quii4iMHIXIUoroBihfQVko8kO7ww9MPeHJ6m93uJq3hIpN+irgjI8khumkjqwGRoGD7JpITopkesSWRLQ9YWzxgfWGX5ewRy8YRG/outXif8KHPyZMy+yfL7A7XeKR/yMvCPTqpFTwlhUhEIp6DcEkMyesdloRjymEb2Q6J+hJOz6StlhgUMyyWzqgWTsgUB8iLAcGijDr0yDYGWKMxpuOSnoxYHR1xzXmBVI5wlwy00CMznJDqTjA6LkojOAfhg69AuC3CCMRhgkACi5Bsw+CDDM41E63skTWGdMIiz91rPJzcZtffYGxbaGOHnNSjrHRYlBvU5FPWOaQSNnks3eD3wm/yOLjFnr/BmVulMazSHFXIKn1q2hmLYofNpMPxkxNe7PhUFq4RyjWO/AK9cAHHM78KBJ5gLY7IrgzQqzbm4hgrY0MYIfyff4sP7Tz5QpHf++KMajYgmzbY3t7m6dOnuK7L6uoqg8GAd955hz/2x/7YjNicl2rOP3vmwfo/a7kM0P7TsPSXgfX58qYd6HnQfRmpNo8v5iXEb8oLdFkfpvjmsjwswD87QG+3229dKfy4Azb/3ptWXW8D6G/b9r84iNN/+/0+v/M7v0O9Xp8x4vMA3fM8RqMRrVaLwWBAt9vl8PCQJElmkpbl5WVqtdoMyKXT6Vm692m7U2YVXpe1/Lg7DvNjMq8/v+irPS3zQaTz131ycsLz588BUFX1NX381F0G/kimMZW1wB+B4YuLiimonteGT0H69NrH4/GMiZ+2Na+LvwiU33nnHVZXV2fvTxnq+Yyg035OxxTOt4GKxSL5fP61rGZvmr7zbc4D9MlkwvPnzxFFEcMwkCRptvASRRHbtun3+8C5/OmijeR0BwIgnU6TyWS4e/cuhULhrQvUr5NsXZzrb5sr08+TJMFxHFqDfSYnv8P9v/2/Q/6rPgf6Gn/Y/Wu4Qh43dcRIbWDmG4SazCv7Cp/1P2R/fIWWXSbwZIQgRpF8UukRVuorVjxvE5sQhibV5oDNw11Wjp7zzuEzbh48YTE8onGrTPedHN66ildR8S0VP1BpT8rsdLd5fHiL4uMu337067zb+IKi1+JsbZHnV67zcO0mnyy9z5PiLdrSAko3xPc0nNgikwxYiQ65Gj9jXdljuXRILXfC4qhNsd+lYPcp+21cWaOdKdC0yrTMIkNStBslzp4t8f3GxyDDtzK/yb3aDynX2qjVELEogCQQIxKOYNBJc+BtcSpuMdHTiJqPaQ7JprqEX2nEs8KQkthmkToFetRZ5DhZ4ol3i0fDOzzr30RuRLzv/pB78mdspnYopDsI+Ri3rKG2A8JDiaPTdfYH50B8HKWo0ORO+iHvF3/ARmaXdHYI+YTEAEYCkS0xSPKcGDWOsjW6WpFEEDGnQNw/B+JqPUDuRwSiyiRj0NooMrEslF5MFCrYus6wkCaWJBb2WmQaQ8RJzChJ0dMyTCoGZt7FCmxCR0YdBWS7I5YPTtjY2aPaqJO1J0wShYGiMUmL9KpZvKpBynDIWX1SRRttJUJeguBUwK7rdAd59oJNvif9Kb4j/Syn/ioTxyScKESeTCIK6KZDtXjKO6mHbGdeUE2dYuXGxEUBfeKROR0htSPioUwQqOTpsintUpZaDOUMp+kqjUKJs9Iio3SaSJGRCZnEFm2/RGtYpn5a5Wx/mfpulXHjXCeft3qUC01KtSaZWo/MwpCFWh1ZiujUS+wcX6HVq1AadFkfHlC220hhgOTF2LHFsbTM08wNdo1NTGwKehsjb6MuuqSKA26YT7kuPGfJOaM6rrM8OaXitDACh1CVQAFJjUlUaMkljtRlXlhbPDRv8+n4XZr+ApZuU0q3yep9SmKbitAgLYwhSdBDFzNwMEIbQ3LQcIllka5bZDKyiGMRVffJFoYkCHiehpr4mLJ9DsIlDyXxUcIAJQxQXR/NDrBlg5f6Nt8ffMyDwzu8al3lbLhEf5g/l6QEAnrKQdF8EknACU2YJBiKS5wSyZSHLFcO2azsspw7Ysk6YV3bYVncJ3ls03yU5vBoiYPeKs+4zZPix9TzW0yM/Fe/axAnAgKQUodUhRMWoiaG58JAwO3pdMQivUKOcrlJtXBCrthDWfAJajKKG5Cp90kNxhiOR3oypjY85Yb9nLQ1wl4zkcUIa2ST/gqEq00foQ30IPEhtgUYCQjDBHGSQArYgtHHJoM7eZKaQCYzIqWM2ffWeGJfZ3+yhuvoWNGIgt4mUx6iLXp0lTxnbo2JajGQMrTsBcITFfFY4Mhb5niySn1QY+ymyKT6WIUJWsnBzIwx+gGjv/lb5Krv0tfWaQoV+sMMiAl6ZYK1ZJNeHmBVx0iVEEoxgazgCwrFvTa7rQzdtZv8j3Y/JZM5oP38gOC/+QHv338Pt3SV/9dgieHOOu1xjX/96hes+/8tYRiyurrKcDjkxo0b/MRP/MTMuQzenOH9nweczz8jv85g4cexe3yTicibWP1544uLn19W79fhustixhzHwfM80un07PMpEZxOp994LW8F6M1m88cG6F/Hps+f/6YV0sXz3wTS3wTQp4Dx7OyM58+fz5jQaQDiVE8cx/EMlE8Z4NPTU1qtFpZlkc1mWVhYoFarzdK6p1IpLMuauY7MM7+e583kEPPg+eK2zpsm8WUAfT5Zz/y5l7HsgiDgOA6ff/45w+EQWZZnHulTGY4g/FGw5TRL6rSOy2RFU5vDi8GbcA6WJ5PJLCB02lf4o+yl80GrU5Bbq9W4e/furB/T65j2Z9r+RfvMQqEwY7p/nEXh9Jj5baxpP8fjMUdHRzPHnjAMyWQyFAoFTNOc6c8nkwnj8XjWl3lwPl2ITeMR7t69S7FYfK3v0/5ffO9tC4o3zZXLtsj24lM+DZ9QOonQb/6n+IKA71RwY4OB6tN0F/l88B6PhnepT5YYeylwE8QoxjLGZNIj9My5p7ic83EFDbXns7Z7wtXTl9w+fsqd/Sdsdl4yWTOp3y/jbGkESzJOziBCOrcyHKzyqP4O9mODn/7ie3zz+AesDvcYLmR4vn2VJxvX+WTlfR6U7nJkriL1EyJbxo5SaLgsxcdsh8/ZkndYyRywVD5hwW9S7nbITwYseC0QoJ0q0k4XaJkl+lKabrfIycsanx5/yDi2+Cj9T/ig+gcs1BrotQCxJIB6DsSjCUw6GofeFqfCBkOtgKAF6MaYTKpH9JU0JSsOKAkdqpyRo88ZVQ6TZR45d3g8eocX/RuoTZ/3/U/OE/pYr8ile+fSlKKG1vKZHFocnq2zP9zkJdu4oc6KeMy9zBfcL/6Qtcw+VmYEBUgUYCgSuecpz0/MJY6zNXpqARHhq6yaLprtop75yI0IeRzhyTrjvEFzo0QgaEj95JwlNw0GxTSKF7Kw1yTVmpA4MBLSDIw046pONjNG8ULCiYI2dik0BqzuH7G+v0+11cDyXIaoDAydcQbaSxXiskJOH5Cz+lgLLtpqhFQA/0hk0tDpjIo8j27wXfnn+A3+JC1vkdBRCScSYaAiKjFWesxy4ZDb6YdcSb9iIdVAz9vEWZFUZ0KqPkHqxERjGTFMqAqnbMh7qLJHQ61wlqlQL1VoFs9dYgQxQSRmEGZpuyWanQpnxzXOdpdp7FVwhxamOqGcarJQblBcaWJWJmQrfQrlDnEkUT+tsnO2jdsxWO0cszI8wnJtxCAiDmU6SZEX1lWepa8zkLKUpSaZ1AB1wUWtOGyk97ipPGEz3KMyabE0PqVm18m7fUJZIlEFJCVCVBN6SpZjdYldc52X6St87t/l2egaSAJFq0Mh1SWn9KjQpCh2EInQYw8zmGCGNrrgouEiCBH9sMholCbwVWQlJJMfohsujmcgxRGG6GDINrrsISc+chSg+gG666FOzomPA2uFT6MP+PzoPZ7Vb3DYW6UzWsDv6kQDGcX00EwXZPASjdiWMGIHLLDKY5YWj9ms7LBSOKRmnbKu77Iq7iG+HDP4UuZgv8ZBd5WdYJtHuY85LN1imKkQCzKCEJMgksQCmuKwIDZYjOpY3hhplOD1VPpJgU4+T77cZalwRL7YRV3wCJckxCgmWx+Q6o8wbJfUZMJCv8mNyXMqUgN700RQBUzbIdWbYHQd1JaP2OQchHsQO+cgnCGcBVVeatu8Wr7Cs41rPM3dZC/cwI4snv67NwB47l7h6fAG3UkOOQzIaj3SxSFiKWFiGdSTKn3yTCTrfAdqUGLSTTHo5Oj0y7S7JTqD8zwd6cIQMztBL9hkcUiNBILDgO6JSd9eoDvK4vc01Pw5G55aGpGuDZEXA8RKQJwRSFpjCm2HlfYE6+EuC3ZIrVbj794okJgG7/2jH/L097/PRx99RKVS4WHV5Mu+h/MbfdTSR/yh+BHRWIImgIAu+/wvqv8bRFFkZWWF4XDI1atX+da3vvWaU9nbnr/zu91vYrQvkqnzry+Tqcyf8ybcN3/OmzDlm+Qr82D5snbfRphN653HetPX0wSK0zaSJKHZbM7y6IxGI8bjMaIocvv27Uvrhq8B6PV6/Y0X/CaW+EcauGR1cZm26OJFv41Bv3iuIAj0+33+/t//+7x69YrPPvuMTqcDgGmaFItFZFlmc3OTYrGI67qzoFBd11ldXeVb3/oWQRDQbDY5Pj7GcRwymQz5fJ50Oj1zPbkYMBGGIa7rzgD6m7Z75sH0tM/T/19kxedB81TfPj3n4kpwns1uNBo8ffqUMAxnuwW6rs8m4fxEGo1GM7Z/qpmfHjdls6ftTdnnaXDktF/zfuXT92RZfg3cAwRBQDqd5sMPP8Q0zdeuc17/Dsz6pCgKqVSKTCbz2phP59DFOfAm9npeojNl0LvdLsfHx7MvyLx9piiKs9XuZDIhCIKZk88UnE/7Pz3n/v375HK5t7Lkb/rxufj5fLnsexfHMZ1Bl7+19P8kFhOUJCAr9LghPMWJTbqjLX6596f5svcuiS9gGmOWrS6e5qGmfRIToqHM0t4p105fca3+nHsHT7hx9Bgp43N8v8r4hkWwIuOVNQJVwfV1GsNFnnducPRiiTufPOJf2ftdrnZfIpghr7a3ebp5nc9W7vHp4n12MlcIbA1hBE5gIZBQSepshS/ZFl6yltpjqXxMRWyy0GnP/MSN2KVtFehk8jTNMn01S2+Y43Svxuf792naFe5bf8jHi/+E6tIp+pKPWBYQDIEYgdgWcLsyJ+4aJ9ImfblIosdo+uQ8WDOWkYnISgPKQpsqZ2QYckaV/XiVh849noxu83JwFbXl86H3A+4rn7Fh7ZBPd6GQ4BVUlIbP4DDPQWOD/dEmr5IrhL7EprLH/fxnvJv/jOXMEVZmTFI8N8NgJBK6Ml2hyJFZ4ySzxEDNISXJORAXXbSRi3IaIrdDRAdcTWNUtGiulsCTEEcJvqgzSRkMC2lS3QnlgzZm1yH0REZCml4uTbgokdJtEk+AsYg+9CidddjYP2Dt8IDFThMlDBmIGv2MzjAt015eRMpDQeuSTw0wKw7aeoyggX8oMm6atMclvojv84/ln+d3+WmGXp7AlohtmShWkLSQbK7Pan6fd9IP2bD2KKVbKAWf2BDI1QeYDQexmxDbElYyZi05pKI38USVM32Rs0KF01KVbi6Pp2koQkiSCHSDAu1JmUajwunBEmd7y7QPFohDkYLZpZo9ZWGxTn6lg7rgkS4PSGfHBL7M4fEGB/V1zIbDeveQhWELxQsgADu2OFJWeJK9xa6+gcWYot7GyE9QFgOKpSa31cdcFZ5Tc+rnspTJKRW7hUhEoCpISoiiRowVi1N1kT1jnf3MGo/EG3zZv8MgymPpY8qpNnmjQ0nssCA0MQUbMYlIx+fZOPXERUtc1MRnGGfp23lcR0cQY1LpCZnckCBUSEIBTfDOQbh0nrpein00P0BzPPTxOShvmyUeaHf4pP4hj09us9vZojGqYvfTRG0ZUYpRUw6iGhMKCoEro3sOoplglR0WF0/YWtxhtXBANXXKmn7AqryLvDvA/jLhdKfMQWuFXW+Lp9Z9dhbepVtYwZNNRGISQSCJRSQppCC2qUQN8n4PeRIR9hT6UZZOtkCqPGKlcEih1EYru0Q1EWTI1IekekPMiYs1sSn121wfv2AlOiZYUQgzMrrnkerbGF0HreUjNhPonoPwxBFIRgLJUOAkWuKlvM2r3BWeX7nK09JNdpMtjiYrKFLAduEl6/ldaoVj8qkuBb1D2WqQLfehmOCmdBpxla5wDsJdwcD2DCadNINOll6/SKu3QKdXZjDKo+keVn6EUZxgKT3yQYLZFxgeQXdYpjPIMOpYJLGIsWhj1sakawPUqodUCZHKIbEqEgsgxwG50ZjYkvFNCaIY89/9z/kgu8TCwgLdbne26//01REd+SoHQY2nDY0ofZWRn8EbKxACZoJueAQplcgQYF8AO+GbtR0+kv5TJElieXmZ0WjE9vY23/jGN17ToE//ne6mT3OfTKW002f3PDaZnncZYL74+scB95dhz7cRyRefqRePneKty/px2eJg/ln+proajQae56Hr+muYMwgCyuUyJycnlEolxuMx77777qV9ha8B6GdnZ28E6PNbHZcNwptez7PF8/VcZBkv6oPeVKbHfec73+GXf/mX2d/fp9Vq4XnebMJMNdgrKytsb29jWdZsUgH8xb/4F3nnnXde8/52XZfxeMxoNHqNbb2o/54y6PPp6i9jz6fXOM98w+t68svGcn5cptdy2VhPQejLly85OTkBmPU5lUrNFkbTgEjHcWZfsPkES1MQO+98MgW3F+/RlCWf1+FPte/zji+KovDBBx9QKpUAZj708wG50y+2ruukUqlZAqg3rWK/bnF4UVozXVDYts1gMODFixcMh8NZEO3U4SadTs/6PW/5CLx2f0VRJJVKkc1muXfv3oxBf9s22dfN48vK/HVGUcTp2Snf8Y745J1D0sIAOUr4uHuEkxkzfHWPVqDy2+u3GFsKfqSwcNzjxtEr1k52uHnwlDsHT6i4p7TuLtC5ncNZVwlqCk5aRybESBza4xL/3Ze/QOn7Xf7449/mdvshOfocbK7ybOs6D1be4fu1D3iev84gySP1YzzfIExkSrRZi/a4njxlTdtjtXzIgtmg0mlTGPUpul1ywYCukaObztNKlejqOXp2ltODGo/23mF/sMUt7TO+tfhbLC+fYNRcpIqAYJ3rxCNXIOgJnDlLnIqb9JQFIhUU3Z4BcYmYnNinLJ4D8TQjTlhiL1rngX2PJ6Nb7AyuondcPvT/kPvqp2yYe+TSXSgmBFkF6SykdbjIQWuD/fEGu8kGggdXjZd8kP8Bd3JfUsucYGTsc+vCGJKhSOgpdMQih6llTtM1BmoWNQ7R43Npit53kOsxcieCAFxdp7+YoV0rIA8SsEVcWWecsZhkTQqnPYpHXfS+S+ArjOQUvUIaoQqmaOMHGsIQjJ7L4kmDzf19Vo8PqfTbECf0VINhTqOTMWkvL2KmPEpam1ymj7XooW7EJAF4hxLjtkljUuEP+Cl+Tfp5fiB8E88ziMYSoaMQi+f68EKhw2Zuh1upR6yaBxSyHcRihEhC/rSP3nQR+yB4CcWkzbpwQEof0yXHWabKaXGR01KVUTpDKElogo8fq7S9Eu1BmfpJlbODZep7VTpnJUzVYdE4pVo4ZXH5DGN5jFwKSBVG6KbHxLY4ON2gc1SiUm+z0j3CsieIfkwYqnSEIs9T13iWus5QylCR6qRTA7SSh7Y44Vr6OTfkJ2wGByxMWixNzli0G6T8CZ6qgpqgKT6eotFQyxzoq+xm1tnRNvly/A77k3U0JSBv9immWhTULgs0KYhdkgSsxCYTDdBj93weRB5uYtD2Sthj8xyoWQ65Qh9RjAlDGRUfXXLOQbgQIMc+qhuguecZVFXfx9Z0XmSv8oPRR3x5eI+XraucDFcYDAuEbYXEFVFTLpIREokSQaiiTVwkNUYv2VSrDTYXX7FW2qeWPmHFOGJF2UU/6OF9GdJ6meGgsczeZJ0Xyh1eVD6gWdlirOcRiUGAOJZASMjIAxbCBsWgg2b7RH2JkZehk8mjLzisFA4pFlsYZZu4KhBZIpn6iHRngGG7WGOHQq/L1eEOW8EOSRWCgoYaBpgDG7ProLZ9pEtAeDwUOYpWeClf4ZW1zbO1qzyv3GBHvMKxs4yuOGwVdrhZfMJK8YC0MSBr9MmbXdLFAUIxxkvp1FmkR4GJZOEIBmEiEQxVRp0MvX6BVq9Cq1OiM6jgeAZWZoxZnJBJj8gmY4y+D02R0bhIY5Bh0LVwewZyJvgKhA/Rqw5SJUCqBIi5mFgWUSOfdH9IdehTcRLioxbCcZfew5csZ8+lnVI+zfF7NXqfvuLgu02E5Z+iJ29x5uYY+Vm8iU7sCWCAmImQSiFqxSdVmSBtO+jrEzIvXvJv/KMnCKUNfrWTZSM4oRr7XF81efLkMbIss7y8zHg8Zmtriw8++OC1XfH5Z6PjOJimSRAEaJo2UxJMY/TmY8jepGN/kxT6bc/BNxGgF4+dP24eQ7xpp/oyku9NRPTFOoIgwHVdJEmaSYhd18V13ddc6hRFwTCMGcZKpVLcuXPnR653VvfbAPrp6ekbB+Yy0D4tb2LILwL8N4Gsi6z5m7b/p++dnp7yd//u3+XTTz/lwYMHjMfjH9EVTcGppmksLy+zvb1NsVhkeXmZX/iFX5hZ7F1scwryplrzKZM8DZC0bZvxeDxjred9vS/2cyrrmGfI33b8xdeXAfRpmdbnui6PHz9mMBjMVmyZTAZN02bOMlNJSRAEM2bYMIzZtU2Z7alv+bxOa9rnKfM+lY5cdGyZgnRVVbl///5Mdz5daU8TQk13HgzDwLKs134MLttRuDh/3lbmV8bT++c4DsPhkJcvX9Lr9ZAkCV3XZ3+WZc0Cbaegfnot83N2qmHPZrPcvHmTxcXFH7lf8/ftn6eI4nlypKOjI74bnvD374iMEwMn0ZGIiZDA08k02/zs97/DldMd7u0/ZqO5w3g5xfCaxfhDg8myySRnEUsiOi5yGDIeWfhfaKS/a7P08ozypEV7qcSzres8WrvJHy5/yOPibRpqFbGfELgqXmyQpc9ScsT16Cmbyg5rhT0q2SaVYZNiv0fB6VPyO4xVi046Tytdomvk6QUZGqdVnuzd5GnrBleFp3yr8pusLe9jLTnnQDwtkAgQeyJBH1ruAqds0lUqBKqErLmkrT5hrCATfgXEW9Q4w2LCMcu8Crf4cnKPZ5Ob7PS3sboTPgq/z33lU9atXXKp/jkQz8gIJzGnRyvnQHyywUG8jhL43DYf80HhB9zKPWQxfXae3j4PeALJWMT3VNpyiaP0MqepGiMlhR4FaImHioPedZAaCVIvIolFbNOgu5RjUMiidCJi/zyRzyiXwtcVFvZa5E/7KKMAL9IYqhaDhRTKQoSWBDiejjiIMFsuy8enbB7usXp2RHnQxRckemmTYUblNF9iWC2QNUaUtRb5XB+z6qGuJ0Q98I5lRl2LI3uF3+FP8GvKv8aD5B6Rq5CMRTxPQ1ASNNOjVGhxLfeM66mnLBtHZHIDKCaotk/htI/W9mEoYPgOi5yxLB4T6zINsUQ9V+GovEyzWMY2LAQhQRM8xmGKtlOi2apQP6mdp7XfreGMLYpGmxXzkNrCCeXVBlI1QCyH56nfdY/OqMjR8SrCvkitUWeh30J2AggFJnGKA3WNJ9mb7OkbpIQxJa2JkZsgl31qpWNu64+5ysuv2PAGtUmdotsllKTzpD2KD6pAR8mfg/D0OgfWCg+d2zwbXCUWVNLGmEKqTcFoUxLblIU2uuAgxAn5pIcVT9AjFzV0CSOZTlhmPEkT+jKq7pErDDAM5zwzbByhiy6a7KIKPlIcoLjnchRz4KC5PrEkcJhb4Yfi+3x+9B5Pz25y0F+nPaqcS1L6MrLpoxgBiSIQxAryxEcRQrSCy+JSg43FXdZLeyxlT1gyj1lTdjBOu3hfhIyeSxycLbM/WueVeJPnhfc4Wb7JMFUhFkREEiJEQECXbMphi2LQxnJsGAqM7BTddB65HLBaPKBUaGKWJiQ1CLMyqcaITGeAMXExJw75Xp+t/j7X7KfICxFBWUNKYsyRg9Fz0NoeUiuBDiQuJO65HCUcSRyEa+dMuHmF57WrPF+8xit5mxN3mbQ2Yi1/wPXSE24VH5Kyxlj6mLQxIJUbIpQT3JRGk0U6FJhIKRxBJ0JGDgLsrkm/W6TVL58D8V6F7rAEAlj5EansmKzUQR+PoOHjjiwG/iKjcQ67e+67b1RsrNoIszZBrvjIiwHSQoBgJUh+QLrXY92BfN/FfnGIeNJF60yQ/POEgaurq2QyGV7t7LLbVThhmyYr9KUV+l4WZ6IT2eeBxEI6Ri6FyAs+mdKYwsKYRXZYmTQoTQKGD56zXVigVCzyyVqaF7hkfvk3+WBjm0KhwPPnz0mlUpimSaVS4cmTJyiKwtLSEuPxmPX1de7fvz8D11MyEpgB9CkjPN11nj5Hp6B9uhM/lYcmSTKLU5uC+Onz9E3a8YuS14vP1K/bfb64A33Z+ZcB8LeRgBfb9DyPZrM5Mx7JZrPkcjlM08S2bVqt1iyZ4+rqKpqm0e/3UVWVa9euXdoGfA1APz4+fmtQwNvA+mWvvw7sz1/4m/69OGBxHPO9732Pv/N3/g6//du/zWAweG3wpsBy6ls+1Wevra3xl//yX+ZP/sk/+Voq24tWjxc12heB+zS1vW3bM7b9oiPJ1OJxCsan/Zq2NwXd857fF6/3osTjbXKKfr/Pq1ev6HQ6r3mZz4PdKbCe9mEKii9LdjRt87IFxJRhn74vSdIMoBuGwXvvvcf29vas7XkbyXlpzfzKdn7cflw//MvKRYA+tYYcjUYcHBzMgkGni4RptlDTNH8kQyj80fwAZt7p6XSaGzduUK1WX5P6vG31/aZy2XdtujOyu7vL0dERn62K/MYtmW6S48RfJkxkVkZj/lj3GT/78P/CZriLv6gy2kphLxvobZeUMEbLOmROBuR/zUb5YUzUShhkc7zc2ubJ+g2+v/IhXyzc5dDaIB5LxBMJJzIxsalyynb0nCviC9YzuywVzyh7bUrdLgW7R9nrEIkSrXSRdqZAxyzQjzM0mos837/Ko/pdFr0Dfmrhu2wt75BatpEWE8SsCCLEgUDQh4Gb54R1OkoNT1YRdZeUOSBKFKQkIif2z9OKc4qOxwlLPA2u8XByj+fjG+wNtkj1x3wc/D73tc9YM/fIpfokxYQwJRMdixwfrbHf3mTf2eQoXCYVj7lrPuDD4ve5nn3MQrqJlvXOPcTtcyDu+RpNpcxhZoWzVA1bMTECDw0PLXbQui5CI0EexESCzCRt0F4pYGsmSicijBUcw2SUTyHECZXdJtnGAGkS4cY6Q8tiuJhCy/tIUYLtGoj9hOzZkLXjIzaO9lltHlEYDZgoKp2cxTCrsVdYxl9IUVY7LOgNcvkBxrKPspQQngl4JxLDXpoX7jV+W/hT/Jr6r7EbXyG2JaKJRBBqiGqEmbIplxrczD7mqvGcmvVVoGZOwOrZ54uGTog0jsmGA1aSQ/Jqn6GSpmGUOc3XOFpYppfN4yoaihCgCCF9P0d7VKbRWOTscIn6XpWzwyVkIaSmnbKe2aO2eEx2vUtSgSQPkpIg6QHN/iLd3RKp/Qm1Zp30cAJ+QhAqtMUyTzM3eW5dPWfD5TNyVg+16JEqD7mZecJ1+Snr/hGLdoPqpEHFbiAnEZ6qIqkRshIyVDOcaDVeWZscZpd56l7j0fAmgyBPSnfIWQMKVouC2qFMi7zYI4pFzNimKHTRIwfNdxDCmE5YZujl8RwVWTrXhWezA6JYQogSNMFFlzxU0UciRHY8DMfFGrioEx8pCWhnyzxM3+aHrY94cPQOu90r1Ec1Jv00UVtBEBOUlIegJQQoSG6I6gWoOZfKcpP16h4b5V2WcsfUzBNWtV1S9RbegwjvScTJcYWD4Rqv4ms8z97naOWdc0mKZCARESOSJCKy5JMPu5SCNhl3iDhKsMcWXSsHZVgt7lMuNLBKY4RajF9UsVpjMu0B5sTBHLvk+gNW24fcnjxGL3tERZlEFjDGLmbfRW17yK34HIQ7X4HwMfgjlf1w/Y9AeOUazxeusqNe4dSvkdWHLOeO2C6+5P7CDylbTTTNxdDGGAUboZjgpTUaVOhSnDHhAQp67MIkYdDN0R4s0Ogs0uxVaHSqTPoptKJHKjckZwzJxAOk9hAjKdIcWXQGaSa9FG7bOLcsrI2wqhOUqodS8ZEWA6RygBL4FG2HTTcm05wwerqP0hhgDXwIzkm8u3fvAvDw4SN6vsUxW/TMNK1kifpgncnIJBif/zYK6QSxEKIs+KRLNtXKmKp6iHL8kGxvxFU1g9Du8199+99it1RDn4z4K3/vP6NgmhwdHbGyskKxWGQ8HtNsNun3+1QqFQqFAq9evULXddLpNKVSiSdPnqCq6kzisra2xr1792Zxe1NQPo3bGwwGKIpCNpud5ZCJoohCoTDbEbdtG0EQME2TJEnIZDKzzOZTm+V5Y4n559788/biM3L+2Pln9PxnF/HlRTw3/ezHBehfJ8tpt9vs7+8jCOcW1gsLC+RyOSRJwrZtDg8PKZfLbG5uzo7pdrv/7BKX4+Pj1wblbQD74gW+SY7w47Dwb9OdXyxxHPPZZ5/xN/7G3+Dg4ABJkkilUiRJwmAwoNVq4bouwGx1N2VNv/nNb/JLv/RLbG1tzaQf8z6f0/ovAvOLEpwp2J4Hv1OpSL/fnwUcRlH0mgPJFBTOJxOar+fiVs2PC9ABhsMhr169ot/vzxYO0+uZH7t5Vn7eDnGe7Z62OT1mHvhedHaZatBLpRIffvghKysrs5XyZff6TeD8beVtMpJpHRfv23TxMQXop6enjEaj2b2b/k0DiS/el/ldjqksyLIs0uk0d+/eJZ/PvzYuP+78nfZ/fqE0f6+DIGBnZ4eD3ieI3/h7kAh82fkpBpZMYLlsxXusJ/uAjNIQqT18SfqTAekXPn39LmuPfptJ1eL51Ws83bzOJ6vv8+nifV5mruIEJsJQwA1MJEIWqLMV73CNZ6ybO6yUjs71su02hXGfstdBSQJaqSLdTJ6WVaQnZGn1y7zav8KDk3ukxn3+WPE7bC8/I7M8Rq4mCHkRQYI4FAgHMHLTnLFGR65iywaC5mEZYyIkJCLywhSIn6HicZQs88S/xUP7Li/G19kbbJIdDvlG+PvcV3/ImnlANtUnKUJoSXiHOgfH6xx0NtlzNjgNquSTAe+lf8iHxR9wLfPsXBud84nTkIxFkomIF+g0lDIH2VXOUlV8ScMIPFTBQwtt1E6A2EqQRhGBpDLOWzSXC0SxgtyN8QUN2zIZFdLoI4fKbot0e4TgJLhoDDIp7CUDzfKJQxnHMRBaCaWzLhtHB2yc7rHcOiHrjBmYOt1CinY6xV55HaEgsig3qBgNssUhxmqAXEwIDgXcM5l+P8MD7z6/IXyb7+r/Ko2wes7y2xoRMpIeks4OqRbPuJV5yJb+ikWrjlZwSUzINoZk6yPkbojueBSjDqvJEaIe05OynKUrHJZXOC1VGaYyRKKEIbgkCHTdAs3uAo3TGmeHNep7NTqtEjm1z4a+x3p+j9rKMeqKQ1CW8E0dUYqINZF2a4H4uUz+aECh00WdBESByDjJsK+v8yR7i31tjbQwoqw3sLJjlKLLWnGfm/oTrvKKqlOnOmlQndRJ+2NcVSdRQVV8bMWgoVfYNdfZza6zF67zYPgOZ+4imhKRMcfkUx3yRpuS1KZMC4kQKYrJ0icrDNA9B8kLGAR5elER1zYgSUhnRuTyfWQ5JA5FVHw0yUUVfWRCRC/EmriYfRtt7KGEAbZp8HJhix84H/PFwX1etK5yNFxjMMwTtlViR0RJ+YhGTCRKCEGM6gSolkd5qcl67YCNhR1W8kdUrVNWtF1ynQbOg4josUdjP8dBf5Xd4ArPMu9xtPwOrcoWYzWHREwCxImESEQqGVEK2uTdHvI4wh3r9I0sYVFipXRApVAnVRoiLsb4Cwp63yHbGmCNbIyxQ7Y/Zrl9xK3+E7LFIVFRItYkdNfH6DtoHQ+5eQ7CsSF2gYmAO9LZizZ4KV3hlbHN88WrvCheY0fdoh5UyZk9arlTNvK73C1/wZXMSzTdRVVd1JwLpXMQ3mKBNqWvmPA/AuFa4OCNNNq9CvXuIq1+jXp3kU6ziD/SUAQfJYhIJgnBWCX0FUQ9wlgbI04S3LZJOFLQyzZWbYxWdVAqAfKij7zoY6guRdtlqW+Tb07QOxPE0x45D2RBnMkzwzCk3+/jxAYH4Sp7bpWToELHzzMeG/hjiXK6yebGLpubLzHyNr9a/7NkMw4r6Tor4QnZ7gC90acUiQimxaCwQMNIcySpNIw0/WyRVirHSD/P6CrEMf/+P/y/U40D6vU6q6urlEol8rlf48a1v8sffH+V5y9+gdXVVZ49ewZANpulWCzy6NEjdF1nZWWF0WjEysoKd+/enTHfrusyHA5fwzae57GwsECSJHQ6nZk8VRTFmeRjalesaRqZTGZGzE2xkGmaPyIdvvhsn5dEz+OF6bPyoi78Is6cxxcXMcabsMdlpORl+GR6n13XZTQaIQgCk8kEy7LI5XK4rksulyMMQzqdDltbW8iyjOu62Lb9zy5xOTo6ulSWMj9wF8H5m0D3m0D6ZbY5U4DzNgA//9p1Xf76X//rvHz5knK5PJOajEYjzs7O6Ha7tFotJpPJDHTKskwmk+Enf/In+Qt/4S/w0UcfvXbz38R8zoOwi2DsspXY9P157/DhcEir1aLX68307YZhkM/nZ9Z/l4Hz+Ul60S3ksonjeR4nJyccHBwwGo1mmuqpG8tljPb8v9NV8Px4TIHuPCs93y/Lstja2uLWrVuv2QddJlG6uKPw47Ll8zsal92n+ftyUeIy/XE5PT2l2WzOtPVT7dzUpWcKzuf/pjshmqbN7JHy+TzvvffebIF3MSL8sujw+XLxHs/f+yAIODk54dmzZ8Q3vouy/fR8nAcCCw9baMcCxncHyC88FjptIktmf2uZR9vX+Xz7Hp+sfcTL4nW6Sgm5F+P7GnEisRwcURVP2BB3uaK9ZL2wR9FoU+03KI275CZD0uGYtlGgm83TThXpyVlaoyI7R5t8efoeUsvjJ3Pf5fryY3LLI5RajFAQERSII4FwCLZj0mCZtrzERLZIVB/TmBAhoXwlTVkQzhlxhZCDZJWH3h0eTd7h5fga+6MNcoM+34p+j/vaORDPpAbEJQg0ifF+hsOTDfZ7G+y5mzT9BSpig4+yP+C9wg/YTr+kmG4j5UMSA5KRSGyLuIFBXatwkF2lkVo89xAPPFRc9GCC3I4QOwmCneCrGsNSmna1gDhKEMbgSTqTtMU4Z5FtDljYa2N1JyTe+We9QppgSUbRYtxAwx3piPWE2kmdjdN9Ns/2WO6cogcevaxFt2Byki5zUNnATLnU5BMqZoNseYSxFiIYCcG+gFtXaA1K/CD4Jr+hfJvfUX+agZcnGUu4rgHSeUKSfL7LUvGY26lHbGo7FNMtlGKAIMTkz/qkG2OUfkjaHbMY16nQYGxY9NQcJ/ka++VVWvkyEz2FKMSYoo0XabQnfyRLqe/XODtcwptoLGknbJk7bJZeUVxpIKzG2HmDiZxCkGN8UcM9slCfhxROu5h9F8FL8EKNplThaeYmL1LbDMUMVeWUvNVBzTuUSm2uWc+4oT5jNTimOmmwOKlTdjoEkkyoychKSKjItNUiB+YKr3KbHAhrPO7fYGeygSQKWKZLzhqQM1sUtHNJSkYYEEUyZmyTF7qkwhGq6zLxU3SiMhMnRRyIWNaEXLGPadhEoYRMgC56KKKPQogYhOgj5zxQse+ihAGRInC8sMSn+gd8evQBT85ustffpDNawOsZRF0ZyQiRrJBYFhGiBNnxUSWf8mqL1dohWws7rHwVnLmi75Pvn+E8TEgeOwxeqRx0V9j1Nnlp3mV/6R715Wv0jQogIAgxUSJDEmMkDsWwS97roE88/KFKX8viFTVWigcsFs5IlwZIlRC/pqKOPLKNPqnRBGPikhmMqDXr3O4+ppTuEi+KRLqI6gYYAw+t6yE3I2gDzlcgfCxgj012o01eyVd4pX/FhBevsats0QwXKJhdKrk6K4VDbhcfsJ19wYLZQlQCpEwAJQEvrdIUynQoMxZTuKKOj4qWeFjBBMkP6AzLtPo12oMVznpLnJ4WGbbS4IMcBQhOROIo+I6CogWISoAgi0SBSDiSEaSYVHWEXnNQFz3kqo9S8bByNll7xMJJl2xzhNYcYXZtlIFLPBd7NTNCSFROkzVO4jVa8hpNr4DtpAkmCgupBhtru2xs7LC1+pKtxVds5HdZSR8iCTH9UYZMdoSKx/FZjb/1t/9t+rkS/XyJfq7EIFeily/hGBbpUZ98v01+0KUw6FIY9SiNehwsb/K77/4Utw6e82c//21Mw6eQ71AsDigUutx951cRxZg4Fvivf/k/QFHXOTk5wfd9MpkM5XKZhw8foijKzGZxaWmJu3fvzjKmT6/ZdV2azSanp6d0u13y+Tyaps0WBFEUYZom9XqdxcVF4jimVCoxmUxQVZVcLjcDsVPC1DTNmQHDFI9EUTRzbpvHGFNnusvKm5QWFzHOxeOBN6oHLjv24nm9Xo/xeIzjODiOQxzHHB4eYts26+vrlEolNE1jZ2eHmzdvUi6X8X2f8XjMBx988GZ88DaAfnh4+EcHXgDVXydhea2RS1Y0868vgvSLEo+3SQSmLO6v//qv8+WXX85cN4IgmK32pu4sz549o9frzW6EZVncunWLP/Nn/gy/+Iu/iGVZl/Zznt28qLGe3zK5TBJxcYzmy1QiMx6PGQwGjEYjbNum2+0yHA5nfbQsi1QqNfNgvzi2FwH6/EJhurJ98eIFp6enMxb5slXk/EJjHrzPHzPPls+3LUkS29vb3Lp1i0KhMAu4nV7nZffx4i7F28Zqflznx2/+Hl3c2ZjKQ+D8S+S67uyHoV6vc3R0NGPRp9KWqX/8/LVPA2in7Po0mDWXy7GwsDCzjpz2ewrS5y2cLlu5T6/14hybntfpdHjw4AGO4zDWnyL/6cf8Lf49pJOE//I//HfYq67xB1c+4ofZ93myfIumWUEYCYQjGR+NhaDFmrfH7eQB1dQpq6UDStkWlUGL4rhH0emR93qM9RStVJF2ukhXzdJ2i+yfrPHF8Xt4pxLftL7HreUvKaz2UWoxYlFE0CCJBcIROI5GmxptucZIyhCrIYZ+DsRlIvJCjwWxyRKnCCTsx2t86d3jsX2bl6OrHI43KI66fCv6He5rn7Fq7JNJDYlLAoEi0t0rs3+6wUFvg313k3ZQYEM+5OP87/Nu7jO20jvk0+cJgBL1KyD+lUTnTK+wn1ujaS6QCNJXjLiL7k6QOzF0zwMZXV2nt5Clv5BHaQckjoSrGoyzFq6lUTrqUjpsY/QdkkDAVjQGCxmiqoQoJkyCNE5PQz8LWDk+ZrO+z0Zjj1rvDImIdilNN5tiJ7vK6cISBaPPsnRMJVUnWxmjr0Uk0TkQd5oqJ6Ml/kn4x/lN5U/yQ/VjJk6aaKziBjqiGqMYPsVSm7XCPjeNx6zre+eZRYsRihtSPO1iNW20oU/OH1CLjzFFm4GRpWsWOCguc7iwSiedx1N0VHxM0WEUpGkPyjTqi5wd1agf1GieLaLFHlvqDtvpF2wtvMJcGxEuC3T0ErZsEosiQagiv4oxd1yyjSHSOCYMZMZJmh1jiyfZmxx8xYZXzDPS6QFGfsxmfpfr+nO2hVdUnXMmvGK3UKIAV9cQ1IREFhioGU6MGi+zm+xpG7zob/NscBU/1rEMj3RqQt5qkTM7FKUOJaENybm1aJYhubiH5Y7xbZl2tMgoyOK7Mrrmki/0SKdHCIAYR6ii/xUTHiCGEfrQJdUfY3Y9VM8H8f9N2p8GS5Kd993YL/esfa9bdfe9l+memZ4NA3AIgRAJUtAalGVT8vvaoXi1WCG+fikp9EFhhUJhyxFiMBxyiKJsUqZNSw6JNuFgkJRIkJRIEBhggJnBLN3T692XurXc2iurcs/0h+os3L64PYDkE9HRdauysk6ezKr8nef8n//j0SkWuF+4xbvdN7l78iK7nS0aowXGgxT+uQKEyCmX8GkNM8VykAOfUvWcpaUTNuZ2WcofMZ8+YzF2QtE4xbrn439iYj0JODmvcmBtsKPcZH/hVZpL12lnFnFFHRGfIJQIA1ADm7Q/oGB3SUzGeEOZkZxiUoixUDyhmj8jU+gjz7k48wqy45Fp9EkODeJji1R/xNx5i5utRyzoNfwFiSAmobjT49Y6Nsq5P42Ej5/qwscCIyM1hXDpKYSXr/G4eI19eZ2OX6SQaFPOtqjk6lzPP+Ba+gmLyRN0bVp52CtIuKmpZKn9FMJNMfYMhCf8MRMzRmu4SGuwTL23zEmjQqeRxupryF6A7AVgithjCVkNkHUHlCmM+mMZz5DRcyax+QlaxUKpOigVm3jeIBf0KJ6ck6710NsGWnOEYroIT+8ZF93ZQkGmFS5yGq5SCxZoeSVGZgpnrFDWm6wtH7C+tsv68i6blV3WClMIFwgZjouM+0WsTpb2cJ5dc4PjcINTscR5Mku/KHMcr2KGMXKmQdnoUxwPKRl9SuMhRaNPbtRHCr5Xl0OWTbKZNpnMOelUi0ymTTbbJpftoGkWg0GOh/o1PonfoGI3+bPS72LbGv/6l/8eti3O7meCIMxy8MIwJJ/PY5omxWKRGzduzO6t4/F4di81TZPz83Pu3bvHtWvX8H2fdrtNJpMhlUrR6/XwPI+lpSWCIKBUKrG3t0e5XCaTycxW3iOJTCwWm+nbk8kkQRAwmUzIZDLP2DdG77kK0i/e/y/yz8VtLwZgr3r/ZaaLnOo0TXuGOyI+uswlruvOVugnkwmmaXJ4eIiu6/zIj/wIu7u7CILAysoKpmnSaDT463/9r1/JO/ADAP3o6Oj7QCJ6HLXLyZ7Pg9JPA/Sr4O15gH7VdsPhkG984xs8fvyY4XA4A1/LsmYDOxqN2N3dZW9vb7a0IEkSCwsLfP7zn+cf/+N/PNNOXdW3i89fBNXLk4mr+nhVi8btYrQ6eq/neYzHYzqdDo1Gg2azyWg0wvM8YrEY6XSaWCxGLBabzUAvjsfF/kQXkWEYPHr0iOPjY/r9/jOzf+D7/MyjPl2lEb/YX03TWFhY4MaNG8zNzc2+8BfH6Kpr4CKcXwbX/xpAv3j9XTz2SFYTHVMQBJimiSiKs0nQ7u4urVaLIAhmY3kxQh59pqqqs9eA2TbZbJalpSVu3rz5jATmqglaNL6Xf0Se98+yLD766CN2d3dnCSXvfull/vP1LRAEVNfhxf1P+Fh/ieFZgYLX5nX7AzbEBywXjqkUGhTtDpVOi4LZJecMcCSV81SR83SeXiyDJWiEo5BRPYN7JBF3esSLI1JLY9RFH6EoIk5X8/ENAdNUaQdlmuI8YyVNoIKuTwgvgPic2GSeM0IE9oI1PjJf4cHkFnvGFsejFYrjcz4ffJ072gcsxY5mIG4LMs39eY4aaxwNVjkw1xm5aba0HX6k8DYvpT9iNXVAJtVDzAWEEgRDiWAiMQkTnOkVDrKrtONFxBBino0qmOiTCWIHhD6EnoCZ0OlUchiJJNq5i+cpmHqMUS5JIInM7bconHZRDYfAE6dFfpaSBHmBMJTpexnMRozs2ZDV0xPWzg9Zb+1THbRwVYH2XJpmJsujzBa9YpGq0mBJPqacbpGuGmjLAcEgxD0SmJxr7Iyv8fXgT/N19ce5q7yEY+jYkxhuoCJpPlrSolRqsZ7d44b6YDpmuSFhFuIDk3ytR7xtEjcmFL0O814NX1XoxTK0UgX2yuucFeYZxjP4okhMMNFEh76Zo9Ut06hXaRzPUz9aYNhPUxQ63NAeci37iOXKAfKyw2guQVOuMpF0bDT0oYu+65A4HKN1HISJiBnqNKU5HqRf4EnyGoaYoKLWKSZaJDJDqrk6m8ldriuPWXRrzE+mloVpe4ip6oSaQKAITJQ4DX2Og9QqO8kN9kYbPOxeZ+SkiekOiYRFJtEjneiQ0zqUhDZxYYznScRDk2zYJ+P0EQyPjlNmQB5roiFLHrlcj0x2gCK74IMiuKiijYKL6Psohk26Y5BoT1AnLiIeZk5nr7LFu8EbfHD0Co/Ob3AyWGU4zOF2VIKxhJx0EWIhoQiyPS38ky91WVw6YbOyy0rhkPlMjfnYKXPmMZP7AcE9E/+xRb1e5HC8xp50nZ3512is3OS8sIYhp5FCf1rdNpRQfIe4NybvdklPhoRDgZGQYlyIUy2eMZ87JVPooc45uAsyQhhOIXwwIjE2SQ3GlFstrp8/YSU4IlyW8BMisuejjxy0noXc8hE6gDF1SMEQ6E8y7Hkb00i4tsmT0jaPC9fZV9bpB1mKiXMK2TalXIvN7A7b6ScsJo4pxNpTCM/LOGmVtlTkPCxhiKlnIDzpjol7BoIf0huXaA5XqQ9XOagv0WxkGZ8n8EYyiu8jOuCMJSQ5REt6iJqPT4Bvirh9hTCERHWMXjVRKg7qnEWsOCantpk7O6NwNiTZtUgObOLh91bSo9/u6b1OouXm2TGr7NsVTq0c/XESy5Apaw1WFw9YW9ljY2WXjeoe64V9ltJHEIqMzDnsUQmnV6A/WebIvcaBv0pNLlHXktS1BHUtwVBRKdomFcegGA5JCWMGxZBmUUQSAt7Y7fOTH/ee3sdMEokmyUSdRKJBMtEgkaiTTDRQ1RETs8h4XGFgVDlwttkNtjmSVzlVSpymUzwu50AQkH2ff/vH/4JOZwHD0GfVwx3HYTKZTFf2Ezl+6yf+JoIk8T989FtsxyU2Nzdn+VWDwYB+vz+TZ/i+z8cff0yxWGQymdBut5mfnyefz3N0dEQ2m2VhYYFutzsLnJbL5WeCYFHQUdd1Go0Guq7Piv7Ztj2Tjkb3dNu2icVis8j6RSa7StUQad0jX/IocBhV/r4M7Jej5KPRiNFoRLlcnrFKZHCRSCRmnHAxfy/S5nueNzMRefvtt9F1ndu3b3P//n0WFxdnmv2f/dmfvZJ34IfUoF8FUJch/eL/l+HkefB+FZxfhrPL7734eiRveeedd/iTP/kT6vU6h4eHtNvtmV3fwsLUKxSmbi8ff/wx7XYby7IIw5BkMsnP/MzP8E/+yT9B1/UrYfvyhXDx8y8nHFyE4ssXz1XHeDkCfzGSevH16IIdj8f0ej3Oz885Pz+fWRVGkfZUKjVLurgcnQ2CgH6/z8HBAYeHhwyHw5l8I3Kiuay3hu8VILiY2JrNZllcXGR9fX2WCHF5NeSybOUiSEd/X06ofF67vE00Lpc/8+J2UQT9ohwnsnccjUbs7e1xcnKC4zgkEokZmMfj8dm1EEVQLhYqimQwyWSSzc1Nrl279lxXmYtjd3H15fJ1dvF8BUEwXfF45/f57N3/J/3EHF+9fYuta3u8I7+JjsWN8Q5hIUDIhSQxqLTPKZpd8lYXkXBa1CdZoBvPMVZiBAaMmhnsQ4W40SNT7BFfnKAsBIhlETEBhOBNwDJ0ekGec6XCQM3iSwK6bhIKElLokxd7zAlTEPeReOJv8pH5Kg/GN9kbb3FqLFEZN/lR/oSXtQ9Zih2TSkxB3Ax0zvYXOWyuczxYY89cw/FVbukP+JHCN7iducty8ph0aoCQDwiDKYj7psyYBLX4PIe5FTpaETnwiXk2imCiGxZiN5yW5EZinIrTns/jCCpK28cNNcy4ziifQrZdKrtNso0B6tjBD6Wpt/hyHNIiTqDTsfK4JyrFepeN2gFr7UPWOgfMjc4x0jqdcoqjTJVHxWtYqThL4gnLyiFz2XNSCxPUBR+vDu6pyOg8zt3JHb4ufJFval9gV7iOM9KYWAlCUULUPBIZg7lSg630DteVh8wnasRyE0iGpFoG+bMe8a5FajJizmuSD7oYepJ+PM1pboG9yhqtTJmxlkAiICGMEQloG0Va5xUatSmIt+pzeIbCqnzIC7H73Mzfp1RtEC4H1NNVGnKVsRjHt2Wy5wMSeyaxUxthCJ6jMCDNbmKLB+mbHGvLpMQRlXidTKpDMdNiNX3EtdgT1jmYRsMnDYqTDr4k4WgKgSpiKRodrcBRYomdzAZ71gYPW9fomAVkGZIJk1TCIJ3skE70KEhtCkIXP5AQfY90OCLn9tAnBv1xnr5QZGwnEIKAbKZPNtsnFjMhABlvFgmXQw9p7JI+H5JsWqhjG8l3CRICpwuLfJh6hfdrb/BJ/Tb7/U06w9JMkiJqPmLCJ1QEZM9Fdh1yqT4LKzW2qjusFg+mEB6vUXGOMB96BPdsgkdjuqdJDker7Aeb7FZe5Wz9RZrlDXpaGTEMgRA/lJE8l5hvkXb65KwB4ijACOIYuSRzxQYLuWcL9oSqQLoxINUfkTAmpIZjiq0O240dNu1dWBEJMjKS76EaDlrXRjn3plUzDQgdCA3oTvLs+ZvTSLi2yZPi1hTC5XVGYYq5RJNctkcu32E1e8hG/AnLiRPK8SZqysTJK7gZlY5U4DwsMRJTmGIcBxU1dEi5I5LuCDEIcLwY58YyZ8M19s7XqdWK9JtJ7G4MwQLJC/EnIoLAFMLjPqHkEbjgj2ScnoqWsdGrJmrVQqs4pCo2SyWba34P7f4R7n4NuTkkIU8DK1Fl7YtVwId+mgfGHI+NPAeTLO1RgslIoazWWa0esL66x/rSHuvzu2wU91lMHxOGIoZZwRqV8foFeuMlDpxtjoJVTsQCdS1FI5ak8RTCy65N1RkzJ4xJiWM0xSZUPQzVoxMTGSQU4rZPfmQTE8b4uRHXgkf82fa3WfeOSSYbaOoAyyownlQYjec5dK6xL1znUFjmSC7RjCdoJWOcx3VU32duYlE1HeYmNnOWw2+tVqjHNX6k3uXvfHKAJYj8n6ov0ZR08vdMjoUMbyQPQXX5ILdKPZaDMOQzu+/wp977bUqlEm+++eYziaCRC9toNKLRaHB0dMRgMCCbzbK5uUksFuP8/BzDMKhWq4iiSCaTAb4XVEsmk7OiipGL3HA4nFkdR58TyX4jl7woyJbNZp/JkbsM6FFgzrKsWVJqdO+N8hSv4pGoRUmxjUZjlrMYGUdEibKKopBOp2fQPxqNZqyRTqdnQVZJkjg7O+PBgwecnp6iKAo3btxAlmUKhQJ/7a/9tedyzw8sVHTxwD+tXaVPv/j4qsH4YeH88n4iCDNNk6985Sv8/u///gy8Dg4OZkJ9mCaGrq+vs7S0hKqqfPTRRzx58mQWNS0UCvyzf/bP+NKXvvTM/q/qz1Xt00Areu5ylPh5SzPRfq7S5V/ed9SiyPBwOKTX680ytSM5R6SrvlhoCaY+6N1ul3a7/cx7LiZFRn1TVZVkMkk+nyeXy5HL5chkMs8s+0Tn5HJk/CqLpIvP/zBwHrVo/5e1ZBcnRBev1WhSEoF5NM7j8ZjRaMTp6SkHBwczuyNN02aJHVHiysXzquv6bPYP09WDra0ttre3n5vgcvH9F/XwFydll8duNBrx/vvv88Lb/4Scc0r+rI9AyMP/YQunopI3ehTMAVpg0dHydDJ52ok89USJk/wCgSUh7PjMffuUUqJBbN1EXQoQ50SEJAgC+CbYhsLAy9GUq4yVNI4io+oOoSAghT45sUdVaDDPGQ4qD70bfDh5hUeTG+wam9SMJebNGl8Qv8ZL6kcsxk6mIF4SGVkJTg5WOGqtczRc5cBaIwgkXkl8l7cKb/NC6h6LyVNS6SFkQ0JXmIK4JTMkyWlykcP8Cn01i+p5xHwbBRPNsBE6EBoCgSQxzCZpV3OIYwGhD7akYSbjGNkEyd6Yub0W6fYQeeLhCRLjQpzRUgJiAmMvRWtURDiG6mmLjeY+690D1jqH5Cc9enNJzktpnqTXeVK8hhQLWOWAVf2AUr5NcsFEKQe4h+DWRDrdHO+bb/K2+GO8o79FLVzGHCYx3RiiAqLqk8n3qJTrXI89Ykt9zFyqiVqwEKSQbH1A/qxPvD8hZ/WZcxsoeIySKfqJFDvlTY5LS3SSBRxJRcUlJY1wfJV2f+qW0jidJmr2u1litsV15TEvxT9iu/iY9HwPc0FlX9+gKc0xDFPE+xaFZo/kwRixBf5ExvJj1JR57mdusZvYwhATVNUziukWhdQ5y6lj1hL7bKk7LLr1p5KUFqrvYur6UwhXGagZThKL7GdWeRJs8/j8Gs1+iSCQSaZN0vEJyeSARKpHTu9RpI0mWHiuTCyckPX6ZKw+k0GcblBkFGbwbZFMakAu1yeRMBCFACn0p4l/gosUekiWT7I1JHM2RhvZSI4Huk+vkudB9QXeHbzJR8cv86hzg9aoOpWktBXwQUp5hBpIgYfsuaT1IYuLp2wvPmG1dDB1SEnUqHjHWI89/Hs2PBozPoCj/jJ7/iZ7hTvUtl6mWd2iHV+YOq4Q4IUSohug+RYp1yBr9VANl4k7tdosFNss5o/J5zvoZRN/XsRPSqSaQ9Ld4TQSPjIoNjtsNPa5NnqMvBjgFFUk30ebOGi9pxDeAUbTSHg4hvNJ6RkI38lvzTThZhijkqyTyfZI5wfMZ2psxndZih8zF2uSTA3wCxJ2RqUrRxCexhRj2GiooUPSM8g6PSTfJwhVRk6BmrHJbnuTg1qVTiOD3YrhDFVENwQbQl9AS/rISQ+0qVVvOBFxuiqBIxGbm0pStKpNsmIzX3Z4I+/wRiix4KkUPQkp/F6w5lvf+hZ7e3tUq1WSySRWGOeRUebxpMihVaQ5SjIeSRSVBmvlfdaW91lf3mV9fo/10j5L6WP8QMGwK/iTCv6gSNdY4tDd5tBf5VQsUFPjTyPhcQaySsmxqDoG5dAgJU6rt3qyjZMQ6CUVujGRmBtSHLvMOSMW3DZL/gkrwg7r8n2KsQN0rYtl52l7i7TdRcaDLfbCbQ7EFU7kCo14nEZMpRnTkMOQ6sRmbmJTNiaUDZO5iUVlYpN0PQQumD/IMv1Ymg8TBY6FBDtimn0xiSEoIAIhYAnotstPsI+LwB9kNxCA/+no67zQOaDdbvPZz352ltMXST4KhQLj8ZjDw0NOT085PT1FVVVeffVVRFHk4OAAVVVJp9MsLS3h+z7n5+ez+2GUv1WtVmcVz1utFs1mk2KxiCRJ2LZNpVKZAXtUDT6adEXgHdVVMU1ztoI/Go1mPBPJZ0RRpNfrUalUZgUco6rmV/FlVJm+0+mQSCTI5XIIgsBkMqHf78/YqFarsbi4SCKReKZeTATnpmnS6XTodrs0Go1ZBfs33niDQqHAT//0Tz+feT4N0Fut1jPACs/qfKK/owO7CCaXH18FYT/s31ftzzRNfvM3f5Pf/u3fRtO0mW/3o0ePGI/Hs0GKnFtUVeX27ds0m00+/vjjWVLgl770JX7hF35hpj+/eEwX21XPXTym50Xco3YxgnrVvi9eJFd9TtQuQvrllYuLNn9RRnG/36fT6dBsNjFNE0EQZpnWkTwmKsYTJZFGs9wIUCO3mYuffZUf+/OWnKI+XoTry0munzbGz9v3ZUC/+Fr0nsv5ApHX+3g8ptlssr+/T6PRmB1zNpulUqnMvOOB2fJYNA7JZBKYatOvXbvG+vr6lZOqy32Pfjivcnq5uM3jx495vPuI7l96l3R/gC9JZIUhN5uPGelJauI8h+MV1nb3GNQK9J6ILIVPyM33ib/uIn5GQ0wLCAIENngTERuNnlKgFcxjyDEUzSUUBORwKk2pig2q1DFDnfvuLT407/B4coOD8Qa10QILdo0viv+FF9WPWNRPSSZHeAWRnpHn5HiFw9Yax6M1DqxVVFw+m36Hz+a/yfXkIxaSpyTSBmRCAlMgMCR8W2FAitPUIge5FUZaBs1x0X0LJbTQDBu6AkwEXEVhUEzRLedQzj2CiYStaExSCSbpGPmz3rS0fXeMZPt4osiwkmIyH8NXJfpujna7hHrsslyrsXG+z3p/n7XuIQl/THs+TaNY4F76BgfFDZKywRZPWI4fUSq2SS5ZiIkQ9wCcmsRpf4F37bf4lvx5vqu9SdOpMB6ncHwNSQuQdJdCqUO1UOOG+oANbZdCpo1ccJEdn/xZj2x9QGpokLc7FN02viwzSqVpZEs8ntuknqvQj+UIEYgJFil5xMhKcd6ZylKaJ/M0GxWsQYyy2+JF7R53kt9lZe4AfW5Cq1xkR92mIZexzBj5Vp9is4t27BD0ZBxHZSBkeZS8xsP0TY7VZdLikEqiTjHdZCl5zErykM3YHiscz7ThmaeSFE+TsVQNQ0nQiM1xkFnlkbTFo+4NaufzBK5ELO6Sio9IJQz07Ih0YkBB6pAReni+ghy4pL0hGbtHOBDo2UX6Yh7XVkjqBrl8l3RqhCy7iEGALLiogjtzSIm3J2QPB2gDG8X2QPGxiyq7K5t8V/wM7x+9yifNF6kNlxkOM7gdjWAkISU9iIVIoo/suSSVEdW5BtvLj1gv77OYO6GaPKMaHuE+cXA+cREeGrh7DqftKgfuOvuZ2xxde43m4nVayWXGUhI59PFDkdAV0D2LuDchbQ+IGyamrTFOJ8mU+izlDynk29OCPfMCblYheT4i0xmQGE8j4YXzLmtnh9zoPyJWsTCrMaTQRxs7aH0bpf00Ej78HoQ3zMr3QfiT/Db78jquoFJNnpHLddFzE0rZJuvqPsux42lCcroLxRAno9CTC5yHZYZP5Sg2OkrokvQM8k4XxXMJAhmHOOfmCjuD6zw5XaF5lsNsJbA7Or4pItoQeKAlfOSUjxDzQPLACfEGCtZ5DCXholdNtIpFYs5hbs7mTt7mi3FY9mVyrojI9zt1RL+ZpgsfNHS+U9d5vy5y3FExRgpFtcFqbp+1lT3Wl/dYn99nvbTHUvoYN9AZO1W8cRlGFYbmCnvWBnvOEqdKgcZTOUpN0elLCmXXZt6dMBcapMUJumITqi6mFtCJS3TiIqofUpr4zFkGc1aDVaHBqrDDuvSAkr6Hpp3jOjkm5jwTc55j9zp74XUOWOFEmeMsFqcR02jGNKQwpGLaVCb202j4NCpemVikvWCaV/FUwumHIS0lzkO9wGMlxZ6YoSHEGIkKrvT0nmQBJggWaL6P9fR54RDkMOStRJ3/KftdHMehIWqIkkzBmq6uFwoFstksk8lkZq94eno6s1O0LIv9/X263S6iKLK6ujrLcRsMBiwvLwNTO+Zer0cQBCwuLpLJZFBVdQboYRgymUxmeu1cLofjOLNgWbfbnQFxNpud5Y51Op2Z33rEfRFER9dKPp+fwb3nedy4cWOWRxYFziKmifgkmjRECaDtdhtBEEin00wmE05PT+l0OoRhSLVaJRaLkc1mqVarDIfDZywnbdueOb0MBoPp/f3xY958801GoxH/8B/+w+9jhxkXfBqgN5vN7wOPqyDpeclvl+HjeZD+vC5cBb8wBab//J//M1/5ylfo9Xrkcjk8z2M0GnF4ePh98BcNVqlUQpIk9vf3EQSBa9eu8S//5b/k9u3bs20vH9vFdlGrFPXnciLlVccP35N7RBfDxWP/NDC92J+Lz19OZLz443VZUxXpo6JJTFQhdTAYYFnWDEAjbdfl4knR/i73/eIkIZKDXO735XPxaYB+8X2XX7tqPK6SvVwey+gzo2JKUfElwzAwDIOTkxOOjo7o9XoIgkAmk5l5x0b2UBelNKIokkqlZp76L7zwAouLi8+VuFw+rqvO+cXnTdPkvffeoz06p/vXPkYXLfTQRPp6kjvOBzQGZf4fyf+OFzIf82OpPyJT7uMUFPwTD/tUYpJP0S+W6AjzuAlABQS+D8SNMMFd5yU+Nu+wN9nkaLLCyWSZReuUL4p/xIvahyxoNRJJA6cg0epXODla5qi9ztFojSN7mZQw5PPZt3kz9w5bycdUk2fE02NIQzAWCQwJz1boixmO00scZlcw1QSa46D5Fmpgoo48wr5AaAnYukq/lGOQTqI1HXxHwdJjjDMJXFWmdNymdNgmMZhWiHR0meFCCnNOxxVUGk6FQS1H8sRgrXbMRnefjf4eK4NjZNnjfCnDQWGBu5lb1HOLFMI22+IjVhOHFOe6xJdsBEKcPbDOZHaG1/iO9xbfVt7invIKHavMyEzhCzKSFqAkbObKTRayJ9yU77MaOyCT6yNkA2JDi0KtS7o5JGOMKDnnJF0DMx6jn0pyVFxhr7w+laUoCaQgICkaxCSTnpGbylLOqjRO5ul18wjDkPVwn1diH3In8z6l0jmUPA5ya+yq2zQoo7Q9iuddCo0uYVPCNRTGfpKausgn2VvsxLeYiHGqWp1SpsFi6pi1+D5r8UPWlAPm3QbVcYPypI0vSli6hq2qjNUE51qek8wSD/VrPB5cZ7+xDhOQZJ9M0iCtD1ByFrHMmJzepyi0EUOf0BeJ+2OyTg91aNEf5eiLBUwvji6Z5PNdMukBumYhhCEy3rRqJi6i6xHrmeT2BsTbJpLpIYo+fhbOVhe4m7vDu/U3+LD2Cgf9Dbqj4lSS0lEQ1AAxGSDKAbLvEJfGlAsNtpd22K7usJg/Zj51xrxwhLdjYt0PEB6OCHYmtJo59q0NDhLXOb72OvXVF2hm1ugrxekxhQKBJ6E6NjHPJOWMSEzGuBMFIxUnURqzkj+gmDsnXjQI58EpqcTbYzKdAUljTGo0Jn/eY/nsmJvth2RKQybzCUQp/B6Ed9wphA+mcpRgLHBmzbPnbU414eomO7lNnuSvcSCvEwgiC6lT8rkOet4kmemzphyyrJ0wF6+TTXdRii5uVqGn5GiF5Vkk3HoK4Ql/TMFuE3Mt/EDGI86YIrvGNe6fblKrlRjXU1jtGM5QIbSFqWNKLEBJ+4gJD0FzEQOfYCxin+t4hopWNtErFomKTXHO5oW8w0+kfF6QBdK+iMDVftRBEOD58KCr851GjA/OdQ7aKr2+QF4+YzWzz+riPhvLe6zN77FeOmAxc4TtxxnbVXxzDsGYY2iucuhuc+AtcyLlORYUztT4hUi4OYVrfzSVo8g2qC52DHpJmV5CRgpC8oZLyRxRddosBqessseG/ID52D7xeBvbSTEalRkZFY6sLXaDa+wLK5zIVVrJNOepOJ1UHCGEwnBMyZhQGo3J90cUh2MKwzFJy4an90lRFPFDaOkZdrMVjhIlTrQCXTXFRNbwZWkaCbeBCQhWiO44FAOLjdDgljBkUzZY0m0ykosoChzJcXqiwtxowpkT58V4n9B3Z/fE6F7mui6JRIJMJjOTE0dQalnWzM66Vqvx5MkTCoXCTDMej8dnXuonJyckk0nOzs7Y2tqauciVSiWy2Sxzc3P0+32Gw+EsUTRKDo3sHk9PT0kkErPo+te+9rVnaplE91THcZ6RzXqeRzwen8lSt7a2+PznPw9AOp2egTtMDTkiTopq40QV14MgYG9vj8FgMJscjcdjWq0Wm5ubs0j99vY2tVqNWq3G0tIS3W6XpaUlUqkU7XabwWBArVbjT/7kT7h58yZzc3P8zb/5N5/LDD8Q0D9t2T4amItyhU+LND8P0j8N0C//C8OQDz74gF/91V/lyZMnKIpCoVAgCAKazSbn5+eoqjrTHJfLZRzHod1uI8symUyGfr/P0tIS/+gf/SN+9Ed/9Jks4U+D5ouyiouyhB+0OnARKC9HTS+/fvm9l8fpKjnM8/Zz1QTqKqCNChCMRiMMw5hVSI10VpEGO0qquTheF/d7ebJycbwuRogvOsFcJXGJ+vW8sb24zVXjeHEicFED7rrubDYb6cja7TZHR0fU63UGgwHpdJrl5WXm5+dRVXWW3BLp0yMNWyqVQtM0bty4weLi4nP7GfXvqvNyVTs9PeXevXsMh0PU1z/g5p1vIwohvqMgqh4uCs3+Ag23RHnQ5CS2wjCfIqEOUQQfOfSeAfF+mOFD6xXum7c4Nlc5Hy3Sd5LE7DGvh+/xkvYhq/F9kkkDK6dx2lng9HiFo860vP2Ju0RFbPKn8l/j9cx32EruMpeso2dMwjiEhohvyLiOQl/OcphZ4Ti9hK3oaLaDFlhovoU8dAmHEoErYiU0upU8pqShNj2cUMPWdYxcEiEIqOw1KZx2iQ0thCDATir0l9LYORVLSHBsLGIeJ8kdD9is77ExPGBzsMvS8AQ3JdNazPAot8mH+TsMk1nm/VNuSA9YTh1RqPSILbsERoi7D0Yjxr3RS7wb/gjvKm/xWLpJZ1Ji4qQIZRC0gHhmTKXcYDl5xE3pExaTJ6TyI0hAoj2mWOuQOR+RnfQoWm3k0GecTtDNZHhc3ua4uEQ7UcQVFdTAJSMPkASf8/7ULaVZm6dZrzAeJEiPRtyUH/Jm7NvcyH1CptjHyCV5lNlmR96kZ+VIN8fMnZ+TaI5xehqWFaMn5HmQusGj9A1O1CUy4pC55BmV3BmbiSes6wesakcscULFbFEdN9F8m4kew1J1xmqcvpahlqzyOLnJfeMFnrSuEfZF5MAlmZyQ03ooGQe54JBKjijIHZKM8HwZxXPIuAMSYwOjm6If5BmJKdTQIZ/tks0MiMfHFyQpTyPhnoc2sMnu9UmdTVDGDoQepKG/lOHx4g2+M/4s7x69wU73Oq1hhckgOS1j7wqIKR9RC5BDj5g0oZhpsbm4y435hyznj6mma1TlEzgYM/4kRHw4gidjBqcqB5M1DtRrHF9/jbP1l2gUNmirFQKm1TM9T0a2HWKeRcIZk5wY+BORcSKBXjRZzh9SzjVIlAyEaoA9p6EPTDLtPqnRUwhv91monfJC6wHFVJvxSgoUAd20UZ9CuNgG+lMI9yYSNWvhe5FwdZPdbATha0iiz3yqRinfJFYwkdMWi1KNFeWYSuyMfKaDWrLxcxJ9JUsrLDMU05hiHBsNCZ+EN6Zod0g5I3xfwiWGJWU59Vb5pH6dw5N5BmcZ7FYcq6fjTUSwQVRDlLSPlHIR4y6i6IINfk/BbE4tNfWqSbxiU5iz2c7bfDHt8mYKcsL3r3JeDPYEQch+T+adRpz3zmPstlV6fcjJZywnD1ib32dteY/1hX3Wy3ssZk4wvRQTZ57AKhMMivRHSxy425wKa9SUImdKjFNZ51R+Ggn3LOadCXPeCGHcQAyGCJqPm5QwcjqjbByBkGR3Qm7Yp2K3WPBOWRWmcq6V9AG5TB/L1ul283S6OfaNVR672xyKq9TUBTrZIqNinl52ajGc7vbJtHuk2l3SnT7pdo/UeRdtOJpm3z8dDzcI6eQrNOY3OS8u08kuMIiX8TSVUBEhYBoJH4NgByjmhKTRpdA9odLeJTeukbZayM4QQRBYW1ubBZIu2gZHbmTR2F/UcEfmGVEiZuSYkkqlZlrxyC46qkQeQSpArVab+Zyvra0xmUzQdR3DMCgUCuzv71MoFGb3T4ByuUwqlcL3fWq1GgsLCziOQz6fn8luowBblOtlWRZf/epXZ1HtMAxn/ex2u/T7fTKZzEz6Wy6XSafT9Pt9PvvZzzI/P08YhiwsLCCKIt1ul2w2OyvIFGnUJ5MJvV4Px3GAaW2Zw8NDzs7OUFWVYrFIs9mcTTQePXrErVu3iMVi1Gq1WR9kWWZ+fn7GM71ej7fffhvTNCkUCvzzf/7Pr2QB+CEkLpflAtHjy1Ht50lfLgLYDwPoz5OMRBfSwcEB/+Jf/Au+9a1v0ev1KJVKs6WK4+NjTNOcFZKJxWKz7NvI1ufGjRv8rb/1t9jY2KBcLl95LJcjuldNQC7P9p8H6JctEC/u52L0+bIm+6p9XYw+fxrMX55IXDymy+fgqhUQQZjqryJQj6QykQ0kMLMljCyPonMUPb7KOjHa78XiQFdZMH7aBCR6/qoo9FUR9WgWfTF5JJK5REm3keVio9GYLenl8/lZBP2i/jxqUVLpnTt3vu86utwu9vd5cB6tdNy9e5c/PLX52Mnyp1O/xVt/+av4yNw/fZ27yjbrlV1EIWDH3qIb5nFkmR31Gn+G3+MNvsOJv8zvnP0lHvRu4Y9izMmn/GjwNi/LH7IYPyaeHTHO6xw3VziprXLcXeXAWOPMr7ImHfLFwh/xavp91pL7lJNNtIxFqEM4kPAmMq6r0pHzHGaXOc0s4Ykyum2jhhaK56AOPfyRROCLjDNxuuUcvi0idgUcQcVK6BjZJDHDpLLbItfooY9tCAMm+Rj9pRROSmPgZTnqrRIeipSP22ye77E52mdztMuCccZwLs7ZQom76Zvcy7+IG9NY9fa4Id9nOXtMvjpAX/DwWiHeAZy38nw0fo33hM/yvvIme1yjZ5YwvRiiGiDoIZl8n0qpzqq+zw3lIfOpU/S8iaBApjGkcNoh0x2Sn3TJ2gMCVWSUSVArVHlS3qKWm2egZiEQiAsTMuoA11U478zRqFdonFbpdosEA4nKuM4r+ke8mXyH1ew+es6knq7wIH2DXdZwuzqFVp/SeRuhE2KPYhh+iiN9mXuZF9mLbzCR4lTUOpXsGZuZx2zqe6xoRywrJ8w701L2OauPqeqYms5EizNQUzQTc+yl1vjYuc2j5k3MboyEPSamTchrXfSkRVgCLWeR0/vkhc40SudB0h2RNIc4HY2+nWMkZhHCgFyqRy7bI5kwkGQfKfSRn0K4FHioI4fM0ZDM7hB15IDnQSLEqWocrK3xvv4Zvn34We61XuRsuMgokqQMJcSEjxALkEUPXTTJJzusVfa5tXSPleLRNDlTPUU4HjL6REB6MEJ4YmAeBhyPltiXtqht3eFk+1Xq5W1a+gKWMC3O5Xkykh2guyYxZ0LSGiNMAsZaHLnosVrYZy7bIFkaIVR87HkVdeyQPe+TGhqkjDG5Tp/50zNuNh6yoNcx1pL4uoxu2mgD61kIt8GdyJzYS1MIF6dylN3MJk9y2xzKq6iSw2L6lLl8g3jRQMq4FMMOi/IJlVidUqY11ahnRYZamlY4x1DMMLkA4XF/Qt7ukre7hJ6Ig44lZenJFT5p32DnZJnOSRa7kcbs6DgjmcASEESQkh5SxkNKusjaVNfPUMJsToFdK9jocybposl6yeYLuYAfTXssxKeyuou/1Rd/+wHqI5Fv1WN851zncVun04OMVJtCePlgqgtf2GV9bp+FzCkTN43pLaEE86j2ImNrgyeTVXbtKjtujBNRfaoLjzOUVYqOScUyqPgGacao4phQcbC0kH5Kpp/RCQRIdMbEzhsUJ00WvRpr4hHX9B02s8cUC0McW+G8naF1nuZguMIjb4sD1qhpS/TyZYxinlEpTygIM/hOtbtk2j0WHB/p6BRtMES4cB8KJJlWfp56dZ1WfpF2uooRy+IoOoEigs8Uwp9GwkNLgHFIdXDCq8NvU3TPKQR94oLzzL3jIq9MJhPq9fqMLy671ERGB9F9O/p3UQZ60VghCnYmk0m2t7epVquzaHcikcDzPO7duwdAu90GYHt7m/n5eT744APi8Tinp6eYpkmpVJr5fwfBtHCRruvMz89TKBTY2dkhlUrNatlEZh6TyYRisTizcCwWi/zmb/4mDx48QJIkOp0OiqKwvr7OwcEBnU6H1dVVhsPhLHk1yr37c3/uz82Ca7lcDkVR2NnZYXt7m9FoBDDbvl6vz/ghktWcnp5yeHhIrVZjbW0N27YRBGEWWV9cXGR7e3tm4SxJEpVKBUGYOrMdHR0Ri8XodDq8++67bG9v86//9b++khvgh0gSvQokLn7pnhcpvmr7q+QK39ehC69d1DlHg/DLv/zL/Mf/+B8xTRPLslhYWGA8HmNZFmdnZ7OLC3jGcSOXyxGPx3n55Zf5uZ/7Oba3t5+J4F5sV7mwXG4/KGn2qv1F77sIz5clKhcnQZdbBNOfBnrP69vFGfPlicVl2clVk6Rov57nzfTtg8FgJpeJZrpRhc2LlVmv8gi/PIF4HuBejqI/7/q6fJwX938xYTWK3keAfrGyaKPR4Etf+hKPHj3Csix0XZ/1XRTFWeJoVKRIVdVZosfF/lw+lh/2OzIej/mP3/qQ/zH8Mj4iGh55eUTLz1IWxlSrT1gr7TKUMujzQ3TNotcrEeQ9/je9/wujx3kcVEr5c7KZPsNMnJP6Kie1VY66qxxM1mj4FW7pn/DFwh/xcupDVhMHFJMt1KxDKIE/lPEnCo6r0FELHGRXqGUWCBHRHAcltNEcG3nk4xsSniAzyiXoF3OIPZ9gJOPKKpNkjEkmTuZ8SGW3SeZ8gDZxCKWQUTnBcCmNpes0rQqnrSXUI4/5ozO2untsTvbYGu5Qcs/pLGY4qC7yYeZlHmdvIMkuW+5jbmr3WcyfklsYoJYD3KMQ9xCOO8t8aL3O+8Jn+FD5DIfBBn0rj4uKqAWIsYBi8ZxKvs6m8oRt7TFzmQZy3kXyfHL1AYVal2x/QG7SJe6N8WIK/WyG3co6+8V16qk5TDGO5PukJIOMOsAwkzRbFZpnVVqNCqN+Cq1vs+nt8UbsPd5IfptKuo6d0ThOLfJJ/Can1iJSJ6TU6pJsG3gDmYmdpCMUuJ++xcPUDWrqAmlpSCVZZy2/w/X4I1a1A5aVUxbCM6qTJmXznEAQmOhxxlqCoZqkHc9zlFrm4/A2n5zfptMukTAMslKfvNYmro/xSxJCKSSVNMjLXRIYuJ6C5lukrQF+R2Q4zDIUc/iiSDbeJ5/tkkqOUFUHgQAFbwrhoYcydkmdjsg+6BPr2eB4oIeEJWhsVrhbusM3Gz/CB7XXORqs0h8WsCJJihwiJH1k2UMVbXLxLsulY24vf8xmeY/5bI2KdopyOmB4X0S8P0LYMfD2LWq9ModscbZ2m+Prr1FfuEk9vsJQyiKFPr4vgC2gOxa6a5K0xkhjH1OJIRR9lvOHVPNnpArTgj32gobkeWSbUwhPGwa5zoDq6Rk3zx6zohxjrMZxkxqa5aANLNTutMosvWkk3JkoHNvL7Ppb34uEpzfZyW1zJK+QkMfMp2tU8mekSwOEnEc2GFCmRUVrUM42SJRHBHmRkZ6iFcwxEDOYYhwLHQmfmG+SdfuUJufIrocTxjClLH2twoG9xidH67ROClinWcx2DLOvTqPhgBQPkTMeYtpBjjvIkotkBdjnMSb1JGEooM9NiBcMcnqbJeOQ+fMdskEdMXRmv4m3b9/mzTffnP1Wh2HIwBb5dj3Gt85jPGprtHqQFWssJA9ZL+6zurTP+sIe63P7zGdOGTs5xt4iajBPzF1mYq9z4F3j0FvkkBTHgsKhIHMsKHSRKLkW2f45+UkXUXR5VFxFVhxu+rv4KRhmY/iKSKI7Id3rURw3qTjHrIQHbGm7bGUOKRcG+L7EcFimPyxxMl7jsX+dA9Y4URY4T+XpZqa1C3xJJD8wKAwM8oMRheGY4sCgODRIjk2EC/dRV5Q4yVbZTRQ5TVdoaHkGcgJbVglkYQrhJlMIt0Nk20ca+0i9ALcr4dgqqcBEJqDvTb3JfyL3MT9dfnf2GWdqga6Y4pZzgsiz9xvDMGg0GrPzE9kCXrz3RZa/UeAqihBf1GADswKKruvOHMveeustFEWh1WrNHEkmkwn7+/tMJhMEQeCVV16ZgW8YTm2wR6MRsViM0WhEOp1G1/WZ1XUymeT27dtMJpOZB3sQBKTTaVqtFqVSiaWlJXq9HsVikWw2yze+8Q3efvttRFFkaWlpxiTJZJJms0kqlZrxa3Rc8XicL3/5y6RSKWzbniWcnp2dUSgUZjbWiURipmeXZZlOp8PKysrMTKPZbHL//n2WlpaYm5vj+PiYer2Obdt85jOfQVEUDMPg6OhoVsgwm80Si8X4+OOPkSSJTCbDf/pP/4l6vc4f/uEffh/3RE1+7isws6r5NH3tVVHMT2H+2XbPA5jnfY5lWfzxH/8xH3zwAZqmYVkWMAW+RCIxE/1HiY7RDNCyrNnFOT8/j+/7DIfD74PPiy2Kmn5alPqyUf7FZMiLz3meR7PZfMb/03Vd9vf3+drXvka5XOZzn/vcDPIu6+AvjtnFKPvlCPXF8Yu+yM/r2+WJyfPyDKL3XoTOCE6TySSVSmU2zq7rYpomg8FgpvkfjUZ0u92ZDWRkX3jRHul5x3oR6C87wETbXHXcl8fqYhT+clQnkutE3que57G1tUW73Z45/USWlaqq4jjOLKHFdd3ZMuDlPl2evP6g6zvqm2EYDEZjwgRI+GhiwN8V/wvbr/0m4Vjk8I+2iRfPifknZK/ZZPQhatHDCqfLoO/6b/GkfZ2Dw3V6YZZX49/lx/J/xJeTv8tK6ZBCqo2cdQlD8Acynqng+Bon3gp73iqNZAVBB9W3UUMHSXERByH5nR6OpDAoZmilC8h9D8/VcNIqk3QMJ65SOO1S2WuS6hoojkMoQ38hzXA+RXc5zYf5l2jVS6QOTZa/dsLWcJfXzE/YNHZIS0May3kelrd4f/5V3kv/JWJMeMH/hBux+ywUT7ix+AA5HeLshlgnEk861/md+p/n/Uef4a70KifeKkM3SyiJCFqInHSolJqspg64If8uG/EdCrkOZEN0wyZ/1iNf65Eb9clOusj42CmNZrHE4/lt3r79GTqxIq6voIc2GWVAUjHoDgt0j8s0z6p0OkWcvkq+3+WW+IA/nfg6t+J3ySZ7tBdLHNxY4b56g/qgxB+0f4JCo4P4KMQxdMZ+im5snk+yt9iLb2CmYlSLdeazx9zO3uXH9D/gf63831gUa1TtJpVJk5hnYYQJxmGckZCiG8vy7fLr3JNu8kH/Zc6aS0i9gLLbYE6tkVEHeHmR9coONzbuk9UH5IQuQSAgegEpZ4TU8xgephkFWdpqmZQ6JJ61iadsYmsmc0IHCR8FFwkPyfRInY7J3u+RODMRTA9Un7AAo9UUT1Zu8Buv/hXeOfwcu91t2qMyk4Mk3nsKoSMiJn0kzUMRHTLxPteXHvDim3e5vvCQhVyNSvyU2FmX3gMF4b6B+HtDgr0JnWaSrwdb1Fc+x8mNN6gt36L+2XU6P1omBAhCAktGsy30iUm8b5IZD7BFjaAgsFI4pLpYIx0V7FlUEQjJNPukhiPSI4N8e0Dlowbbtcesc4CzrGHlYqi2hz60UHsOojGF8OzDEdbE4chdYde7BOHFLY7lFTJKn/l0jWqhTq7cJpNp8wUOyHs9Sso5c7k6qbkh5GEUiyA8zak4zy7riATE/QkZd0DBbFO1Grihjimm6WlVjoNVvtNc4/R4DvM4i9lMMulp2IZM6IOgh0ipADnnIM/ZpJZGKKGL15OY1NNYBzHUTEi84lPKWyxRY0neh8QDXr1R4ejokLO7Z2xvb5PJZPjwyT3CRIKl1VWOay1GhVf4bec1fuk/l2n1Q1LCGYuJA1ZzB6wu7vPTr08hvJqpMbLzGM4SKlViziIT66c47G3xzfYSx2KaY0HhSFA4FqcQPo/HiuiyiMOcbLAomoxCaPkip4JMI6FSV1ZxDA3nTKeQOacce8Jre3/MlrrLduaQ+fKIsCTQFjK0uzmOjGU+Gr3Ffxz+DWrny7RTRfr5LO1SHFcSKRompdGY0mjCC90R5eMWpfGE9NhCunBvcUSZnVSZ95euc6jnqCsZ+lIcW5IJJQE8phBugtALESxgFEJHIG445MIJJXFESZ2QV8bklQk5ZUxucczBzSSG7PPZvRG/efQibiDyP1t8gibE8BB4IM/zf078KQTgx+wd/jvrve9F6INglmAZyTXG4/EzbmtRiyLnkQ96GIYzCafrumiaNntvZO384MED8vk86XQaURQZDodsb2+jaRqmaXLnzh1+//d/H8Mw0DSNer3O/Pz8bL9RJDzSfIuiSDqd5vDwEEVRZq4tyWRylowZreS3220mkwmO48zqwlzkgWhlXtO0GR/KsozjOM+s7kdFKyeTCa7rkk6n8Txv9tnn5+coikKj0ZgVHYpWEURR5PDwcDaRuHfvHoeHhzOusW2b4+Njtra2Zsd9fHzMyckJKysrM+eaUqlELpfjzp07M459XvuhfNCjdlkmcblFu7pcMjUCpMs+6T8IYKLHnn9owZoAAQAASURBVOfxjW98g1//9V/n5OSEwWDAYDAgDMNZKdkou/iinCAaeIB4PM7q6irr6+v87b/9t3nrrbe+D/ou9/eqPl3Vos+LYPLiPk9PT2eAvrq6Cky1Wr/yK7/CcDjEcRx0Xeenf/qnef3112dfrMsQflX0/DLYXobRi/2KXo8iwpch8uK+r3r+0yL60eOLz0f/RwmZw+GQfr8/e3xRKhN5jGqaNlt6iyZIlydKV0X5o38Xj/3iNXh5BSCyXYwmcNGP1Hg85stf/jL37t3jq1/96sz9R5KkWbJMNDFLJBKk02muX7/O8vLy910vF6/3qya4V02+dnd3Odrb4c33/g8sjR7zfu4t0jdPGb8Uw1hIYOdV1L5L7MAksWeS3hmj9Cye/I+bZId9vIlKOd0ilR0iZT1CV5iBuB1qNLUy+7l1muky2CLWIE7LqtAOS0xEFUWzeaXwPo6s4IYyYV9EMKYuKpNsgkAUKB+eM3dwTrJvILsublKit5TBKCbpkWO3u4lZT5HeH7F+esjWZJdta4eN8S5K0uVkpcLHhRf4bvpV2qkyObfD7fAjbiQfsFA+I7U8QRRCnJ2QwWmCh71bfOS/znvSZ3ggvMyZv8jYTyIqIWgC8cyYuVKd+dgpN5QHbKT2SOaGhEmBRGdCsdYhV++TN/okrSGCGmJkExyUVtgpb1HLzDOQM+BCQpyQ13rIgst5p0yzUaHVqDDoZZD7PgvGGa8r7/Nm6ltc0x4TxEVqsXkOUss89raxeklS7RHJzgRvJGPaCVpimY+zL/IkdY2aMo2GV5On3Cx8wo3EQ1aVQxalGtWgQXXSJG/1MNUYhp5gpCbp6RlayRKP1Wu8O36V/cYm3kAhOTHYEB5RFY/xsgrWfALKIsnkmILcQcXB9wRirok2tDFacQwry0SNE9cmFNIdsulpCXtJ8hEJkKNouO2RaE3IPuiT2h8hGR6h6BPmwFlUONle4d3Ym3z96As8aN2iPlrAGKankpSBhJAIkHQfRbZJxYbMZZrcrNzjxaW7LBVOqCRqJM7bdO+r8GCC/HhAsDdmdCJy6K7TnL/G8a3Xqa29TC2zRUut4qAiBgG+/VQX7ljEHBN14uCGCl5eZKlwzELuhEyhhzLn4C4qBKpApjkg3R9NI+G9PnOnTbZO9tj2nxAsyhjFBIrroY9s1I6NdB5CdypHsSydfWdtGgkXnspRUpvsZLeoyYvklS7zmVMq+TqlSgsh55IIx+ScARlxwFy2TqbSRyiGjPUEzbDC4KkcxUJHICQWmKS9IQWrQ2Y8JAgkJkKarl6lJi6z21/h6HSOyVEe8yzNuB3DHCr4jgAaiIkAOeshZ2yUuI0i2UhmiNlIMjlL4tsSyYpFqWxxK+fw2VzAtbzLasEhqU9/f1qtFh999BG9Xo979+7x4z/+49y994B3TwP0V/4Sh7HrDEYii2qDpWRt6pAyv8/awj7rlSmE960ShrOIwjxJdxHTXufQ2+bAXeRQSEwhXFQ5FhR6gsR86LEcuiyGFnnJwsdjGEDLl6h7Ch1HZWyr+BMN21bRZZeyOmRRa5JMHDOvH/FnlN9jRTvEC2TCc4Hzdp6H9haPnAXq8TXaqTKjYp5BMYenyGS6A+Ym9jQxc2AwN7YoDA0yYxMuBLLGosxupsp+ssRRvExDyWHIOq4sgwS4zOQoswTNcYDeGVOyDHJOmxV9wnzCJicbCEYNxW0TU6Vnigu6AoziKsOkxifrS9xbW8UzZeb2x5QOxnSlJD05haHo9KQccujhCFO5xvrkmL91/Ouz+8hFboii5+12G9u2Z4X2omBXOp2eVeyMJMAwZa1Op4Ou67iuO7v/HR4eIssyL7/88qwK5unpKZubm8Tjcb7yla9QLBbZ29sjlUrx4osv8q1vfYtsNovneTO5SmT3DMzGIXJ3iYJluq6TyWSQZZlcLkc2m6VUKhGGIe12m2q1yt27d7l3796sf7IsT/O2VBXbtgnDcGbkEAXWbNvm5s2b6LrO0tISy8vLz1Rtj+73zWbzGeeWXC43063fu3cPQRCoVCrs7e3NmDObzWJZFqZpcuvWLb70pS/NijdFya8Rl5RKJd544w1M0+RXfuVX+Df/5t98H1vNWOLTAP3k5OT7ICe6gH9Quxi1vQzjV8ljPq3t7+/zi7/4ixwcHMygqtfrUSgUiMfj0ypYwyG1Wm0GZqqqzkrORlWfVldXyWaz/L2/9/f48R//8SsB/Ydx47iqXZSoRKb00X4i95RisYjnebz33ntomsZf+St/BVVVefLkCV/5ylf40R/9Ub70pS89U3Y3+j86uRe/hJc/O+r/xaWqy1KSSOISwe/zou1Ru/z65WO+vP+Lj6+a5ET9iooeDAaDWWJHr9fDNM1Zad3IuigC90hPd7FPFyE4Ovbn2RhetFqMlvYsy5pVRYvH47z22mucnJzwa7/2azNbRUmSiMfjZDKZ2Y9KlBm+sLDA7du3Z5XJLn7eRSecq2RFUYuu6fv372M8+hZ//u7/HplptUwnIWG2Y1AMIStgzqcQl+xpyeqiDdkALAF/KGNPdCxBpx6b40l+i0Eyi2OrdEcFJqMEHQo4ikpMmVCONckk+7iehNfREHzwYyJmNoZiuVT2WpSO28RHY+TAxcxqdJezGNk0DbvCfmcT/1SiuNtlvXnENesJ2/YT1q09nLLC7uIKH+Rf4qPky4zjKSr2GS8JH3A984D5SpPkoklogfM4pFErcd94iY/813hfepPHwi1aXgWbaVl7dKb68HydRe2YW9o9ltPHaDmLUIVMa0jxpEuu1Sdj9Ih5JmFcolPI8bi8xV5xjVaiwiSMo3geaXlITu/iexLN86kspd0pYvVjpPoG29YOn419m1eT77MkHtHRC5zFFziILXMwXiPoSWTaI8R+iG3qDIMMO/Et7mVvsx9bwxJjVLQ6G7knvJT9iE11j2XlhKpQp2I1mZu0CAWBkZ5ipCXp6xnO4wX2Y2u8b7/K/cYLmP0k0thn3jrmJb6DknQYVXM4Czpq3iOn9UkLfYJARnZd9PEEqxVjNEwzFpOoCYdCokM+0yMRN1AUF4FwBuGi6xHrWmQfD0g/GKB2HQgDgnRIMA/trTL35l/ij5o/wYe1VzgZrNIf5bH7On5bRhBBTPooikNCNyhmzrlefMhLyx+yXt6nmqqR6rToPNTxH5goj/qwa2AdeZyMF6lXt6nffIXTzVc4LVynri0xElJIgYfvyIhWQMwxpxBuOvieiJuTmS+espQ9IVfozAr2uGmFdHNAuj8kPTTI9QeUz87ZONzlhvMYsRoymkshB8FTCLeQ2iF0phA+tuLs2xvs+hvsSlvsqpvspTbZyWxxJs9TUlvMZ2pUCnXKcw2Ugk0smJC2R6QFg3y6Ra7aQyz6mLE4jRmEJ56FcH9Izu6RnQyQbY+xkKarz3OmLrM3XOX4vIhxUMA8zTFuxTH6Kq4pTp2YdJDTHnLOQU3ZqDELxXNx2hqTegqrGUNJeBTmbK4VXV7PeVwv+myWPOazHqLwrPPV94I3sDOQ+E+H8M2jgK6pkVXOWU6dspw9pLjQRpu3CDISpXiLz0lv0x3MsXtW4bR+k1vlInrlpakc5SmEHyJzJCr0eArhgcNiaBPHwQl9hr5A25douipdR2Via7imiiSG5LQJc2qfRbVJRa9RiJ0iJ3tYMZWGvMSJsMSZVMYVRCR88H3mdyYMknF6mQSOIpMdGmS7A3K9Ifn+kGx3SH4wmkL400hoGE4nTDv5NfYzK5wlS/T0NJaiEcji9yD8qRwFO0QyfRL2hILfIb3RIV3oobgh2Q98fvPNnwQRCkaPv/+H/2ZaddO1sbMJkptrDDMpTsQY/XgeQ88zllKMwzi2qxGMJTxLIQwFpJiHHHMpWX1eqJ1QDVq8wdf4EfEPWPRP+ab1l/k/pv8+LSXL/6L7Nea93iz6fXFVP7q/27bNwbUUey/m2fqoy+quMbvvRMGqKJIe3RejyHH0XDabnakOcrkcqqrOEjAj7/H9/X1KpRKJRALTNEkmkzOv8MiNZW5ubmafGAQB8XicRCIxq5g+mUy4fv06iUSC73znOxSLRW7evMm1a9cwDINcLsdgMEDXdd5++23u37+PLMuzCUlUSMgwDHzfn0lqonu4ZVmsra3x8ssvc+PGDTqdziwpNso3q9fr9Pt98vn8bEUiiuQnk8lZrZmNjY1ZwmgUZF1fX6fVauG6Lj/1Uz/F9evX6XQ6M7lOEExr1vT7fUzTZGNjg9/6rd/6b9egHx8fPwMVz9MIX4wcR9tehpXLgP5p+4xaJEf5tV/7Nb773e9imubMFieSrkS652jgHMeZVcSMx+OzKLosyywuLiLLMj//8z/PF77whdnn/P8D6BfBXBRFRqMR//7f//tZ5vJ4PObu3bv0ej02NzdnQFoul7l+/Tqf+cxnuHbtGsfHx/zqr/4qL730En/xL/7FWeWti9HrKPJ7UVN9+fRdBd3Rfi5D+VXb/ddo6y8e//PkNj/Mc9HzQTCt3hVJY1qtFp1O55lsblmWicViJJPJmdY9yjOIIgSX+3TxOouWuSJPV8/zcByHwWBAJpPhc5/7HK1Wi3/1r/4VjuOgKAqaphGPx2dVzmKx2OxLXygUuHPnzswb/eLxXIyiPw/SBUFgOBzy8ccf0zn8GsbY46fqv8FSuYmCTxiDYBnsLwswFvD7Mo6tMhYT1GNVdovrDOJZxL6L0woxehK2LSHIAs2tW+STXdKxAZOxStCVEAE/qWBmYyR7Y6o7DfL1LrGxiSR4DMtJ2qsF2uUCe5NNmsdV4k9M5ndbrHcOuOY84ZrziGXvhMFigk/mr/Ne7lUexW7i6zLL1gF3pO9yLf+IufkW8XmboB1iPRE4bKxyf/wSH/Aa3xXeZF+4Ttcv4okyoh5ALKBUbDOXqrOq7fNi/C5zmQZi1kcKAnKNPoXjLrlOn4wxQJFcnKTEaXmJh+VtjvPLtNUinqMQC01yap9srIcxTtJsTqPh/V6WsCcyN2zysn+Xz6W+yU3tIWmG1NQq9XiVQ2GJ+mgBueejd2x8Q2HixqnL89NoePIaZ8o8aWnAUvKIO8UPuJF4wIp8zIJ4xpzXpDppEvdMRlqSoZ5ioKdpx/Ocxhb4wL/D+61XGXTyhGOR1GTAi8Z3WEs8wZjLMFrOIlYkEskxeamLjEfogm5NcFsao05quoqQDCkkO+TTU124ptogTOVRMlNNvd43yewZZD7po5+ahJ5PmAwJ5gTGmwl2167xx86X+Pbxm+z3NumMSpiDxNQlxRIRUz6y5hLXxuRSXTYLO9xZ/IDr8w+ppmtkh006D1Tshy7qoz7i7hDnwKbZy1MvX6N54zYn117nZO4WNX2FnliAMABbILQFdNtGd0000yZ0Bey0QqVUZzl7SL7QQS9NC/Y4eZVke0SmOyA9Msj2h5Qabdb39nhh8hCt4jCczyCEIfrIRuvaSO1gCuEmDO0Ue+4Ge/4Gu+JTCE9OIbwpz1FRG9NIeKFOudJEL4/QApvM2CDOhFy6Q6baRy66mPH4LBI+fgrhAPFgQsqfVjnNmENiExMrTNDW56lrS+xN1jjqlBmfZrGOCxiNFKOuhmlICDKEKgiJADnvomZttISJKtswFBnXk1hnCbyxTLrksF5yeLUUcKPos1H0WC86ZOLPd4k6HQn8YV3j3ZbGSccnzill7Zj57DHp6gip4uFnZLpSnl1rmyNvlUZQRQh8sm6foZvG7mkoZxPSTTg30pAF/rzPsuCzgkfVc5BDFzsIGHoibU+i5cj0LBXL1ggDgYRmkVcMykqXOfWcUrxOLt4kTJt0tQwnwhqn4jyWoJFxJ2iWR2iBG6rYsspI17AkhZjj4KoS1faAO/sNkq7Lg/USlb7Bn/74EAkBw5XYI8ej9BJHyQKteJqRGsNVJUJZmBbrcZhBuGI6JI0+ldYhNx59k3R6SOOnX8ZZzTBSYozCJKadYOIlMIQYniATUyckHBNDjSH4AZITkBg7jAId19FgBIE1Lf6lijYJxmSCMXPhmLWgzaZ3xqp7yIq/x3xwiJcak/HalM0mejjEEVKEIWgMCWIij7Qv8aHxv5w6qGSyHMeScCKwkrBZSLgEosBQh0FMYBQXOFc8PridAEGAIORv/IcWYvC9vKzxeAzwjFY9ui+dnZ3N9NmpVIrRaDRzWYlyuNrt9swJJZPJEAQBJycnaJrGK6+8gmEYPHnyhHw+z9ra2kzq2263OTw8nFUbbbVas+j4nTt3+J3f+R3m5ub4qZ/6KTRNw3EcOp0OBwcHAHS73ZkjTTKZnDFAJK/tdrvkcjnOzs6Ym5ujWCzy3e9+l2w2y8LCwuw7ks1mZ2YY6XSa4XA4M7+Ix+MUCgVs2+bw8BBBmDqwNBoNtra2qFar9Ho9vv71r6OqKnfu3MEwjNm2P/ETP8Err7zCZDJB07RZ4aP33nuP+fl5xuMxX//61/nqV796JRPBDwD0w8PD2eNPs7yLXo/A43nOG88DtqvgPgxDut0uv/Ebv8E3vvENOp3OLKt2Y2MD13Xp9XocHBzM9hFFXYfD4WxmGNniKYpCpVIhFovxS7/0S9y8efO5g3KV88oP00RR5Nvf/jYffvght27dQtM0vva1r/Huu+/S6/VmCRevvvoq169f5+7du5yfn/PlL3+Z119/nV6vx7/7d/+Ov/AX/gKf//znZ5nHF8cuAvSLsP6D2sWIyfMi4hcnGpef+7T9Xt72qsnZ8/oTjVnUr+clhEY/CNHs8/z8nEajQbPZnMmEomSTfD5PPp8nlUo9I5e5GM0GZhO8SGpjWRalUomXXnqJbrfLL/7iL9Lr9Wb+ppGGPpFIzAo9RUuFL730Etls9spj/zQbzjAMGY1G3L17F07+r/zk2u8RiDIfrNym1GmjDF2MVJL6fIl6dY6RmkHouFhnPv1jkdxPxhBUgTAAw00gqQGTvk44lhBEAS8hYyc1cvU+1d0G2WYf3bJADelVM5yvFmmlyxx01mkfl0g/GTN/UGerv8d17zHXvUeUpQaN5RIfzr3Iu9nXOdDWURSfDesRr2jvs118THm+g152cU9CjD2VJ81r3Lde4rvCm3wUvsaRsMEwzIICgg5y3KVcbFCNn7GtP+Zm8j7ZTA8yUw/ofL1H/qRHrtcnYRlIis8ol2SnssFOaZNaapF+mEZyQ5KiQV7rktQNer08zUaF83aZSS+B3rdYHR7zWfnbvJp8l3XpANdXqKkLtNQCB+4qfaOA1ptCkG3qDMIsD5I3uJ+5xUFsDUvUqWo1bufu8mL2Yza1XRbFU6o0qVhN8mYXU40x0NMMtTSdWI56vMIn3OSd3mdpNqu4poJsulxr3OUF5QNi5Qmd5TncpQRa3iWrDUgyIvBFZNsh6IqMW0lGkzTEBXLpHoV0h0xygK5bCGI4k6RIgYc2skkdGmTuD0g8NhBMjyAWEpQF3FWZ0+1lvhn/Mb5x+nketV+gOaxgjFK4XZWgJyPEA+SYi66ZZFJ9VvKH3Kl8lxeX77KQPSE/adB5qGI+8FEf9ZF2B3j7Jv2mzllui86NGxzd+Awn8y9yEt+gLc/hhjKiHeA7EpptT51+bBtscJMypVKTldwhhdz5rGCPPacR74ynED40yA6GlBvnrO4f8MLwIcnSmOFCmlAU0QwHrWchn38PwgdWmh13i71gCuF72ia7iU120pt05CJV7YyFTI25pxCeKA/RBIvkaEwssMgmu1MIL7lYiRjNcI6+kGMixTGZLsvHgwmpYETG65M1hyQmE3xXpqXPU9eX2LfWOexXMRppnOMCRi3NoB1jPHxavVFjWqk07aEWbLSMia6biE6I3dIx6wmsRhxZCVicc7hV9LhZ9Nkse2yWPJYLPrJ4dZ5Xz4bfr6u809A47rgo/ill/Yh8rk28MkEs+ThJjbZUYs/e4sRfZhBmmROGlE2DyeEYsyFjDmQcM4E9ieFOdMLBU1vdjI+mDFHjDpNEDrHgk1j1EDSZoaXieRKa7pDRHEramLI+oKC0iIknJFM97KRAXalyzDJ9MUPe65P2LVRHJnRj2KHGSJToKiqmIlMwLArDMeXxhMrEnlXNzI1txqHKoZTgVEtxkslzr1jEkDS8oUboS4SKMM2wE5lKUJ5qwrXJhHyvxcrxA25//A3Wdj5isbPDonNKUvP4nc/+ZRrVVVoLi5y8dIPz2xuoMoQjG1ywxDiTMI5nKQRjkVx3QGnUZtk+5prxkM3OE1bcOvOcszTaJeWOaJbn2N1+jYEK694RG94hGiNsIYUpFLDEImM1Q2vdYpRIoh++hmctsv7VX2P3P3yHSajyyq9UqP74MSMxw5+c/Bzv+Z/l362vIp37aI6DnrEoF4eYekjMgbQZkjZDEobH/RUFX4KYFfK3/sCEp9JT0zQxTRNgJkVVFGVWLRSYOaFEVTKjVeTIQ7zZbLK7u4tpmjPpSq1WY3l5mdu3b/PgwQPq9To3b94kFovN5KKaps3sjfP5/MwtLpvNUigUODg4IBaLkclkZkUVB4MBJycns1y+tbU1fN9nY2ODwWBAEATs7Oywvr7O6ekpR0dHrK2tzbaNEjt1XWc0GtHpdBiPx7Nk1Uirn8/nZ6vj0SRmPB5zcnKCJEmMx+NZgHAwGFCv1zEMg83NTa5du4amaRwcHDCZTPixH/sxUqkUjuPQarVQFIVPPvmE8/NzUqkUiUTivz2CHs0ELkLFRdi4Sqv9PNCKXo9aZK93+fmomabJr//6r/PVr36V8Xg8q8Lk+z5bW1sz8H78+PFsCSKKrpqmOZtRRTY4hUKBYrHI2toav/ALv0A+n3+m35/WfhCoXtzHzs4Ov/d7v4eiKLNs34tfhkwmM0uUGI1GnJ+f43keb7zxBm+88QaHh4c0m03+7t/9u6yurs4SKi5+RqTtjpJfL+vAL4/3VUmYVx3jxe3+WyYoUXtersHl9rxr6yq99mUZTnTsnucxHA5pNBp0Oh06nQ7D4RDDmC7lybI8kztFchld12eTgijz3HEcXnrpJSqVCqZp8su//MuzyZ+u67MIeiwWIx6Pz6yYdF3nxo0bVCqVZ87Vpx179Lxpmnz9619nd3eXv7j2H7hVfIAjKXy4cov7yzfQDJtGM8nZ+wL+vsW4nkAvJ1AWNPQ5gfRnbTxRYZxM4CkyxeMO1d0m6c4Q2fEYxJO0lwoMVjLU9HnqzQVGeykKjwYsHZ+yaezxQvCAbf8xmcSAvZVV3i3f4YPEKzTUeRLSmOvWfV5JvMfW3A6Fag816+PshrT3MjzqvMAnzku8x+f4RLjDmbDEREggaiFhpA/P1ZnXTnkx/jHrqT3imTFBUiTRH1M4m4J4pt8nHlighzRKZR7OXWc/v0Zdr2C5cfTAJiMPKOgdFNnh/HyqD+/18vg9mVy/z03zIW/Fvsmt+F3yfp+BnaKmV+kJOY6cVcxRDLEf4o1Vxm6CmrLIR9mXeZLcpq5USUsDtlKPeaXwXW7GH7AsnzAvnDHnnjM3aYIg0NfTDPTMVBeeKPFI3ObbozfZb25iGTqhLVJt7HFn+A6lYgNrOYWxnkeoiKSSE3JiFyEMEd2AcADjRoJhP0OgSGRzAwqp9kwXLkoBAuE0MTP0UCcuqZMxmYcDkvdGSG2HQA8ICuAvC3SvF/mg8hn+qP0lPm68zNlgicEoi9PX8drT61JOemgxi1RyyHz2lJdKH/HK8ndZKx9QcM7oPZQZPRRQHvWRd/qE+xNGJ9BMr9G7do3Tm69zuHyHo+Q1mso8kzCO5HhPdeEeumOhWTaiHeDGZLLlLqu5A8q5JrHSGKohVlVHH5hkOwNSo9HTSHiH5f0jbvU+IZsfMV5M4iky2sRF61rI5/4Mwrt2nh13cxYJjyB8N7VJX86yoJ1OHV8uQLguTUj0TXTfJp3sTyG87GEntBmEj6VpJDxEIB5OSAdDst6QtDUgbppIZsC5OsdZfIUDb539/iLDVgb/NI1Ry9FvJhj2VcJQQIiFBIoAsRAlZ6MXTPSkhYKNN1CxG3GsenyaYJx32C663Cx6bJQ8NoouGyWXQjLk4k/HbELv+PxJW+ftusZ+x0UNTsnqNZL5PrGiBQUBMxmjJZTZdzap+Yso+CzRp2T40NWxuzFGPYl+V2TYkzD7EuEYhGSAmnTQ4zZ60kVKBwRpASelYGgxHF9DVl00zSLGmDgGC8kelbRBJtVHihu0lQQnQoWmMEcuNJgLBsgMkFyZcFhmEsYxZAlVq1GmyVBL4aCzWC9T7JsUh2NiQxfD0agrCRqKTjuu004m6MV0JpKC5ysEjkzgiSAKIPBUBx6CCTHDoNiqsbZzl1v332az95jN0RMqYRM3l2ZYLtGbr9BZWqSxtsZpdZWmnucwvURTreJPFNSWycaTe9w5eo/b5x+zbTyhrE7QUgJpcUzGH6AHEwQgcMF3YGTqHIcLdP/0EsepdY71VRpCgRN1he+mXqUnZnjVf5//XtkhH/ewdZdAHpHq7ZAZ3Cc+bOOLIu1UlaPSGnu5bWqJJfpaHkvRQAdBAnukYQ90rE4M29CxuzpeX+V/ld7hc0obxf+exMX3ffqCy2lJpnw6IeV/zxM9DKeF8Xq93szBJDJBiCLR/X6fdrs9k44WCgV836dcLs9qynz88cc4jsPx8TG5XA7btllcXKRYLPLw4UOSySSlUgnXdZmbm5tp0qPcr8FgMJOjLC0tcXBwQKlUIp1OU6lUEEWRXq9HvV6featns1k2NzdnUudon81mk1wuh2VZsyJBERc2Gg1u377NYDBgf3+ffD6PKIrs7e3N7vORJCf6jCgZNgxDms3mbBXftm1UVaVcLjMcDjk9PaXf7/Paa6/N3gtwdnbGrVu38DyP3d3dmSONpmm888477Ozs8I1vfOO5LPVDJ4le1vPC91v2Ra9dBPSrdMgX93eVxMJ1Xe7evcsv/dIvzbJ3J5MJhmHgOA6lUmkWHa3VajOboCiC3m63ZwOp6zqe582E/l/84hf52Z/9WRRF+dQJwsV2lVzkchMEgVqtxjvvvMMf/MEf0Gq1sCyL4+Pj2cUfuZ+cnZ3NbHwiv/Zbt27NytoahsFbb73Fz/zMzzzjvX1xPC/aJkX/X+UmchG8L2vaLx/TD0r4vHy8V7XL5/uqHIRP06hf3vaqdlFff9W5iFYYIhvFKKm43+/T7XZn2vOocpimady6dYutra2ZBObf/tt/y/3792d+rVGmdiqVIh6Pk0qlZtns165dY2Fh4Rk7yedNNi7+vb+/z7e+9a3pjFw95KfXv4JhyDQ/KrFx3OQX/t3/Fs1y0CcOoScwKcUR/YC5w3Pm9lukeiMUy6Yvp/nOjc9wz3qRo+EacsKheN5l/kmT5bMTrpmPuSk8ZDt4jFxw+Hj5Bd4rvsbH+ssMlSxZurzgfMyr2ffYmNsnNz9AUgPsxyHHBws86r3APfcO7/E5Hkm3aQkVXFFF1EMCTSCb71FJ1VnR93k5+RHzqRpKxiFUBTLtIYVal9xpn5QxRBNs3JTCbnWDJ6UtDtIrdIQioS0SFybk1B6FRIfAF2fR8FEvjdLzWBjUeMX7kM8lv8W6coBghXTdHOdSgY5QpGbO4w8VnJGGbcfohTk+Sd/ifuYFDvQ1HFFlST/i1fz73E7fZUPdZ0GsUQmm0fCEO2Ggpek/hfB2osi+vMJ75ht8VH8Jc5TAdWRy3Ra3D99hPbOHuBgy3CjirsaJ5V2ySo84E3xfQjCCKYSfZ3BRSOcMipk2uVSXZNxAVjxCBCT8KYSbLonmmPSjEam7Q5QDExQfPycQLApMtmI82rjFf7H/LO+dvc5hb52uUcAaxPE6CuFk6pKixi2SCYNypsELxU94ffE9ri08oOSfMXgsMXwgIj0aouz0CfenuvC2UqF74xr163c42nido/QNztQleuSQPB/fkpDsAM220GwHwfLxdZF0cchqfp+5bH1asKcSYC3qKBOHbHtAejAkMxhRanZY2j/m9vl9itke46UYjqahmlMIV55CeDCGc6fI7tNI+J64ya62NYPwsZT4HoQXpxAeLw1IaWNiXRPF9UjFB2SqfZSyh5VSaYaV50O4PyBtD4hZNorp0hcKnMZXOGKN3cEK3fMcnCUxz7J06yn6XR3fFRHjAYEGoSROo+FFCz07QdcsgrGI19aw63GsRgwRWC05XCu6bD2Vo6wVHFbyLrr67G+DIAi4QcjbHZmvNaYQLgY1kolzYjkDNefi50SMWIomFQ7ddfphlhI9FlyDXF/A7yYYd2L0+zL9nsSwJ2L3p7pqORuipzz0uIuacBHSAW5KYhJTGYcakhygxGx0zSYtm2SVMVltQFofoCWG2LpES85SFyvooU3VPSdvDVFtCGwFSZRQtIC03iKrnJATm6SEEQl7TNq3QApwFAlDThAi0Hez/H9q/3NqzgZjXcNWVDxfgr6I7yh4gkIYlaa3Q8IJCGZIfDCk3Dxh8/Aur+18gxXzkBLnqEmfwUKFzvIiZxtrnM2vcZqqcphapE8awZBRWxM2ntznzt63udn+hK3xPoveGSVpQFJ1kJUQUQEECBzwbTAsjWMWOBKWqCUXqRWWqOcWqeWXOCssUc8uMEnGWXX3WQ6OSJcDyso5252PWO08JGfUifkj+uk8h3Mb7BWuc5RYp6OXGMsJAlVAjAX4roQ9iGH3dOyBRjASEHsOiYnDmnTMpr6H0V4lP7H54EfmaWlJDv/TNmtBg78a/wNkMcQP4a64QRKLrbA2c7XT0xrxZJn/u/Y5+oHMX+39F7Lu1HVNEIRZ4aHo3hZZI0ZVQiNNuSAIVKvV2XtOT08ZDAYcHx+zublJrVabJYfG43FisRjVapXT01PCcGq7uLCwQDabxXVdDg4OODk5QVXVGR+99NJL6Lo+yy9UVRXLsmZS2EKhQD6fnyVmRjzQbrcpl8s0Gg3y+fzMlWYymcwkqpIkzfjAtm0syyKTycw4M2LLMJw6q0X85nkegjCtNh7VUNE0jfn5eQA+/PBDstksL7zwAsVikYODgxnniaLIW2+9haqqLC0tUSqViMVi/Pqv/zo///M/fyXnwA8A9GjGEEHRZXcWuDpaehFCImnBRS31VeAVQdXBwQHvv/8+f/zHfzzTIEdm9ZFlTiQzkGV5NquCabQ0nU7PoqdBELCwsDArS5tOp/kH/+Af8IUvfOEH6t8vt0+ThViWxbe+9S1+93d/l3v37tFoNGbR1ChDeWlpiWQySavVotfrIYribJYYhuHM9P7k5GRm9/fzP//zVKvVK3XMF8/HRWC9Spd+EdAvg+1lScvzLocfVmN+8bXLGuzL7/lBgA7PT0i+nCx7eQJ5efXg4vFHXu4RUEcJqNF+fd/nK1/5Cnfv3sWyrNnr0cw4FouRTqfJ5XLIssy1a9dmM/XnTTQuH6tlWfzRH/0Ru7u7OKvn5P+qiWeHWP+vEX+me5+Nbxyj9W1+++//GRKjCX4ocFaqUg/yNOcW6b6a59wpsdQ9ZfngjIWDGtWjJsu7p6yJe5gVnfcW7vCd/Bs8Um7gyDpzfp3bwQe8VnyPlbljsvMjcEPGDyV2jzZ4NHqBD703+C6fYU++Tk8oECoCggbEQor5c6rxGjcSD7iZuk8h2UbIBIhhQK7VJ3/SI3s2IOGMUGSffi7Do+o1nhQ2OIkvMXIyKJ5HShpS0Lrkkl0m4wTN1hzdThG7p5HuGWyM9vkR6ZvcSXxIzu9jTTS6TpaekKUZztE187gjnYkZZ+wmOdJX+Sj7MjvJTeryPFmpx0uZD7mT+4Ab8UcsSSfMU6fstChaXSZK7CmEZ+nECxxpi3zsvMi3m28y6OZwHBXdMLix8y7X/I9JzU8Yb2Qxr+WRKgKpmEFG7EMggBUyacUYNtJYVoxkbkwhM9WFpxNDVNUhFAREAiQ8FNsj1p6Q2TFI3RugfzIm9H2CDATzAu6GxMn1Vf5Y/zN8q/EWO53tafVMI4HXVfG7MkIsQEk4JBIGhXSb7eIjXq2+x8vLH1GVjxk9ht4DFfHRCGWnh7Bv4Bw6DNwU/ZvbNK/d5nD7TQ5ztzhRV2mLJQJPnBZHscUphDsOounhKyLJksFK7oBqrkaqMEKo+tiLGqLnk231SQ9HZAZDSs0ui/sn3Go8oJI+x1rUsBM6sumh9Wzkcw+hA+EY6s7cMxC+p26yk9hiN7WJI6ks6ifTxMxSnVKlSbw0IqkPSXRNZDsgGRuSqg5Ryi5OWqVFmS75qSZciBEgEg8n5IIeGX9I2h1OZTamyzhIcKSvcSKtsDvaoNUuwFkCp56h10jTPY9jmxJSIgA9JJAFQkVAyTvESmNiyQmiG+INFPzmFMQnXY1i2mUj77BVdFkrOmyUXNaLDqWkhyQ9K/v0g4APDIU/acbY6Tr4NFDjPbTMBCnr46RUhnqGejjPibeMgstc0KE0NEmcC3j9NMYgNYXwvsyoJ+KZAqRBzQbEUiHxZICc8vHjAYYGhqIjCKDrNlLcQdNt0rJFRpmQ1kfE4waB5jGQYzTlAiGwEDSoul3ytonsyOALEIImD0nrdVLqOXHJQBVdEEIEQoQwJBQEQgREPyDwJEZukjZFTsN5DrurHPeW6U2KmGISR4kRyE9lNFYE4QHJwYDK+THXTu5xo/kxeblPPGPhLuo0Nlapza1ykpnnJL2EESQRhiJa3WD9ySe8cvAu188fsjE5YNGpU1YGJBUHWf1++B7bKsfhFL5Pk4uc5ZaoFxapFZZpJUqYrkCpsc8L+2+TztosyucsGics9E/IuiMy6yKxVMDOWoXdxS12C9fZT2zTTMwzkDJ48lRGJqoBnqFg9WPYfR1l7JEaj5izWsw7NZKKwfLaPrcy91hP7RN3R/zO/+4LvNJ9ws38MeINcJMi/+/RT/B+/Bby38hwUlvmN/6//z2aP+Znaj+PKMK3Sn+OndyrhMCXTn+NuNVE/Kky9mqRBwcvcDDcIgRe6HzEXzj8yuyeOJlMZgEtz/MoFou4rkun06FSqaAoyqxUfXTvy2azs8JFEZBHdVGiFef19XVSqRQff/wxruvOqr/ruj7LM+x0OrNCSs1mk9dee41yuUytVpsV/FlcXESSJI6PjxEEYRZdbzQaiKKI4zj0+32KxSK1Wo25ubkZ8I9GI1ZXV1EUhX6/D0w94wVBoFQqzSqU9vv9mTw6AnnTNGdWlIIgzED/2rVruK7LYDBgOBzS7XYB+MxnPkMqlWI8HvP+++8jyzKtVovPfe5zVKvVmS14oVBgMBjwd/7O33k+R30aoJ+fnz8DFpE13eWkyqvA6OJzl1+PoqgX//Z9n69+9av86q/+KoZhzGQc4/EYz/NmJymq8BgtYxwdHdHr9Wafk8lkZhnHmUyGhYUFPM9DlmVWVlb4p//0n85mPJ+myf40mcXFyPRkMuF3f/d3+Y3f+A1Go9Hs5EZLR9EsdGlpifPzc0RRnJ30qIhPoVBAURRGoxHj8Rhd16lUKvzcz/0cP/mTP4mqqjNZx0Ut9UVAjfp4MXn0csT8sk0jcOVzV43BDyPzueo8w/PtOf9rH19u/zWTi6vO9VUynmji83u/93t8+OGHs8meqqpomkYmkyGdTs8mialUiuXlZba3t2c5A9F+nnfMlmXx4Ycf8s4773B0dMTq3xPI3JYJQ5BrPre/9gkL79TZX1rm93/8T1HPbhCPGRRPe2w92WP75AmL3VNKRoeT6jzfmX+d99KvsSdsIiohi+4xd6R3eaX8XRbnaqSrY4I+dB/EeVy7zgPjFt/1P8tH4uscy+sYYgpBncpSlKTDXLbJsn7A7cxdNhN7JFNDgrSAZjrkmz1yx30yzT7x0CTU4KSyyKPyNfaya5yJVVxLJxaaZJUBhVibdGJIr5vnvF1m0M0g9ARK/XNeMu/xI9rbbKp7YIdMRjGGdoa+lOXcLzEw0hiTNBMnQZcCH2df4n76BY70FRxRZSv+iNdz7/FC8hM21T3mhTqVoEnZbCEAXT1LX8/Siec406vc92/wze7nqDcXcWwNaWKxfvQJLzS+Q7HYwduIYdwo4q/HiaVtMnIfDRvfFbDaMUb1DEY/QSI1oVDoUEh1yST76JoFIoQIU5cU10PvmqQPDFL3h8TfMxANGz8JflUgWBPo3CzyTumL/Envi3zSvE19tMBolMEdaPjt6bWgpFxiiQnZdI+1/D6vVt7j1ZX3WY3vYO74tB/GCB+NUZ90EfeHuIc2k5HC8PoG51s3Obn+GfZLL3Gob9GS57A8HckK8G0RxXbRbBvZ9AgkEb04YaVwyELmhHShj1TxsJc0ECHT6pMejMgMBhRbPRYPTnnh9CEL8TrusoqV1BDtEK1nobQ9hDYEhkDNrT4L4domO/EtdpObBJLAsn5MNVujUmpQnmsSnxuS0MYk+wbSJCQRG5GsjFDKLm5aoSnM0XsK4aagEyBNk4GDHvmgR9odTItpWT6mr1NTFjmUVtgbb1LvzeGf6JinCYbNDINuGmusI8V8SISEqkAgiIixEK08IZE3kAWPcCLhdxX8ho7ZiOE7IqsFm82Cw2rhexC+kreJKZdqYQjw2BL5L80Yj3suE7GNHBuhpC1IgZXU6Kt5asEC/SBHkTYFa0i+6xFrS7TPFHqdOJaTZjBQMYcyKEAOlLSPnvSJJUOIB7hxASOu4AsiCdVBjdkQt5F1h5Rkk1TGJPUJou5gKQo9JYUlaMyHZ8z7debsPjnTQnRFglBCERx0rUs81kNXDGTJRRDCaVGeMHgWwH2JiR+jS47uMEPtbI7GeYWuXaIXm2MQy2PpiSmEhyBYwXS1x/RJjXpUujVWOrssuidoOQ9vWae3kucst0A9WSKBSdHsMGefsWE/Yun/x9p/B2mS5+ed2Cd95uu9KddV3V3tx/TM7Ozs7M4ugPXwliAOBwoSJZJ3YvCkoE5BMRSKuwhJJ12EQiFd8MQTIR5IQiJBguKSxGIXWGB3B8DO7Lg2M+3LdPnXe5M+U3/UZG5NbffsMk6/iIoyr0nzy3rz+T6/5/s84gHq749Zub/HotugIo9Iqe4x+P5Qdx644Fswt1X2woUYfO/nV9iuXWCncp6uniNrtri6/yYXt97lbOsB1WmblDdDl3z0RIiRAiMNUkFhvFxmL7/EB8YlNnPnOCguMSgXsYsGQVYgDATsoY41MhDHkJjPP9zvFvXgiLP6Y1aKO5zJ71BJNhFGAWIL5F6ANAgJZwJzKcE4mWWYzTIqZOlkiuwIq+wGKzz21jicLTMc5hlPsszcFJZnEEoSSAGqZqNqLkghPgp2cOz1n1P75DNDsokhrnK8+tPrFFl4/X2e3/mT2OIwYqejFebZbBY70FWr1Rh4T6fT2LqxUqkwm82YTqckEolYjhL9D3zyk59EFEW63W7MTDebzZiFjsIkm80mYXjssDYej3nuuecolUpsb2/H5FkqlWJpaYnd3d1YDhMZPESKCd/3OTw8ZDgcsra2Rj6fj0m4x48fc+XKFcbjMQ8fPkQURer1emyRuLGxEa8URF7yURCjLMsMBgMsy0KSJM6ePcvy8nKsq9/a2iKZTNJut2k0GuTzeVKpFDs7O7GxiSzLeJ7H8vIy58+fZzwe4/s+v//7v/9UjPOxQUUnJQonx9OaKJ8kXTgJjiLd+ZMAWBAEvPPOO9y5c4d8Ph8L9SMj+WQySRAEFAoFBEGgVCoBP/Bcj5YsoiTRqAEw0iDP53OWlpbIZDJPXAl40rGfPraTxzGbzfjggw945513+Pa3v43jOPGFdPIijnRKjuOQTqfRdZ1erxd3H1cqFYbDIYeHh7EfeCqVQtM0vv3tb3Pu3Lm4e1kQBBKJBLIsU6vVWF1dJZ/PP1VqFO3raRb5ScD+NMD9cVYXfhRoj3RwH/f4k7bzo/Ty0Th9DT7pdScLmei6/VGSpTAMY6eWyEc/Oo6TKWxRsRpJrE4e65P+F6LX37p1i+9+97vs7e0d20TdKBJenmIcmPz23/3/IBEyl9N4/oD/9T/4f1Kc9Wh+skR/OcNs2cB9SeTG8hW2Hp+jvNXh+do7fLX670hWLJwGHN0t87B1mT/a/ypv+69yV7lOS1rEkVUELSQsixjpGbV0g8+lvs3l9D2WU/toaQs/KZIczSg0h+R3h6QHY3TBxszoPKhf4E7pEtvPn6XvFBEcSAtT8mqfUqrLgtpE6QR0+2XMQQKzn0Ka9LnmPuITiXco+AMsU2c+1plZCfpKkYZT497sChMry8TPsGWc5Vb+OpvJ8zSTNUpym0/m3uK57C1+Tv8a/6n031CnScXukHanDPUsfT1P38jRMCr8Oa/y5vAVHrUuYvUTYAWsHNzn8u73WVY2+fLKJpNrVexnc8iVkLQ2JSPM8P0k5lBDaciY72sICqRKCkZ2RC41JFGZI9YDAo7t3STfQx/bpB9MST2YkHxnirw/IzDArwj4awLmRZ23Pvcqr7/6RW40X2Qvsiqc6PjfkAmmElLaQ0+apDMjruXf57kLt/jE8ltczr+P99ihfS+J/8BE/ZM+0tYIb8diqxdinl+if3GRw0tfZuuVF3n8Uxc5kpcYB2lEyyewZGTbRes4SJaHIjikihNWijssLuyRKwyOA3uWVQJNJNv50KZwNKbU6bN4q8Hl3Qesqnt4KxJWxkBwQ7ShjdL3EGYQNAUaD6tsej8MwrdK5xDFgDP6zjEIrzRZqj1mvfwBCWNGpj9BnIcktDmp2hi56uFlZTqU6QmlD5lwHR8JPbTIhiMqfoeL3kM010WyfWzPoCFV2ZFWeMt8hcPhIu6BhnmQYNLKMu5lmY+TiLqPmAoJ9ZBQEgkkCXndIVvpo+kWuBCORcKWgttMMLmbxEjoLBVszhZt1ooOq5/osVa0qWddxJPacFFgzxP5F70kH4xcptIQwZghJD2ClMA8kaS3LnEULKJRpOK3yYwtsl1IbhiEgyxeP4HYD+gNy7TsGkI2JMyCnPZRcx6S4SElLNS0iqup6IKJrphoaY8g7SMbDhnRYlm1UJQ5vioxVxPMpASloMMKe9SdJhV7SHo0xzZDCEM0w0ZPWWi6hWx4CMkPG/dPAvDgGICbjsbMNJg0DOxHAb1mjpa/RCu7TCO/Sj9TwTJShIoIAgjpgFAWkEyfVH9MbbZJxW2QyMzxFhTGK0nahQqBJSGMQ5yhgjoyWQ8fUUr2MZIOQk7EzaukRhPy1pAcI1LSDB0TIzQJvZB9Fvi+f5EDaYn93Bk2q8fgu69lyFkNru28yYXt9zjT2mT98A4vBDMMxUVc0AnPJPGXk7hXk4y/lKdXusSjzCvYaY0737/AYeEM83IKSXbI9NskNgcYmyOytzsUD97mQuPfkGu32fu11zC+kOVcapOV0i56YUZPL9GdVmi7FdpCjZZa4U9Sn2eip/mvX//73Clcp5fNs5M9w272DDvOGgfzZSbjLPNJkkEvz7ydwBNUkENEJUDTbBTFJRREnLSKHWgk1DlZfUgh2SVvDMgJI2pBA8OZ8tC5QDKcsKQcYS/7BEsJxmHm2NFlBS5+cxvlQwIz0l9H99TImKHX6/HgwQPCMIxDdtrtNpIk0Wq1Yrc5VVUpl8tsb2/HNsr1ep1MJhMnvEdAOJvNxh7lh4eHseY7nU7T6/XicKJIClypVEgkEgiCwP379wEolUrUajVarRZALFeJGlAzmQxnzpzBMIy42XMwGOA4DpPJJL5Xu64bM/cR8WbbNul0muFwiGEYOI6D7/vU6/XY0zxi3yPXQEEQ2NraikOMXNflzp07H7FojuQud+7ciUOffhQW/ViAHk3YacnBSbADP2xTeBKYnNYwnwS6p7eVzWZJp9MUi0VyuVxcEZ0EmfP5HFVVY9YdiOUHpVKJMAxjX+sgCJhOp7F3daQZ/ji2NRpPk0lEmqt3332X7e1tNjY2ODw8jLufo2Uiz/NQVZV6vR67t0yn07gpMdLLR4x6rVaLwbfneRweHmLbNr/zO7/D7u4uw+GQIAi4cuUKiqLEFen169d59dVXWV9fxzCMH9J6n1yxODmnJ8/70+b+9O8fd86exrafBMcnVx6edJ5Pv8+Ttn/62nmSRv5pDa5P+/uTrtWo4oXjf/7ouvZ9H9M048aTyBoyCnU4rbE/fTyNRoM33niDw3mDyv/lHNrM4Zm/9q9xv27g/MYKr//EczzzzhZjR8Vv7DMQpoyWQfmMRdUYoRU85FyIuXOXxftbPOxd5p9s/o94x3uF++rzjLQ8gSIi6BDmIJsdspzY5bXsX3I+84hqsoWU8vBVkVxvROFoSO7ekIQ5Q5Fd2qUyD2oXeT3/GXZKZ5hbKTTfOW7SVHuUsl3Ww23a0ymD3nGTJgOZ4nzEZ/lzLmobiHaAbWs4A5XRPENPKnLbfoaOVWPiZugIZW7mrnPPuMJu6gxuSea51C0+kX2bq6m7fFX5I+rCETWvTcnqMZcN+kaevlGgnSjxZ9LneGfyIreaLzBtZvBtgYWDLa7svc3q5B6vLf4LPnE5z/h6jXBVJZGwyEojJFJYEx2aKey9BO7jgGRpjpzzKae7pDJTpKJHgHTsGR54qFOb1P6M9KMJyfemaHdmhKKPVxbwVgS8dZGNq8/w5y99ibe6n2Krd57utII5SeDfVPD/VEbUAtS0RSo9YTX/mKtLH/DJxTd5vvYu4v6U5r0UzgMH7fU+8uaQYMdkr+3jLRcYXLpA6+Ln2HjhZbY+e5VDeYVuWDxuirNAsEEd2CgNjzCAfKHHUnGPlcoe+UIXteLgLss4GZVMe0R2OCY7GlPs9Fm41+TS9kPOCtsEZyScnEboC6hDB7XjIszBb4rsby1/FIR/KEfZLp1FE21W9B0W8kfUyg3O1h5xtfIemmGTHQyRpqArc9L1MXLNw8vItIUKPaEYy1F8JLTQJh1OKfsdrnr30FwHHLB8g65QYlda4k+sL3AwWsE61LH29R+A8FEaQQYx4yMkQkIFfFEirIsYz01JZOaI+DCHsC9CQ2G+k2Rq5UgYI8pan6LSISM0qKWGnF11ubK+SDqdRtM0ZEWhLyu8Pkpw81BgJMwIdAsSPk5SZZpM004nmYQZqoJKfj7E6PkktiSKwwTyIIM08OmNEjwenUPUIMyGBFlQUyFqKUA8EyIaPugSquKSlSx03Yaki5f2EBIehmSjqzahGOAoKjMlQS6YshwcsMJjFvwmpdkQo28R+jKhHBAmAiTdRVI80EPIHgNwBAgQjwF4IOBZCuZAIngc0N3IsN1bYyP5DIe5c4yMEraQOG7KTANrxwAvYsIly8PozKjSJGXM8Msh0wUDRQhR5gHZgwOuOTd5JrjDon9EZj5DHgX4hopVMZAKHsXBgNxsSMqaYgRzlNCBKUiKj5gMGDtZjrw67/vP8Nha5c1Lz1H3Nljffo+VzibnDj/gejhH13zEJZ3gTJJgKYl7PYn5lRS94jl2Mi9hZg2EFAShyNw1sMYywaGFca+H/O/G6A83yez2+FLra6iTGYplQRgSVnS0MoTPJJlfLDN5ocogc4FH+mt00zWauRp/UPoFepUyhFA8bJEILfSZx0ROMhgXMbdSzCYpPmv+BdNuCifUEJTwuDdA89BVC0n28VIycyOBJARUjBa5dI9UdkwmNSaZnOL7Kr4q4iVCsvMJi7NDNNdhJOSZJ3TGWZ2RZCAPPQaDItm5hXy/j/zeHOnzKXxdJLtrY+h6fH+K2O8o8TNaSY6IRE3TYixjmiblcplCoYBpmiQSCVqtFoIgsLCwENsn5nI5Go0Gs9ksdmNZWFiITRxmsxkLCwvM53NarRaSJLG6usqNGzfi+6XjOLGUpd/vk8vlmEwm7O/vx6mfQRBQKpXo9/s0m0263S6qqtLr9SiVSty8eRNRFGMrx8lkEjPcmqbFxhKSJHF0dBRLppPJ5Ee84iNcGSWov/3227HsOlI+ZDIZFhYW6HQ6lEolKpUKi4uLZLPZWAmyv7/P4eFhLGf+uPGxEpd2u/1DIOYkI3lS/3symOipG/sYGcN4PObv//2/z6NHjzh37lwc6QrE4HY6nWKaZiwB0XWd4XAYi/UNw6BWq8UdtWEYUqlUCIIAVVX5q3/1r/Jbv/VbP2To/6P2FY6Zz06nw+3btxmNRjx8+JD333+fVqsVdyRH/utRwE0ul2N5eRn4ga0fEHcBRw2KERsbpV5Fzi71ej1+3ygta3FxEVVVGQwGjEYjOp0O+XyeX/qlX+Jv/a2/RTqd/gjTf5Ixf1rI0Wnw+zQg/OMC9Oj3kyswJ3sRTo+ThcTT3vdpMpyPW8n5Dx0nZT9vvPEGf/qnf8rdu3cZj8fU63WAmAVYWVlhZWWFhYUFcrkc165do1Qq/VCBevoYXn/9db72ta9h/Hwe7WfSiGHImd+9yfW//YfoV6D8nwsY5wLkFQEpETJ6qPPg4Tobw0u8Y36Kd4NX2dIvMldSoAG6gGj4FNNdatoR9eQR57MbPFu4TZgCgZBCZ0juYEjuYITmWgSGyOPqKg8r6zxKrdP0Fghs6TgBUT5u0ixmu8znCbq9MtN+BrnvUR83eMm6wavS9ygJQ9yZQjBRcScBAz9PNyzStqp07AqjIMej5EVu5q6zlTxHS66yrO7xyewbPJe+zUV9gyXp4FiSYrcRw4C+UaBnFOgmCuzKy9y2n+Gd5idp92u4tkypecCV7bdY79wklx3irycZvLSE/UwWJRuQUiakhCmmrTFq5Rk3M/hzkWJ+QDnfpZjukkpOUBWXQBAIET9sznRINkzSWxNStydo784IJzZBUcBdFggvCDQurPC90ud5Y/o57ncu0xwvMpum8MYKflch9EHNOCTSU8q5Duulh3yi/hafWHyDTKdN434K64GH+miAsjkg2JnhNn0oG4wvn6d74Rk2V19hM/MMO8o52kIF11YQrZDQFlBsB8XywDtOjVws7bOc26WUb6N9GNhjFzXSvQ+9wkdjir0hC/tNzm9ucCHcQFgWcHMKQSiijFyUjovYA3ck89g7jqzfDs6x+SETvmmcZzt5lpQwZdnYYzF/QLXSpFxrYVSmqAmHdH+KMnHRZZtkfYxcc/GyMj2xRJcSMzGF+SEIV0OHRDij6A9Y9A/I+hMCV8TyDDpCiSNpgUfOWXaGZ5k3kpi7KpNGmkk/x3yUPZ6vrIeQCkELQRJxfRkxGZAsTlE1G8EJCIcBQQOcIwVzVkAKLdLhAQW5w0JqzHJ2xpm8SSU5I5dJ4fs+giDQ9j1uqXW29BJeRoJUSJgUsQ2NkZKjLVRJiROqfpNEz0Rqh9ASEPsG40me7ijFaJbA8ySkjE+QFQiyAnIiOJbSJATspIyiBuSkCaV0j2R2iJadoKfmGNqchDznJs+Dr2JKCkroUffarIU7nBE2WPTb5B2ThOPioDJTJHzNR1A8kH7AgAPHkp0gIPQFfFsk6ATwwKa9lWe3tci2epnt+lW6mUVMJY3vK8e+4D7HUhqVH1gVEiKGHqpqoWRddM0jiU++12N94wbP999iRd4hnx2il1yEBQm7pjOvJHENidxgRH48IG1OMJw5ghQgJELUnIues5nM0xzMltifLTEYJJG2JyTutkg/6JDcG5D2TDQ9QFxJEKwkjpnvehK7kmSQy9DLFphnE4RpEd+XmLs61kghPLQwHnZJvt8mudEjudsn0RwiDy0Ey4MPbx8C4BbTTM/UmC7XmCxXGa5V6dVrdGtVOks1OosVAkmieNAiu9Mj0bNhJjAOCgykMgOhyNDLM/YzWIEBcogggyCHGLqJohz7lNuBjuNrZLQRuWSfTHZIKjMllZygJ+ZIqocoHn8uhVMZXJDEgEAVCJIiYRL8ucR8kGQ8yMJIRJ3ZpK0ZelvkUv993u6/yHe9n0Qm4O9V/hHO/DjQSEnpBBUDpWkReH4cUhSxxtH9z3XdGEPZtk2n0+Hs2bOxAqBer6NpGvfv38fzPI6OjigUCiQSCTqdDhsbG5RKJfL5fLwanUqlSCQSzGYzNjc3UVWVUqkUa+APDw/jRO9yuYyqqiiKQjqdRpZlptNpLHNutVpxOqcoirGZRqPRwHEcqtUqtVqNwWAQ20ZGToAR+y6KYizh6XQ6ADFgTqVSsVPbaDSKwbnrunH2Sr/fZzaboSgKjuMgimIcbCRJElevXo1XDqIetci5JgxDbt26xd27d+OC4EnjYxn0p9Hvp7XFJ8HcaQD446aObm5ucnBwQLlcZjwes7+/j2VZsf1OtIwQifeji6rVasVpVpFvZtTIFwHlXq8X66r8D5PEou1GuvrTFnnRsViWRbfbZXNzkzt37jAcDhFFkcPDw9ggv1qtxo4hcBxfH0XVRlaAsizHVovRNsMwZDAYxBMWLc/Yth0D8n6/j67rcRdxu92OpTH1ej1eavrGN77BhQsX+MIXvoCu6/H+/6hC5EnH/LSfP04a8jSAffraeNLKyccVdyevsaex/z/uMf44TL0gCHiex+3bt/nOd74T+6uGYRh7oLbbbXZ3d1laWuL69etcuXIlvraedhzR/kXBENq+yLXePT71n32N8AMbMwTVA+kIzE2Rd7xX+RvVP6Avlci4bURfY2onqNRaXH7+AdXEIc9qd8lnuxi5GaIVkmzOqB60KW130ESXUTbNdm2N28Vr3D9zmWE1f+xyIY4pKgOK6Q6XMw+pj9p052UmozTiDGqTNp+b/gXPGHcRtQChFyJsgDcV6YdFel6FW+GLHIULHCjL3Mxd527uKvv6MqEAn8x8n5cy73I98R6/pPwBCzSoum3S7pSBlqNn5OkliuypS3zT/zxvdV5mq3UBp6WQ7XS5vPkWlw5vcin4BpfP/xnDFxcYv7pAWJVJaCZZKY3vZRl0C4yaOaw7KvnUEK3okMlMWE4doC3ZsAI+EiIBiu2QaJuk70xJ3pmif3+KdGjiZ8BdFPDXBSYX8nzrp3+Cv/zKT/F+5zn2RyuMpzncqYr/bZlgIiGnXPTMnEKuz7XyB1x/5gavLPwF9dkm7Xsppg9BvTlA3ezD4ymjI49pTsS8dIbB+hW2z/8KD1+6zmN1nYZYZ+YkEa2QwBJQTA9l6IIdomdN1sqbrNR3qeSacWCPVdNJDmZkeyOy4zGF7pD6u03O/4stLtkPEM+Al1cIEJHHLkrXRZyBM1TY3F/7KAhXz7OZOM9OcZWcMGTZ2GWxcEi10uSZ2g0+UfkLZMMjNZiijlx0xSJRnaLUHfycRFcs06PEVExhCTouCmroHEtSghGr3i51v4Xgw9xL0qZMQ6rxvvcM/2b0S0xaaZw9jUkjxbibYzbI4rsyUt5FTAcIRgg6+HWJoCah5azjBk08hJkP3YCgKWD2Uky9DGmhS07qUpDbFJUueaVFMr2PGo5jmeNMUNmpvMAHK5cJCwnClIRvyMy1BH2lgEmCBemAwqyP0nEJNySkjo/Sm6FNBnSnGR7NryBpAUI2xM9CkBGR88f76yWO7RVTsk01MSCf7aOlJyjpCWpijq6YJAQTFRsHlTkJgkBCC1xyQo8Vb4efD/4tOdsFN2QgZ3FUCWQf5BAUsLUAGwgEFyG0ET0I50AnwH3k0b6XY6+1xL6wyk7tCq3KKjM1hxuq4AjHAUNljgt8meP3DQUIA4SkjyY7pESL4rjP2s5dXnr851yx71DOdEiWHZQ6OAs6ZjXB7HoS8/MGxmRGYTggPRkjuy6CECB5wbE9qDLFS8kcCXUOwhpux0faGKNtjtAeWyiHHprcJ7Vic2mlibecwK0lsb+cZPxrF9jP5pjlUgQZCc+RMF3jmO0/ckg+6JJ+0CTx8B6l3T5Gc3QMvk0PPrwdiICbTzFbqTJdXqHxyssMl2sMFqq0F4/Bd3exiqcq5A/a5Pd6JNpzpCk4poHYgeVpG27rPDAvYxlpzHSB0kqXQqrHhfQW//KDl7FDAzeUcXwdTXTIJ7pks4Nj8J2aYCRnKJqDKAeojoM4DsAWEfEJZYFAEQl1QBCwhjq9QRVvqKD1LSoHB9RaOxhpD2UhoGA3eeXwDvVeE/FXApLPmli+wq/t/vfceOYXeeGNG/y1P/5dUkEXZ+7FspMwDBFnNiPLiglFQRDi1f+od8913RhPRcmi8/mc8XiMruuMx2PgmOGOVAqRrDd6v9FoFK80Ryxzp9NhOp2iaVrc4AnEeSWRVDhqRD1z5gyTySSWmuq6zv7+foyt5vN5TD5GqeCappFMJmO9+HQ6jd1eInIXiJM9u91uHH4ZJYhGGvkIUEdKhygMKUpCjWwWo1X02WwWbydaRdjb24tJ5NOk6ZNw58nxYwP0kwAtAiAntc+nZQLR+HFSOm3b5lvf+haSdNzJ3Wq1Yl1vBHBPAuuosSA6YZE1nuu6bG1tfcT3ulQqMRqNcBwn9vaMGN1ogh49ekQYhnF8uyAI2LbN4eEh7777Lo8fP6bb7TIcDuOKK3ofQRBinbumaXEcfXRRRY0FJ5s8ows40stH+xNVUpHmPvIkjY51MBhgmiaaplEqleLu42q1imVZfPe73+Xg4IDXXnuNc+fOxU2LJ+cu2lY0N08Cz6fn8EkymdNs+8nXR38/KSeKGlGepEuP5uJJbPjT/vY06VS0/ZPfnzSepBGP9vuNN97gm9/8JsPh8CMSK9/34+aZ6J++1+uxtbUVz0l0jE/atiiK1Go1kskk0h4k/3BKbtXB9sD8Uol7//mnYRjwxv+7zLde/M+4mL/Phew9LgvfJ7msEuZCxElAujljYfeQzGiCHRo8KpzjaLnGzcI1ds+exV1Uj4NXxCFFvUc51eGTxtt0e2XaZoW+WeS+UCG1ucpf4c/4X5z5r5gKSW7xHKVem9XGPp1uiT+zvsR4lqAblrmXvsKtynW2k2dpyRUuqQ94Ofd9nkvd5rfVf8ySeMyGl+wupmzQNYr0EgUaWpWv82XeG77A+/3nmLbTJAcjLmy9x5W9d1np/yW/Uf8zpi9W6P7kWeyfTqMmXNJKEo9z9IdFhs088wOdVHNOvjgknZuSSw25XH6IUAvxOf7ckF0Xo2+R+mBG6v4E/Z0pyp05gRLgLAj45wXsCzrvfuKTvPm5n+S9/ifYHpxjMC1izzT8Owr+6zKi4qNlLbLZIVeLd3jm7Pt8cuEvWXdvM3ikMnogIn9vhLbVR3g8wT1waKbAP1/BXL/Ig/M/ycPnXmJTu8SBtMTQySHYEFoiku2jHLhgB0gpj7PlDVYqO9SyDRKlGcGigLlgYEzMYxA+HJPvD1j4oM3av9niyvQByrKPX5AIRBlx6qJ2PMRpiDXUeNQ4y6YfhfX8AITvlVYo0mXF2GOhcEi10uCF+lu8Wv42UsInMTDRRha6ZJOoTFEWXPycSF8q0qXM9EMm3EVBCR200CERzql7TV50b5IM5syCFE2qNMUqO8Ea3xp/iUE7j7uvMT1KM+lmmfQzOHMNOeci5nzEhI+gQbAoEFYhFEK0nI2iOciuhzQOENsBTkNhNMkxDRPkhCZlrUdZ71M1BhTqHYrqAFU+/myxCkU2qqvsps8zS6p4hoSja0zVFH2pSFoYs8Qeyd4MWuC0ZISWg9i1mZhFGtYy+8EqStonzIT4WYmgLCCuhJCAMAma4lJURpRSXdKZIWp2hpyao+kWumSiYxEiMCeBE6qIPqT8GUvWPmfFTapBi8CRmZHEUlVQBBBDEMANFbqKTCCIEPqIno8w9UgezZB3TGgIqFOXG/Pn+Bf6f0S7eIaRUcQJtWMAXgGWOGbAVY7ZcAHwgCBADjxS1oil/S2eObzBc+13ed66RT3fRVsEb0nDrCWYryeZfibBLJ9AQEW0EwidEH/oo4gWumJS9RpkzRHJxIyeX2A615gfeEiP50h7Ju6Bw2wMYS6BvDKiuOjh1hNY1wqMP7XMQTrNpJDBT0l4tozpGFgDGf/QIfGgQ3qjRWrjAcWdPkZjjDz6YfDtZwwma3VGz67T+LkiYkahW6mzWb1AZ7FKZ6mKndApHHXI7XZINefI0wDPVRG7EuftfX6i/SZL2X3q6RbZq0OUF1xcUSGUYeSmMQUDR1cQ/BCl5yDMfHpGkV6mTOiI/Ccv/N+ZkKSrlJmHBoEnYQcanqjgqhKq4ZDS5qSkMZlwQlHss+gdUE8dUeg16X83jX5/Quaoh3Y4QW65CEMQTZADMHKgL4FWB2FJorleofnsAu8tvMzh+TqH4iI70grN58+BIHDj0y/yi//unzCZTAg/1G9HJhSCcOz5HfXpRVgrkhB3u924sTKyJ3QcJ7a8DoKAXC6Hruu02+2YYc5ms5TLZYbDYQw8IxZcVdUYtBYKBVKp45WrwWCAbdtxRkmUH3OSGY8UBEEQkEwm4wbOyWTCaDSK8WKv18MwDM6fP08mk4mPL7Kzjhj4crkMHLPtyWSSxcVFRFHk0aNHZLNZfN9H1/WY/Y+c3O7du0epVEIQhJhdj3DpdDqNVxwMw2Bvb49Op4NlWUwmE4IgiInT0+qTjxv/QQz6k0BRBNJPygNOJ4me1Ko/KYr+4OCABw8e4HlebPETAe7I+zxKA40m7knALWLYI890URSpVCpxNRWF+5zcp0gnHp0013WBY0/1iM3udDqMRqO4koyeE8lUToLUky4rJ2Ulp/fzZLEThmEM1k+ex0jeEsXQR6sLJ6vZ4XDIfD5nMBhweHjIe++9xxtvvMEv/MIv8PnPfz7Wlj0JtEbbPln8RHN2mh1/0t9PXxvROX0aOH0SOI8eO9lT8HHbOA3IP449f1JR8qPGfD7nD//wD+PI36hyjv4xM5lMPH/R0lgkvZpMJvz0T/80yWTyqSB9bW2NhYWF4+JtexnVLmEtSbzxf/oqUhgg5kLW/4uQZ7r/NYXugOJhF21iM91MYVV1vr/2Mn9eXWe0nEWSAxLKjGTTJBuOWEvvcza7R69XZtQv4rQTDI/yGLMkZ5IpVlWNh1ODVGWPtf0/5+WtfcoMuCde46b5LAfqEu/lX+R++goH1SVUyebT6b/kxcx7fNr4C35T+r3jBk2njRz6dBNFukaRllHmbV7kxvR5bo+epzlcQJnNOP/4fZ7Z/j7LB/f5OeM7fOV6jvaXzjP+qSpCVsBQE/jiOY5mObqtIrNOCv2ORbrQIpsfk08NOJ/eRsr7+EjHDZq+hz6ySW7NSD2aYrw3Q7kxhamDVxVwzgt4F1Q2z1/l7Rc+y1vzT/Ood5H2pIo5S+A3Zfw7CqEHasYmlZtwprDLpXP3eHnhDZ7lLcxtn8FDBfG9MdpmD+nxGHffpqODtJZCWF9n//xneXDlkzw0rrErrdL1SviWBPaxVZzScBHtANHwOVPeYbmwSz17SLo8JqyDuWSgWMde4dnhmEJ/QHWjzdmvb3N1dB990cUvSwSihDj1j5nwUch8YPCgtc6Gf+GHQPhBcYkqzR+A8GqDV+p/wU+UvwkJ0AcW+sgmIcwxKnPkBYcwL9KXCnQo0xIrmIKOi4oSusihhxbalL0ul92HFIMeHipH1GkINQ6ERd4cfYp2p4p3oDJvpBi3j0G4NTKQsy5iwUNK+Qh6CEsgLvgITgAKaGkbRXCR5y5y3ydsS8y7CSZ2BkWZkNfGVIwBFa1PodBGT+8waW+QyGbwzqxxtHyOzeJ55qlncXQVS9MZyVkcUWNR3KduH5FvT/B2ZOx2Ar3rkRh49Kc57ljPI2suQupYiuJnZbgsghFCQkQyHJLhmLLRJZ/ukczP0LIWatJGVU10wUbGw0THCg2CQEL1PIpmj7PhJkvyHrpgYgcJbEkllERCFRBAxKcf5sE4lqNoWLiegjzxqM+aZFtTJNfD35eQxlCXW1SEDm2hTFupMK6kGC1l2ROucSl7wEup+0iGh2vITPQUh/ICm99Zp7p7yHP77/J87xbPzm9zKbOFuhRi1ZPMaglmn04wqaaZFJIM9BUcp0g2GJMThpSFNgYmiuAihf5x8aAKmLrCuC3CvgtHHv5IZEdaJJNU8RaSOLUkVjnB5LUk41SSaTGDl5TxTBnT1rH6Cv6BTeJO9xh8bz+isDOIwbdvQSe5QjO1Rit9lqaR51pmRPPKs+z+1rN011fwizqfz/0ZWX1CXhge20C6A7LOOyS9ORMvyb9vfpmt3lXOOQe81nublew+1XST3MUR2rMWoSJgiypz32COganpiEGA1/eZ9lSEmcg4TDMV0oyVHF2jSjNVYyyl8ZGwdAMvVHDmCrLhkUjPyCgTMkxYFg4ohh2WgwOqo0Ny99tIdy3CRy7hYwfxwEMLwDsEyQHdgItLoC2BsgDOJY2D86scnVngqFznKLdAQ61izgzupy5xoC2i+yYXeUQ9bGAMJ6wmdrnQfsT74TL2coXCzU2y2Wyc9xJhlohABGLMEcXaR42M1WoVRVGwbZvJZBK74nW7XTKZDNVqlTAMY0wUkZOLi4scHR0BP7DNjhQNEZiOJCaJRCKWr0RE6draGoPBgEKhwOHhIf1+n+3tbcrlMufOncM0TVqtVuwGE9koTiYThsMhgiDEHuOtViuWNqdSqRhTep7HxsZGTOCGYUgmk2E+n8fgPplMxvLqVCoV6+XDMETTNC5duhS7t9y7dy9myrPZLPl8Pgb4+/v7DIfDWN4TFUYnccOP0qB/PL9+YpwGQhEAjX4++bynNeNFE3cSMPq+z82bN+l0OvEyQxTfHoHdiKGOwFJ0cUXfT1YjJxnPdrtNqVQil8vFSySngVykQ2o2mzGIj/w5O50Og8EglsBEDHzEkkZLFtG5iC6A02D7NFB8kjQoeix6biTjiQqgwWBAOp3G87w4yj5icKMiIuos1jSNb37zm+zu7vKVr3yFlZUVNE37ocbRk4XCyWLs45xVTrPmT7s+op9PfkVzf3Kc3FZ0Xj9OxnL6NR/H/J9+/WmG/0ljMBjEMqLBYBBbfp50COr3+yiKEmvOTdOk0Wjwr/7Vv2I0GvEbv/EbpFKpJ+5zNpvl+vXr3Lt3j5+/+w/J2R1ywN/8W/+U3eeWKO71SPVnjPQy1ir88f/qp5DHHn9+8FNISY9CsccL2k1cT2U2yjNol7m3vU6rWeX82QN+brzJq/NdhnaCwuADiqNNAlPEcUxaQZKysEg/fYk/y3yV/3btAgfyIi/o7/Fy6m0upR/wn2r/gGXxgKrXJuONGWg5uokCbaPMtrLCv3O/yq3GdTaa64QjkcrNbS7ev8Gl7g0+yz/mC8+FDL6ySusLZ3HLGqpuEKhnadjnaHfqjFpZ5C2XSrpDIT+kkOlxNrGDfNYlOCcdS1LCAG1qk2iYpLYmGLdmqG9PEQ8t3By45wT8CxLN9bPc/NXP89avvsad3jMcTZaYzVJ4MwX/ezLB6FiSksjNKOdbnF/4Pi/W3+YF5XtI+wMGDzW4O0Pb6CI/HuHtWQyVEGNZRj9/ls75Z7j/lU/xMPEs2/I5WkEdy9KPA1MsUDoeouUjaj7V0hFnCjssZA/JFIcI9QBz2UAMfHKdEdnhiEJ/SGWnw9q3drjavUuqZhFUJXxZRJwFyD0XaRgy7Se5077ARnCBreA8m+K5GIQ3inUWwiNWErvUC4dUa01eq/8ZXyz/e4KEgDZw0QcWSXGGUZqjLDoEeZGBnKdDhY5QxhJ1HFTk0EMKfaTQJ+uPuGLdo+Z1kHFpSTUOWeBQqPNnk8/T6NVx91WmR0kmrQyTfg5rmEBK+kglFynjISZChOUAacVFc8GZ60hJD0VzkV0buW/hHdkoHZW5U2GGQU4ckRKb5OU20myTYHiPrNBCyhiYxVW86y/x8PwyprqMrX6GuZZiLGVJCxNW2KE46ZJpDbAeGczbKYyexXiY4dBcYT9cRUl5CBnwsyJeUSRcEY+BcSpAV1yKYpec0SSR7GNkpmg5FyPpoSsO+ocyFBMD21cIXQHVnlGbN48DrrQWshDgCgqhJBCqAmggEOCECq6gIIYBMi5BANNplsk4jdNOIOwKKAcuRtMi0xpTbzV5Yf8GpU6X0YUM7/9vrmAva0wyKd5PXKMrFzmSFmjIVaZKGgWPtfkOL07eZW2yw/LogKrfIitOIIRH4SqTFzOMfibNtJhknKly08+T80fkGJIThlTDJgousugiBAGhJOAHEu5EwerITI4k6IU0J2s8sq/wWLrEPmfYN5dozBZoT2r0xwUM3eTv/93/LfZAxj9wMW50SG+1SD/eoLDXRz+axMx3GMJQr9BOr3FQusjewld4/OIzHJ49y3CxglXUkCseYsGDFIQaYAn4OwnOsMsZYZdzwgav2m8zdVPYkspITTFJJVF0F1n1CBU49+xj/ifBf/8h+DYQwgC/HzLpK8wnIfPAYCJmmCg5ekaZZrJOTysgeCFpdUJNa1OW2hSVPhfkxzwn3sUWVCZ2BmESsjw+pDLokGmMUfsOe30df8tB2HNRZqCqoKZBqYgElwyoqYifUEh/0kERjvsDtitnmKsqnmDj+ybfXXqNsZ2Bocha+zGLG0dceXiPRNJETjsEGYF5XqeHSLlmoighYQj/+zd+nb+9+k+Rw5DP/c7fY7hzh1fOX6L+zDNx+M5wOIyBeMRUn77Pa5qGqqqMRqOYbTcMg4WFBZaWlnjnnXdoNBrUajWKxSLFYjFuxowAbqQyiHBOJBMJgoBut0u1Wo0DGTVNi3Xvjx49otfrMZvN4teqqhoTX51Oh/X19RijdbvdWI6STqcZj8eIokin04mTv6P7dXRPj4xCjo6OWFhYQJblOPE0ct5bW1uLewMfPXrEbDaLk0SjsMvI4WY4HMZS636/z9LSUozholWDSIoTea9HWLZcLrOwsPCxWBl+BEB/GksdAZ7oOU/SFZ9+/slxUmbSaDT4xje+EXfJ9nq9j7DYkS4pel9BOLYafJrFnmmaMbCNwFMul6NWq31EJ3wSuBWLRVKpFIeHh2xtbcXAPKpwIkcPVVVjdnQ2m2FZ1g+dmyc5jJxsrD35PXpMUZQYQEcjOkZFUWIWfTAYoOs6KysrGIYRN2zMZrPYszQMQ/b29vB9n+3tbW7cuMFXv/pVPve5z31EgnESKJ8uGE4eRwSuozk7+bfT8qUnsdoni7jo9yfp1U+ej5NA/UnNpyd/Pi1tOf3e/yFNpNESX9SQEunJgHhlJwzDuI8g+gCL5kJVVb75zW9SKBT4uZ/7OVRV/aH3F0Ux9nK998pF3nr+ObSpxeajVc7WWiQvDOnX87SXqswKOlLgsTm5SM8r0WsVKCtjirs2l99pkJcEnrEOeLG/wWXhJumbYxBMNljnga7wKPsSDwu/yQPjIjlpyKdT3+P59E0+Z3ybvyb/LrWwSdnpYso6nUSJrlHkUKvzb4Ovcqt3nfebzyJPfC49vsO5Rw+oTN/nM63f4bMpmfGXFjj4mStM/0oOMQmSWqcf5mj16/RbBWhDYdQjn+9QynbJJCc8t3iHcEnA+/BjRzFdEm2T1K0pxgdTtHdniHdNAsXHPivgXRAYXFjkrc99hu9/5bPcGl9nd7DGeJ7Fm6v4DyX87ymISoCem1PI97hUesCzl27ysvbnpJoNJhsi3iMTY7OLvD0g2DVxxRBtEXJnF+ifv8ytn/wl7v38C2zKFzgMF5naaQQLQltAGnhIjQBR8smW+lwr7bKY3Sef7yPVPMwVHWThOLBnOCY/GFJpdFj78z2utu6QLU8JavKxs848QO67SL2Q0TDD7d6zbNy+wFZ4ni3xHJsfgvBOscxSeMByYpfF4iGVaovPL3yTny7N8ZMiSj9AG1gkhSnJ0gx50SXMCwyVHJ2wQk8sYIpGDMKF8NhWTw8slp0DFt0jUswZyTkOxAUOWeC9+Qt8rfeLuIcKs32DcSvDtJ/HGqQQlBC54iLlHKSUj3gmRDtroQQu1jSB62rHQD2cE/Ym0JgidQXkWQFHWiAM5iT9JpjbCIO7pO3H1MQmUlHBX10jePY52mcv4Ba+ipv6q8zUDK6gUuOQi+F9zvr36O8W6D0uM2qnMXozRtM8HzjPo2jH++RnBIKMhL8mQ0KAVIhsOCSFEWWtRS7VI5OfYWRtlKSNotjowrEMxcTACnVcV0awJdTZlELYZUXep6COEaVj20FBCwl1ASEMEfAJBQhCASV0CBGYmmmm0zRmNwW7IB8E6A2bdGtCudXlhaO3WW3uoDoO3WqRUS3DdCHJfCXB+DNJfn/ll7h/5hL7xUVEERacBhcnj1gb7fLs7C51t0mBPrLg43oylqgyNVIM0hkG9TQHiSqC4pMWp+SEEQvhAas4iEKA4AXIoo8XSgRzEXsgY/VF5hONxvwcD60rPLIvs2uf4chcpDWt0R1UGPQKSKqHkZ+RSE3Q0nO0kskXv///YuXoHkt798j1Wgj/wI9lJ46coFm6wKPVT7C/co2dVy/RWFylXykzzyehHCKXXEiHhAYgCASOiOq61NwmZa9DzWlwprvHBfEhZ/XH1FcbyLp3rMEXVQ6DGvPQwFQN7EBlOkgwGOQRPJ8qR4zkHJnpjIFepJmq09Iq+L6IoVmUlR41uUVJ7rIkt7gkbaP7c1TTQbIC5LlPYmRhjEyMoY06cVDnLoTgWhBMIfiQ+HSqBtNKmsKSiPKCSNIPEAiZqGnmko6tKciqjSK6+Ih0/DzBTESdOJQbLVTJRUr4kA751d7/lzAJLIeE1wQwQWiHhG2BR+Yiw2mdG4fn+WePL2LmFlh7NUcjWOL28vMEoowbBvSvvEL63g30DxUA0+k0Zqgjq8JIAhz1vkUa8chOsNPpsLOzEwPMQqFAqVTi5Zdf5o//+I/jlX1d1+N8l9lsRrfbJZfLxS4qQBx8FIYh6XSacrnMbDaj3++jaVqsjOh2u3G/XSSzkSSJhYUFjo6O6Ha7tNvtWF4TJcpHyeARCx6x6ZEUeTwex1rvTCYDEDvlRccQ4THbtmM7a8uySCQS8Tnq9/vIskyv1yMIAnq9HoPBgFQqRRAEpFIpDg4OEAQh7pt0HCfe136/H/cWlkolNE0D4LnnnnsiFonGj7RZjMaTtMrR99Mg7DTAexLjGYG+e/fusbu7S7lc5ujoiCAI4olLpVKx/icCbJE2yHVdBEGg1+vFzPpp28doEgThOP0p8lI/eVwnw4UEQWB1dTVeguh2uzQaDabTKa7rxhrkk42eEeCPpC4nj/G07/bp4uYkmx6Bv6gYkGWZyWSC7/sUCoW4WSGykjw8PIzZ/Fwux9HRUbwvUbKVLMt0Oh16vR6bm5v82q/9GmfPno3tlE7P7cdptk/Kik42CT+JJX9S8Xby2E/KgJ50rT1pnH7uSbeUk+f+9PZOfj8J6J92rEdHR7RarbhLPDrOSMsGP0ggm81mqKoaB2JF+/BP/+k/JZvN8oUvfOGJxUgknbr5G88gFI9vbMFzIvvNJIs7j0nftmg9OA9tFcfxWPM8qvYez83/iIXZDr4b0BFy7Ct13sg+w2b5HBvpv0lbKPOK/hafSL3NleQ9Pqd+l0XhiKrXRg49OokSHaNIU6/ypvASH0yucav3Av1OibXHO1x/+Cbrh7e51vkTXkn8c6xXchz+6mX6X6xh5w0s4zyP5RqDUYF2u4o3lMntDKjnWpRyHXLJIVdKD6ACHhIBErLrYXQtkptTEndnaDdmyDfnBBMbe1XAWxeYXK5w99Iz3Hj1U7xnfpLNwQX6syK2qRF0JPwHMqEtoGVtsvkhF0sPubJyh5eSf0m1vYm95eBsOhjf6aJsDwh3ZxCEaIsC+pkM43MX2f70L3PnK5/ggXqFfVYYOHkCSwRLQJz4SJ0AUfBJF8ecLz9kaWGfYq6DXHWxz2h4hky2MyQ7GJMfjKg22qy8vc/Vg3sUCwOCBfmYQbVC5J6H1AkYjHLc6L3Axt0fBuGDXJ6VcI/l5B4LxQMq1RZfWbiHXp7jJhTEfoA+tEkyI1WcIC86kBcYqjk6Zyv0xRqWqGOjIXPsRuEhIYU+VavFZfc+pWCAKSdoylUOhAW2rDW+3f08TkPDPNAZNzNMejnMfpowFJArDnLBQc56SGcCjHULXbBx5hrmMEUgSQhMoT9B6E2g7SIPNQK/jiWmEdwOwnQLxdrG8PZQ1S5C3se4dB7/8hVGtQUovMA4maMhp0kxZcE7YHF+RHbWQJnsIc8dEok52dKQUr1L4Eu0WlXeO/gEG72zBFmFcEmBFAjZAFVxKSltsnKDXGZEMmdiZBxkzUaTHWQ8LHRMdGxfZ+7KGLaDYTlUhCY1uUVSniMLHoJ8HFgUAfBjOUqIFBx/Vs6dBJNpltkohbAjIu0HqEcOqdacQrvPxcZdzh5tk5sM6RcLDGtZJgspZksGs2cTvL1ynX+28utsLpzFkxXy3pBL04eszXZYnh3yjPVN/sdHv0eiYeJ6Mm4gYwcqwVxAanjIj1z6YhrKkMBESdrkSzbpxSFuVkYyXNymyuRxlgfrF9jy1rlrX2NrfJ5Br8Cgn2XN2WZup+j1S3Q7ZYbDApLio+dnqDkLueQirvmI1YBkuU++2MBgRn6vwcU/fpPixhH5ww7ZR2N2F5/l9k//HIels7QKiwyyZcbZDG5eRqk4iFmfMHGcwhq6AqIbknUGFP0eNb/FynSPC+ZDLukPWEwcoKY8HFFl5uuY4THz7SLR7WXZGq3Q7pZpqVX6WpmJnsZVjoN4NNkiUZySLo4pmENwZCp+l2JmzJp0iC68hW5ZSLaPZAboY5vEyMQYWmhjB3XqIvkBbgCeK+K7II4D3LyKXU9glg1kxcMITfTAxpQSTJXj3gFJ9VBkC0EMMEONiZlAGvroc4esMEL2XETBJ0gLBMnjwjHMAYqA34dJR8CZZZi4RTaa62zZV/le8SU29Bq9fgVFTdPIVPATIeqwQ8I7QlJ2sB41aLyxQdF9nc8+/02u/XqG96afYmn3fcwPWemIuY6aMqN7WbPZZHd3F1GSeL3+q+xmX+YnJq/zi/kjBEFgf3+f6XQay2Ha7Tae58WSkqhBdH19Hdd1qdfrMR65dOkSf/mXfxmD4Pl8Ti6XYzAYUC6XGY1GJJNJVlZWGA6H7O7uxuRfhK0E4TjnZjqdsrq6yqVLl7hx40Zssb25uYkoirFEZXFxkdlsxnA4ZDqdMh6PY4Aegfy9vb1YLl2pVOIU1GazGffwRQqO0WiEbdsUCgWq1Squ68YMeYS1IvlQv98nlUohSVIcvATEfY8nC4FsNosgCAyHQwaDQdyE+3Hjxwbo0XhSGMuTfv84wHVSVvHw4cO4oeA0S3tSrnJadx5VhVHXsKqqsQzGtu1Ywx113AJPZN4dx+HevXscHBwwHo+ZzWZsbW2xv78fO7NEAD3SPgGxpulp1oUfBwgjY/yI5Y/kExF7HFWzjuPgui6JRCK+WHK5HK7r0mg04m2bphmz7QCVSoUwDOMLYTgcxoXIb/7mb7K6uvqRRtEn6bOfxJKfHCeP7+S8nZbORO91ch5PniN4uuvJyX08ve2TPz/JNvNJhcGTXn/y70EQ8OjRI5rN5keKNlmW42o6KgQlSYoLNsuyGAwGrK2toes6pmnye7/3e1y4cIHV1dWPbDeaL9u2Ce4lGT8nYoQm//Hf/gMWJoeYaooPFj/Nq/bXGQQJGlKJTeM8d3LP8Qe1L/NYX2ZRPeQ54zaXinf5jP5d/qf8Q5aDQ3LukL6ep5Mo0dLLPBaW+SPzi9zovMj2/jnqzV0+++Yf8/ze97g4/jpXpT/gP7qs0PiNa7R+6wzTcoZW8iwjrY43VzjqLmL2DDLdEVW7TSXXJpcacCXzACF/3JzpISP6AfrQIrExJ/lwhnZrhvLeDHYtrFqIty4wv5LnwdpF3v/Nl3nnN1/hwfAqrWkVy0wQzCT8d2SC4bEkJZWfsFg45MLyA65n3mKldwdxb4S94aB/v4e63YedKbgByQWB0qLC/Nx5dl/8CT74wis80K+xzTnaTgnPVo/9ws0QaeAjBj7J4pQr5Q9Yqu1SzrbRqhb2soqTVcl2x2T6xyC80uywfGufq7t3qWR6BEsygg7YIPU8xHZAb1Tknd4n2HywzgbrbJ8A4ZNsmtVw5wcgvNbgysJttJKJZaiIQzCGFkYwJ10Yoyy5UICRmqFztnKsCRcNbDQkPIQArFAjEETSzpizzjYLfpNQlOgqJQ6lOjvuCu92P4HZTOK2EsxaWXpHSea9DIEjIZcc5JKNXHCRV3yMdZOENMdzFKxhEnOSRnVNZGuEOBxBa0o4lEj4VWZeBdsD2eyg2dso3h5GakRqUaX24kWOclnGpRJe6Vm6ep5AlCkFLfJmg/KshTJoMf9gQhiEKIZDqjilstCmfraBbpi0OhUa/Trb0/M0dhZpbC8wlhIUskPKr7V4bvoX5LJzUjkHNeGgqi6aYOMif8iCG9i+Cr6AYfsU7S51sUFR6KMLNqIcEOgighYi4hMIAiIBku8jEGL7OqNxhvk4RbAvI+2HKEceycacfGvIpeYu5xqbVHttJpk0/WqeST3FbCnB7JUEj5bP8EdnvsDDpQtMjQTJ0GR9tsm56WOWZod8ynqbXxr8e7LDMZ4v4fgKdqgSWAJyx0d95CBuOoxHMJY9JrLPJLSZmDAdCvh+wOe/LjB7lOJod4FZI4W7oZLcmVFudslM+viCw269wv/y5/4b2skyblJBrrioSzbSdZ+7b1xBEAPE6yGpcp98volkukgtH6HlofRsPvvw32K8bmPZGTq5M7Qziwy0On+c+RsMP1XAzBpIZQ8p7xGmINQh9AVwRXTHpOYPqQQtlv0D1ucbXNXuspzYQ006zEODeXDMfPuCwLyT4NbhVf7N8OfZs87QshYYzgvMp0m0rMWzv/IeieKMZHlC1hqzYLd43n+fatgh7w5I+DN0z0KxPEQzQJ25JIdzjKGFPnJQpw6K7eOHAq4Pni/iKyJeTmVWSTJZTSMFHsnpnNRghmiLtOUardUqXaNIN1GkVa5wcGmBjlLmSusef+vt30E3Z2TUAVLKJ0xDkBAIkyFkIMwIhDNwuwJ7/SW2/XU2g8vMTJ3FyRH1nSb5WZcFoUXdbDGehHgjj+3OReSxhXImYGX4kF9sfZOXH9/BCRX+pH6dB0tlfn7xAaEo8O8oYS4YLCwavPoTA7LeHp1WhQ8qX2WS/CIbqTTfcjNYio9bDXEDgVAQ8UIBtyQQChIOMpPEAggCf5r9EuXv/c9wXZdWq8VoNIqZ9mw2S7vdZj6fs7a2xptvvkkmk4mzXyIHlXQ6HasfgFj7DceAtVAocPXq1bhBVBCE2AEFiAuJSFIcsf+e53HhwgVu374dByBFiaFhGLKxsUG5XI4xU3SfjVLaoyR2y7IolUrU6/U43TMKuIzUBysrK8xmMwaDQWwJGWGEzc3NOHn0zJkzHB0dkc/nY2Y8IvEiO8VI1SAIAul0OsYdiUQiJlxPWpk/afxIictJBvA08Po4xvXkOA2aor/t7Ozw3nvvxSciOrgI0EWJTUDcMRtVgpGXeAQQ4ZiZDMPwI04aEQCOllKiYuAkcM7lcnieR7PZ5NGjR2xvb8eANtqPk523JwuHp7mPnNZowzHgjOQsEYt8kv2NTPej8zAejzl79iyXLl2Kmyl6vR7b29ux9mk0Gn3E3i+q5E6uHkRg8vvf/z6z2Yy/83f+DgsLC/FrnjZfp1cknjbnpwHzk8KgTsteTjPLJ/fj9DZOF2en9zl6vyddm6f37fTPJ1/jui6bm5sf6SGI9GS6rpNMJuPO9tNz73keBwcHpFIpUqkUjUaDb33rW/z1v/7XP+KmEwTHiWae5/EnN36G79z/FJ9Rv0fiqsfeaJWHqYt8kH0OR5d5UbnJc8b7XDQe8BPad1mRd6gHTSxZo6HXODJqHOl1/tD5Cnd7V7nbuMxoSyOz1+Zn3vzXfPrg63zJ+ho/tawx+OWzNL+8jvlbJR7lP4NseEi+R6u7wLCfIW3OKHU61Nwm+fSAlDHlE2vv4q+JeMiEoYA2dUgcmiQ3p+gfzFDem8OdOU7CxzkPzrUU2+cvsPGln+K9X3iF90fXOZwsMrNSBKZMsCXhvS0jiiFGfka52GatfJNnzr/H+dEtjIMG3oaFequPvtVD2JkQmj7JRYFUHbyzyzSuPss7n3uVe/rzbIgXaLg1TDsBVgiWgHR47Hph5Gecq2ywXNmlmmtilGa4SwpWWSfVn5Dtj8n3h5RbXZa/c8CVnfssGC2CJQkMEByQBh5iK6A9rvBW/xU2ttfZDNfZOqEJtzI6q+FjllN7LBYPWazt8vziO2glk7lhEA4EjKFFMpiRzE9QFx2EUshYy9AOKrTE8gkQ7iMEIVaoMxcMZM9l1dnjjLeLjstYztJUKjz2V3in/wrfaX4Rr6kza2cYtXNM2knciYJSdFHKLkrZRq46GGfmpJQpoS9gjZLMBimsaQrNGiPNBgjdIQlLxXBzBH0LO8yC46JYDSTxgETRYuWFOkFZZV8VcZYWcfNfZKJmSYZTUk6TYNLmqtkj7B0wvDuj1yniSxKp4pTa8hELZw6prjfI5Yf0xkUao0Wa8xpvBBfpb2SRCEhKTTJql8xyi6uJPZ5DRgk8irkeEylNjyJWqH0IwgMy9ogl/4By0CYpmohqiK9ICFKIqB4DcIEA2fcRwhA3UJiaGWaTFF5DRdwF5cDHaJpkWyOWm01+svF9lloHOKpKr1pgXE8zW0wwf8ag/dM53lz5dR6sXKCfKSILHmvmLuenWyzNDrlibfJ58y8obfQIAgHT13BDlcARkAY+6raNfM9h2g6ZCh4TxWciWExsmEwEZu0Q9zAkm4JcTcHIaGi6QdaXyOKQdybIX/Cw1JBhOclBpUazVmbnJ1fZXjvPwdoK3ZUqVsYABxLhBFH0kUwPqeMjPbSRCLCtJNONLPObReZmGtVySPgz/ISAn5N4cO5Fgk8KqEUH0iFBQjiWobgiiutR9lpUwg6LHHLW2+Ky+4Az2g6aZh5fu2qCQBII+yGDXo4Pji7yb+c/w567RtcqM51nMCcJ7JGOPdXREhbp7Ihiusdi+pBXi9/jXHaL9fwjVieP0SwX0fJ/WHoydlBND8IQ1xdwAxFflPAyElY1yWwxhSCF6HOTzGCCOvWYkONIr9PRS3Qo0QnLdLJlWmcrNEo1+rkCkuuRGs5YNzeoui3KYpsL5gPKXpvF2iHGz4/wtiX2NmrsttaYttNgiGi6g6FZJFSTkt9lwWxwfnBIeTbh2el9gomI0nGQGz5CAzKjMYILquhQosvf9P47NN3mb1T+OwaX8zjrCsFnRby6xLXSTeSsi5+SsFIaX1LAdAwmsxTjMIvlG6xlt+m4OupwwIJWpizmcEMT15oxHvYJPAfXmpMyNBKawmg05vUL/wmWnCTbvcPR0VGsSCiXy4RhGLuOpdNptre3457AiIgaDAYsLi6SyWRisnQ6nZJKpUin0wwGA+7cucPFixfJ5XI8ePAgxnLlcplarRZ7iUdZN8ViMTbmeO+998jlcqytrfHaa69x584dyuUyq6ur6LrOaDTi9u3bbG1txffjVqtFOp2O9fGRo0tk4Rj1N+7t7TEYDJBlmcuXL+N5HpZlUavVYnwQ5fFEQZGRw57runFCvCiK7Ozs4DgOqqpydHQUy6MjMi96bYRfIrY+8m9/2vgPZtCf1qD3tNc9DcT7vs/rr79Os9mMAVhkKxgdWCQriR73PC+uvoC48oq2qapqLAsBYuN4IH7/CKALgsBoNOLdd9/lG9/4Bvfu3YsDgiKBfwTEo9dE+3ASnD1tpeAkYIwY/kjHHiVQzufz2IJRUZS4YTWdTtPv97Esi+FwGC+pqKqKZVmxpOekLjo6B5HsJmpmgOOLrNlsomlabMf4y7/8y/G5edI42Xh7Wuf9tPk+rQU/LX85+Zzo5whsn3b+OX0eT5/PkyO6Pk5u98cF6CffdzKZsLGxwWw2i4ubaOltZ2cntn0KgiC25ATiAANRFBmPx7Fu/e233+Znf/ZnWVlZieem1+/xF5UtGv9xgvf/6Ap5cUBaGZG+NuEXpK9RlxssiEeooUPbKNMUijStHPeGKf609TJHuxr3ey8z+/Qr+LrEs9XbVKZbJP/8Fj9z+U3UX9JRKiEkdO4ov4wseYwHOdqDMgnLojDtURVblMIu6eQEZfkmwbKIF8r4goRseSTaJsmbs2MQfnOGeMPEnVvHuvBrOocXz7P73Evceu1lbtovsjM6y9jK4lkyYVfEe6gQmiJaziRf6PNM+QOuLt1mfX6L/P4ubA9Q3hyib3WRdseEE4/EgkB6IURaLtI7d5m7r/4K7+svcF+6yoG3xMROE9rCsSSl6SM6AUZ2zmJ1n6XFXWrZBqniGG9RwqwnSIxm5LojcoMRpXaP5TcOubJ9j0W1AcsiggG4IdLQR2wFNAZ13ui+ysbuOpvBOlvSD0C4n5ZYC7dZTu6zUDrkbG2Dlxe/h1axmKhJwqGIMbBJBDMy+RHKogOlkKmeph1W6ApF9sQlbPQTIFxjIqSxfZXKvMVFf4N8MMKSDLpqkR1hmY3+BW61X8Rr6MxaKcbtHJN2CmegIee8YxBecZBLJuqZMRVtgCQE2BODWT/NZJhFNkMEq406mVJEQ+j0cfpjPK+GGyr49gQ50cY4p1E+b6MKEyZFA7tWw8p8ilCQUP0es1mH0rjLJ+cj3K3HdI/GNDt1uqMy/WSZxLk5qdUR1bNNLn/mLpVSm5mdpDmr0bAX2HTPc2dwAb/rkjCmJNIWqVqX69IhwVzCd2UUwSWlT0kYM4bDPMNxjpllsOLu8GzqJorq46nKMQCXAgLhOIhL8TyEMMALZWbzNPNZCrujI+0c68C1hk2mOabc6vBy4w5nmrsonku3UmRcyzBdTDI7YzB5LcUfrnyRhyuX2C8tIIpQd5pcnD5ieXbAgtniBft9arstFDwmfhIHhdARkEce6q6Des/B3vWZejDRPSbinIkLk5nAtAvWYUBKgnxdIpnXUBMG1UBhHZd8coJ+1mGqJTgo19gr1zko1NhfWmZnZYXDpQWaa8sMFyokugNyOwfMqkXMchGx4yG3XbQ3TUQzYBpkmZoZzHEKwQTNm6NIHkEGvIKCW5VQr9gkckPCpIClSITesQwl7Y4p0WVBaLAq7nDe32BF3iGtj3GyGr4kIvVdpoMU/V6OB/4af+R+mSN3kaFZYD5NYU907JGONTIQJZ9MZkQ502I1vctqcYfVc9usZh9zRt8h400+Kj1pWWgbDurMRfIC3FDA8UV8USRIiJiVJP1KjnBRRLEdssMpidEM29U50hZoG2U6YYmOX6ZjlGnXSjRKddqFMr4kkRiaiCMff64g+j6K5BIcidQabV7QbnDW3WKps4tqegz9HL6mIhgiMy3PoaIxFUpUnBbrzgF1e4g11QhHAmLfR2l7KB0XdeAiT318WSQnjMn6U0TfQ0wHWFc1Zl/VaNeyeIvysSd9QSDMCLhpGd+QEK0AxXQR5w7etoftZBCGOmfMJnrfQU16iAI4gci/fOdT5JcUPtGXcHpvcdA4YElaoiJW4nt/+KFhhiRJ5LRjV5Uzhsb13n9LiyxLQp/BlSt0Oh1UVaXZbH5ErhHZCEfkVBiGjMfjWDocSWGiAMlkMkkikYiDffL5PJ7ncf/+/Ri0vvTSSzGBOpvNqNVqNBoNWq1WLKMJgoD19XVWVlZic4w333yT5eVlTNMkk8lw9epVOp1O7LwSkZSlUinWtgdBQCaTiYF1o9H4SJNnZNUYKSci4jTyh4/AdSS5rlarDAYDMpkMvV4vxiGRQ9tsNsNxnJhQjlbiI9w3n8/jvrWPGz8SoJ8EUSfHj8uen36/6HX37t3j61//+g9VNoIgxOAoYtPhmKGMNFWDwQBFUTBN84fAWLR0EoF0x3EwTZN0Ok2xWESWZQRBwDRNbt68yde//nVu3rzJeDyOl3MiUX90/JGcJQLs0bFE2zzdcBntkyzLMXN/ciJM04wdYSKJSdSkENkbRf8IR0dHDIdDstls/Lyo+eEk+w4/YJJHoxGSJLG8vEyhUGBjYyNeWZjP5/zrf/2vqdVqfOYzn/mIl/3J4/px5vpJDPlpJvvkeTn5vCf1JkRzE/1+8rlPK4RO6vmjbT+tefVpxxP93uv1aDab+L4ffzhFfQ+FQiHWsM3n83iJLNKgF4vFWHMXhTeMRiP6/T7Ly8v0+33ef/99HnoHbH/FBlnkZ3/79xHFgFda7/CJxjsM7CT/ZvMah/sv0ttVkG3xIw2o/Z9cxv1pna+oD/Aqh4SiiIyH7DvkPqXT7C8hWSGFQY+q06Kc6ZBJjtBqNmFdxAslfGQEP8ToWSQ2Zhj3Zijvz5Hem+Ptm9gLIf4Vhe61NfYXX+DuM9d577c+ycboAkOriGsrhHMR/7aM35eRky6Zwoi18jYXFu+z7t6mamyiPW6g3BpgbHWRdoaEQxejLpJZCEgsGozOXODBS7/K7eTL3JOvse2tMXTyH1oVCgjtEMHx0FM2lVqTZ+o3jh1SCkOCRYH5YgJjapGNQHinx9K7h1z+lw9YCfcRVkSEZIjggzj0Edohh8NFvud9hs2DdTaD83Fi5pZxDiEVcjbcYil1DMIv1e/xmcXvopXnjLQM3lDG6Nskgznp7AhtyUIoh6T1FO2gSk88bri00RAJEIIQO9CYkKIXFkjaUy67D1kKGoSCwEDJsyst0xyfZ7u9zl82fop5DMLT2D0NKRmgll3kso1SttDWptT1PqLs489UZoM080GayV6WTMKjooWUENFMkdlApHEEh90QQQiQ8x7yuoywZOLpNkrNximXMI1rKMEqgd3DHfVZmzgkZwPm7w5pNsY0ugv0phUGYpnD4ojq2SMqZ1qsPr/Npyrfo5Y/AhHaVpWhk2XmqTwKV7g3XEPRfRIFh5LYIh90MOdJfFtCwyatTMkoI+ZmkuEkhz+Xj1MvNYF0esyl7H3EvAcIqN6xy4gXKlimysxMYw0N2JGQ9wO0I4dUc0qx1edq4yZnG9tkpmP6pQKjaobJQpL5UoLJ9QRvLr/EPznzG2zV1/Bkmbw34uLsEWdme9TNFl+0X+e3mr9PpjlhFGYwBQ3BAXnsoh3aKA9c2HAZTmGijRnLApMApnOYDATMowDVhuKCSKqgoiV1iqLGGQLyyRnq0pxBoHAkpWnNE0zGEv7cQZ76aEOfrVdfwlYUMtsHGN97j3E6iZPLcK4z5Lzr842//39DyQ2QJhb7hatIf2yRPnjM/rnPIoseQjLAy8k4eRVpxSWbbEMqxElphK5HsdlmYXeHlVsPqTYOOfq7L7Hi73JG2KGQ6CFpPkrfwu7rDKZZ2mGVTWWFP/N/gq5dZWJmsCYGzljDGWnMh0kCVyKbGVJJt1hL73Im+5gzCzucSe6wou1SCPpo8xPSk30H9f6H0hMEHF/AEyR8TcQuGYyKafyqguR5pMcz0oMJ6lzgSKnSNKq0KdO2y3TlEt1KicbVGq1ilWkiSWJiIo88/ImE6AaoooOhzsk7A5ZHe2i6TZAQsPIGBCG66aBZFtfbH5APh2TCCSW/Sz1sEtoCs0kSbywhDI7Bt9p1Ufoe8tgjFAR0yUL3LUTbR5RCvFWR6bUkg7U0zpJCWBURywJBNsRPibhJGSEIkUwf0XJRH1rwXQvvAwdnO8BuhTgOWC7MJzC3ofQ5yPyKgLyY5vF8Gff7Ci/cvEvwyZDG/6HEqz+zxXzc4727vwwMY2ONCKhGFn+CIMTJ6lEvWyaTJGfPMM2AQqHA2bNnuXXrFplMhlqtRq/Xo9frcenSJRKJRGyDuLu7y5kzZ6hUKvT7fdLpNOfOnePWrVvYtk0+nyeZTLK7u8u1a9col8scHh7GkpJUKkUmkyGbzcZgfzAYsLy8jKqqjMfjWAJcKBTiIqBQKMRKA13XyeVyHBwcxJgxImVzuRwrKysEwXEIZqlUYmlpie3tbfb39+P7KhDr0afTaZxkCseEHRDLXXVdj7cxGo1ie+vILGI6ncZg/aSLS7QNIDb0yGQyMZP+cePHdnGJJvg0S/njsOxPeuzhw4d0Op043CcCP1FBEIG1CORGzHAktI+0SpHmKWokPekrqes6nucxm82QZTkW5Edg8MUXX0TTtDgpNJFIxH6dJ98j0hk/TUJxEqBHgPc0MD8ZcBTt40mtevRe0fMj+Yvv+4zH49hkP3rdafb+NIve7XYZj8csLS1RrVbJZrNIkkS/32c6nfK7v/u7LC0tsba29rF9BR83nsamn2ann7bSEj3/JMg+uVpx+vHTrzkplzl9Pf4o+6InjeFwGKeARe8tyzKlUonl5eU4dKDRaMSrPVEkclSh53K52Cqq3W6zsbFBrVbjxo0bHB4e4iYDCMVj9nZjiv1/vk3hyvuMMhbf3HyZUKlSLugsfEbgbv0cbt2kWjlESU/JWDv0eiUa4/qxPENvU8m0yKcG6AULSuCHMl54HHKijW2SW3OM+zPUD+ZIN+Z49+c4SRf/ssTg2RUerF5i48vPcPMXXuLu5Fk68wq2q4MF/p6Mf0MBQlKFKZVSi7OlDc4XP2BRvU96foD2sI2x1UF5PCTs2+hVkcxCSKYuYq+cYevZz/F26lU+UJ5jw79A1y3hWBrYwCBEbARoSYtStcP56kMWM/vkCn2oh8yXkyj2h17hgzGldo/FDw659LWHnHV2EVZChIyA6IWIYx/asN9f5i/cz7HZXGcz/CgI1ww7BuH18hHX6rf4qcU/Qa2YDJQc/khBHTgk/RmZzAh90USoQNKY0g6rDIUsR2L9iSC8GxaZ2TqX3E0u+lvoWEykJAfKIt1Zme3OOhvNq8waScbtLNN2BrtjICgBUslGKbtoNQf9xTn1dB9Fc8EWmfXTmP0Ms06R0aFEOeFRkUJSrohkK/Q7sNsIsdMy/llwloHzEGZDFN1HBxy/jOZKMB1SGk05Ox2jHR4xuNnmoLlCZ1DlwFmlmVgEI0TMuZTXulQ/1+TT1W9TLx1Rz7ZIKlOGbo6xn8LEYCgm6YuXkCUPMRliJzW8QEayBFTLR5/ZJOw5qdSUEIH+TMKaG4S+SCgKqDObtcIWmdoE0fdwAw0z1JnaaRqNRcI9GWkvQDtySTTn5JtDnm1ucq6xRaXfZpxJM6zmmNaTzJYSTF5N8nDlLP9+5cs8XFrHNBIkQpP16SZn5zvU5w1esm/ys8NvUhr0mJJkJiQQ3ABl4iK3XNRHLsJ9l2EnZKKOmKgCE0ImpsBkLDBvBogjKNYEMmUZPWWQk3UWhJCcYZKsTxm7Mi3RoGGmOJzJuKaHOHXQRg6CC5Yh4gpzAmeE7/mYooglCHhBQPi9m/ipNIfZEtPV53BCBXluE4giqjTj0//4/8jozAqD1VXKa3cZX1qn/+UV9OUxjq6R7g6o7e+zvL3B6rceUG4eUbC7VGmjLXvoywFyTUK4pKO8HJLb/zoZYcrIy7JpX+Db7k8yHyfpjwv8ufMZpoMM9lwnnRhTSzc4k91nJbvL8vIuZ9Z3WFH3qAsN0qM5iZGJNrTRth3U+bH0xAlFHCR8RcTNK0zLGQaFPCIh+tQk1x+jTywmQp4jvU5bKNOyqnSlEt1MkdZq9UPpSR7VctCGDv5IRHYDFFx02STrj7g6vYPhm6CEWHUDb0lGNR000yZhmyTdGfnhiIrVYbW/y/LhPn5fwh2rMAxRuh5yx0XteShDD/xjuVQ6nCC4IZLt49ZkJs+naP90EmtVJ6wKiDkfOXGsxQ984TjISPIIhBDlyII3Lfx/7uA9CnCOAqwBWHMwHbA8MH1QRDAk0FQBXTjOrLLTeXIrY/LLApkLEuk0JJQu3oqI/4xEs14kyAsggCwEpPN9JFmM++Qi5jYy3Iikmoqi0Ol04mAg1/W4J15hoso8699gNBpx/fp1wjDk7t27MQNfq9VQFIV8Ps+FCxd4/fXXcV2XtbW1OM09DEMWFhYYDocsLy/HzZqR/WLkkV4ul1leXqZUKsUOLtlsllQqRS6XY2FhIZaeRInwkctflMa+vb1NPp/n9u3b8fFeu3YtZsNrtVrM8Ef38AgUO47D+vp6nCoa+ZZPJpPYmS8KWIru7bqu88wzzzCZTFhcXIz70lKpVHyuo1yaZDIZ450oET4iniN8EeHV/78liZ4E5yd/P/n4jzsi3Xc+n2cymcSsryAcB8Gk0+lYNxR9RTG0EaCPgnuiJs6oCSDaZ0H4gSl85Cl+8nE4FutfuHCBX//1X+fw8JC9vT329vY+0vwQVVQnNe0nQflJZ5OooIgmJpqE+Xwe69jhhyUckXZeEIRYihN5gEYjAt5PknE8qVgKwxDHcdjb28N1XS5duhQ3Zczncx48eMAf/dEf8du//dsfuaD+hwD0JxVsTwPYpx+PVgOi4zvpCX/aPebk604WK9HzTgcfPWlfnzQibV30DxXN30lP+lQqFVf0kd4uugYjTVk2m2VtbQ3P8/j+979/rGOTRdqajNq9y1Vzjho6NN4SEb+yxJ3zF6EWkszapBIDUtIEL5Qpb6u8/tZP8Y79Iork8eK5t/mNT/8ecGxV6CMhEIIbIrghue6E2t0Oxn9hogsWk/MC9zN1ds5fZPvKJW5/5jrvuy/SmC9iOglwwO9L+JsKwUxCz5kUSl2uFO9yLn2PReEBxeEmye0Dkt/poDzuQ9tCq0ikF0PytQAWq+z/zLPcyLzKLfUF7vtXaMa6cAEmIHZ8FM2hUO3xTOkWi9k9CrkeUs3FXEkghCG57pBcb0Sx02fhYZOLf/SQ8/MtpKUAISsg+gHiOCDsCOz2zvC6/RNsttfZ5EN3FG2dbeMsKW3KWXWLpfQxCH+h/g5fXvw6WtWkKxXwJirawMZw52Q/BOFiOcBIzuh8CMJbYgUL/SMgfBqm6IoFOnaRot/jRe8DimEfS1RpqjWGdp55O8tbrVf5buuLTFrZYya8ZRCGHDdnlh3UqoP+zJyF4i5qwkbwQqxhkkk3w7yfZtQsIYkhCSlAdQWYCwRTAcEU8CXoVhSG1RChBmE+xEsHeKqAgcV8PkAdDJC7IzKPp2THIYnWAkedRQbjKiOlxG4yIEhK+GkJIRtQ/FSH9YX71CuHLOX3qSePyMlD5kGCGUlsQcUXZDqU2GQNS0kQiKCGFoZrYcxsBBcEOSSTmKJqNgPruMnPdxQ8UUGZuZxJPkZPm7gZlamXxp4Z+EcygzdrTA9KJBrHOvDzrSPOHW2y1D7E1lQGlTzTWpLZYoLJs0naP5vnzZW/wv2ViwzSeSQhYG2+w/nZNkvmEevWNp9xvk9ts4WHzBQDXBBnPnLfR91yke65THcDJuKEiTZhIsLUERhPj3XgXiekWIJsRSaR0UipOiVJIqvbpMtTrGxIJ9RoWGnacwXTChDnNtrYQbTA0iVc0SVwu/iuiyUKWIKIExzbNXqShpktMM2UsEUdaeagz4YkzAFeWsWqVxgsLdG7epnZ6gp+IonRH5Lf2cE2DObLC1RabdZvv0/pD/+QbEVnxdlnUWuSqrmkaj6JEkjPC4RJCSXt0TQqPA7OsWOu8ni6xuP2Gjs7azyerrE3WyEjj1nK7LOYOWQhu8/Vhdt8XvsmS+o+57zH5KfDH7ietD6UnggiTiDiKhJ+WmZWSTNayhBKIpppk+5PyAynuJ5CS1ugKVVpzqt0hRK9dJH22TJHL9fpFEoEgogxtGAUIs5DVBw0ySItTjk/3yQhzJA0H7uoYdYNFNtDNW0M2yLpzMlMJxT7fRYnB1w43EJr2dgjjXAkIvZ8lLaD0vNQhi6iFdLOl9krr7KfW+Igt8hf3ftnuBdkBi8lCMQQZeii9V3kgYeYFvFfM1DbLpnRBHHFpdRyCV53sDbAPAKzD+YULAtM7wfgO+QYfOvK8ZchQV6FShq0NZHZpSzZiom8JBIuSjgJiZkTwszHPDJY+QkZ3RMQBz7iOEDveThvahTujeibed7+L57l+vN3uffw88fED8Qg/aT7XUQm2bZ93DSppOgIGd4Pr/Jn7ksAHLkqv5R8l2KxSKvVQpKkWHLiui6vvfYa9XqdWq0WA+Y33ngjtjn0PC9OUI/SttPpNLIsxyD8/PnzSJKEYRikUikMw4hVA8PhMA4y0jQNwzBifbrnebGlYiKRiCWn3W6XYrGI7/s899xzDAYDDg4O2NzcpFqtxv2HkVd6xMo/fvw41tEXi0UymQyZTIa3334by7JiDBZJjV977bVYKhMReBHRGmnqIzmMJElxD6Oqqti2Hfu3R8FJkWLkf5APegSYTmq6TzPpTwJAp4H86cfDMCSZTMZC+Uj3XSgU4mWH4+rOjQF61GAZMcvRhSBJUuxjHlUotm0jimLcWBk1k0ZLISeZ6Ewmw5e//GVarRa/8zu/Ey9rRF6akdxBkqSYyT+p9Qbi9zt5fuBYrxSFF52WdkTHEoHMkxKak5aRp89hPp+Pl3Wi1YMI2J+et0jHf3R0hKIonDlzhmKxyL179wC4efMmn/3sZ7l27doTI+qfxNCfvj5Oz/lpIHzyA+JpQD1iwU9Kfp527ZyWWz0JpJ9k1k82uj4tgTYahUIhrrwjP1U47nWIPE7z+XzcBGoYBslkMrZcij6gRqMRmUyGUqnEaDTifcHnn/zKF0EQ+OQ4i5faYl3Y4Mxv+/hhEz1wSAcTssIIRXQxLR3L1UiXp3z2115HwGdw4FFbPLaNk0OP5q7A4hkbJXDY3Siy2ayC/hy31We5+b97kZ35GjMnTehBaIp4Oyr+DRnZcMmWhlwoPWQ1+4g6D1no3iPXfEzmL45iEK4UJdJLUKj5GNUUzc9f4Ub217mhf4K74TUO3WXGTprQEmEOwiBEkRxy1T7r5QcsZvcp59qoFRtzxSBQBXLtEdnBiGJnwMLjJhe+9ZAL002UuoeQExDDAHES4HUkdnurfNf5KTY7HwXhO/oqOWXIWflDEF5p8PLCG/zM4tfQKxYtsYwz0dCHNgl3Tjo9wliYI1Z99OScdlBlKOZiEC4QIgYBtq8xJUlfKNDyKvgePOfdYTXYRxBCOmrAKMggdGWazRX+Vesyk1aGaTuN3TQIHAmp6CKXPdSKhXbepPrqAcn8BEkIcEc6o26GaSdNf7NM684yYmAhmDOYuIROiGQEiEnwEiJOWSAsQ5ADKwmIAeVwQmY0JNkfkhxO0A4tzGGCRnuRVq9Gy63TT5YQkuCnZbyUiLIIrE0olg9YWjliqbRPPdWgrLbJSSN8JEyMD51QEhwFNTacNWTPJxlOKcgD0syYTxMovoctzpF0j2RyzsRKMzEz+JaEHpioY5t0YkQ11cALdNzpcSOmvO/jHaURWrDY6nDu6F3ONHeRAp9epcC0mmK2YDBdTTL8XIavr3yJBysXOSwuIIohVbvNxdkGy/N9alabZ517/M93/xFK6DINDXxfRLRCxKGPvOuj3HOxH/hMPZeJbjJWhGNN+AymPbBbIdk0FGoiKUlD13RyskJac8kUpgQJl26g0rDTHHVVTBvCuY06sZHnPraqYMsQeAMCx8USBCxRxAlDAsAXZKxsnnm2iCmnwPTRpiOS8z6C5GJVSwjZLAUg6YxJMsRwRsjmFKY+fuMQ7+Yt/K9/HcEPCDmOtBeB6KMwkYdUGdIL8Om/AZN0mm0ucMM+Bt3b07PszNZ43FljZ7pKiMBKYo+l5B7Lxh418YjL6Q8oZHvkjCF+WqJ/Ic/Pf+fr1Da7+IJwzH5LMl5Swqwk6VaL+EsSsuORHkzJDCeoM5+uWuZIrtGc1+lwDL67lSJHV+q0ixXmhoExNpGGIcI0QPVdNNEkqc5ZdA65OH6IYji4aZlZIQUhaHMHzbJJOCZpZ0p+OqQ6b3C+9ZjaYQtnoOKNFRgEqC0PueuiDDzkmc8kmWSnvMp+foXD7CJ79SUev7bGbvUMR8lFjoxFRClg1d5m0d2nHLRJHA3xKir9WoG/+//4v0Lfx26C24feBOxvuQQ24IP4D2fIgCZCUoINEzQFdBlSGuRTQFlEuyihLkuIdQmpKuDnBGbAzBYYjUOsDQ97a4Z5O8A88pl3Q4JAQM3rhLaNOw24K0jI/+V/yWhrg8u5DeoFi+fUm3g/L1Jf7/FzF7+Db4mkq3/Kt9q/iG4YOHKGobGKra7TFTSac5m2pDJVskzELONUGsdTyIozZCEk4ENyTi8gSRLb29scHR0hiiLnz5/n/Pnz3Lhxg8ePH8cqhEKhEBtUzGYzKpUKiUQitmZ89OgRa2trmKZJp9NBEASuXr0ay1P6/T7D4TC+V7uuGwN33/e5cOEC29vbDAYDxuNxzN63Wq04ePHhw4ckEgkSiUTs3x45z4ThcR6MqqoIwrF15MlQoVKphK7rcQJplMge6egzmQyz2YxWqxWvoJumGfcBRmRvBL4PDw9ja8XIphGIXWoio4loNcDzvI/YbD9t/EgG/bRcIfr9JIg6zao/SbpxekTekaZpxrGp0ZJI5LU5GAxikHsyqjYCtJPJJK60Ij1wvV5nPB5/pJnStm00TaPf78cnBn4AHre2tvhH/+gf8b3vfQ9d1+PnRduLUrdOgryTLG0E+gzDiC+CkwxvdL4i+U601BS9PmpKAOLGziex09GSTyqVIp/P02634xjZXq/3Ecb4ZEHgeR57e3sfqXQlSaLb7XLv3j1WV1fJ5XJPlSydHh/3nNMA/yQ4Pyl3ObkaEX1FxUn0T376+U/b3knG/aT05+TvJ4vMpxUeYRiSzWbZ3d2N3YPgBwVEIpEgl8vR6/WOl9ue+1WOvvj3UN//Ghfv/S6qqlIsFhFFMfZKX15e5obvHLsgiBKPtass2x100aIo9o4plkBAUj16vQRHOyJHjwWGnRQN7Svc9D5H2TviWuI9lgt9gqRBMyiyGazz+OZ5hk6OwBMJLZFgIuH3FAhCUsUJi+VDVivb1LMHlHc3qT98i9zmLtp2F7E5Q85JpBYht+CTKyuMP7vGrV/4Mu8ar3BbuM6Oe4aRk8ezZbCAoxAZj1xlwGJ1h5ezB1SyTYzSHOuMhpdUyHZGZPvHILx+0GT99U0u9R+h1h3EwnG0uTgNcDoKO701vmN/ns3uCRCurrOnr1CSupzVj0F4rXLEZxZf5xeX/iVaxaIl1LAmOtrQIenOSKeGGItzpIqPkrTohBWGYo62WPohED4Lk/TDPA2/iu1rLPuHPOM/JM0AUQmZhBnEPjjNBG+0P8cftzJMW2mctoE7UVAL7nFoT9lBW5pTeqFJujrC0C28qcKkk2HaNJjt6wweLOMHKsqshTjqQzAmSPgEGSCrEmZFwpwKxQRhVke2JtTDFtnJFLU/Rt2fE34gMB5maXQW6I7yDLQEYrJGkJLwUjJiGhLPQDYPYt7ByLdYKG6zkNqjorTJSwNSTBEJsNGYhwnmns7ISjN2jOMGNm1EUjURA5+OXaZnlbFCHVQBV9Np+ymGbgF7riJ6IYY4Q5FcKl6Hxf0W8r6PduiQbk4ptHqsNnY529gmPZvQLxUYV9PM6gaz5SSj6yneXHmR3135DbbqZwlkkZw35sLsEavzfWpmky9Y3+WvNf45ycaMuX8smwldAXESIh96KPc9vLsegxFM9MkxAI9kKAMBsxmQlKG4KJBWFTTJoCaqnA98svkZombT9xVatkG7azBzBIK5izSzUacurqpgySK+PyF0HGwETFHEIQLgEnYqh5krMFdTBDb/P9b+PFiWND3vw365L1VZe519ueduvc309Kw9KzDAEKY5IDgiLUFkgBRlUBLlkEzKUthBWWHKlhWgQZlhUTAJkAxTMEXZhEgIBG2CAAbAbBjM0vv0cvuuZ61zat8ys3LP9B91MrvumdszIK0vom7dOpWVy5dZlc/7vM/7vKiOS8kdoUQOQbtGVmtQUSQ2oxlmYmMGU2TPhTgmmY6X62H59c+A6PJ1frtW5IxyJaOyCY1bYNxWme7tM2wdcKEe8M7igKPFEogfvnbALKqyY5yxewnAN8VzPqN9hS9p/5jG+gSxEjNt1hiv1Zls1AgNlXAgEowUfFfDTDy2nQ79222ipkJ1bFOaudhCmY60ybm3zYA2o1KDUbVBd3+Di+YG02oV1QtRpjHCLEONQnR8DM2jkY7Zd47Q0oBUF3B3yoSSiroI0fzwkv12qUzmrJ0P2B+fcOP0EGGYEs40sgnIgxhlGKFMEuR5TCTKnK7tclbf5bS2Q6e5zaMvXOd4Z5+zyg4Xxha2ZrETHbMbnrCW9KiLExpGnzXrgqgik4gi1thm7+SUzbsd1h92aR8NqPdnlGwPNUzIUpBiIIVKCgoQqxAv3SRJaiK0BbItkQ9+XEJUIe6DI8GsJLHopgT3YrzvxXj/ImTRzQhmGXpTwNgQqVxLsdYzqq+CcQayrvFb//v/lPrLLxP83peRP3GDg2se+58oUyn9Xyk9NUVpg1wDTFC1hCyGfrjG0eIa/7tX/jp3Jx9hJP0p2MuoiQ5rXkwpGmMmEzazC9ryMeV0SlsNiacd1loNNKPEP5l8AF8s8Rn3N3nz7rsFCZUTi7VajVKpxNtvv83a2hq3bt2i1WpxcnJSFHM2m82CPVYUBdu2abVaTKdTHjx4wJe+9CV0XUfTtKJ/SG7pqKpq8V4YhszncyqVCp/85CcJgoBXXnmFZ555pmiulNcSHh0dFbhQ13XeeOONQimxtraGYRiFHDWOY6bTaaHHV1UV0zTZ2toiyzJ6vR62bVOtVhkOh9/nuHLv3j2Ojo6oVqvcv3+/sFbO8ajneQWxmtcP5rbfucf6k8jXq80uvw/fZD8Abb3yyitPZMyfBL6vssfvB8Ly0e12+at/9a/y2muvFeA6CIICnOWdOlcZUdM0C413XoyX671brRaNRqOYjFyuMB6PGY1G1Go1fuqnfoq/+Bf/IoZhFOs8OTnhV37lV/jt3/5txuNxUQyQs/C5XeGqzGKVoc6BX269k0tZrgYyOQDMgXm+nVx7n7+fP1/VuOetbw3DoF6v43leUTxaq9U4OTnBdd1C1vMkpjj3X891YU8//TQvvvgin/vc5/j4xz9eXGzvx3SvvvckMH/1PD+JPV+VCuXnMp+P/G/5NfCkYO/qPl0dT9K85/ux6rxz9RFFEX/n7/wdfu3Xfo3z8/MizZX7o2qaxv7+Pr7v0+12AXB+rgtaCbIMdXYCCCSCSCbKiLIGkgySQirKpIIEvLdPL+59k4PmQzrjLc4G6xCJ7Jv3uV65x83aAw4ap2itjF94+z/ipd6LRJEKIUvP8LFMakuIVopYjhHMBPQUqQY/cf23scoztDTk8+lX+NjkVdrBgOBlm/GrCe7ONu/svsgbtc/wmv9RHrg3GXtNQu9SF+6DlMZU1masrXXZrJ+xWbmg1LIJd1WCukZ1OKM6mtEYTtg463Pz4UOeGr6L2Q4QmiCLMaKT4g90DkfXeRDc5H621IQ/lJYg/EzfYSPocj29BOHrF6xt92jv9lHbHuds4TsG2jTEjFwqpRnmtou8FuOXdQasMaGGK5UIWGbdliBcxUktpkKVC2EdOynTZMqz8UMa2RBHLtEVW5yPt/H6Jfyuid23cHsWQU8nnGgotSUTLrdD1DWf0ppDaWNOpTlDWIi44yrBuEY4KjMZGMydZcGZtBghJWMyTSEtl0mqFllNQ6jHZHUJQUjR52Mq9oSKu8B0QuQ5BFOD6aRBf7ROHMvI5YisJBCXZbAElFKGZgkojQStPUerTalUh2yVz1mXu9SFCRVsDDwUIvxMI4wU0hC0yMeUFhhaiKrEiEJKjMjUqzPw1rATi0wW0UwfRYkYT5osXJM0kJDChMpozvrZgGrXvvQDn7DT7XDj/CHtyYB5tcJ0vcpiw1jqwPfL9Hda3Nu/zbu7twg0Az3zubV4yHXnkG3vnC3vnM3ogqpgEyQKYaaQxiKiC2I3Qb4Xw1sR7hnYKtgG2IATwHwusuinKAG0d6DSVNBLGqqgYQZQcT1UZ8EskRgKOj25hB0JxF6M5Hqo9oJYlggUlThLSYOQiIyFKBEAaZKQKgphtYZfq+PqNeJIRHEWGO4YYzElsTSS9hqaJlNKEkx3gTGdITsOQhRxiesKAJ6PnAUHEGXQymBtQP06VJ8WcPe3GKxfp2sccOwdLBlwZ59ht8x5uINWh/3SMbvGCTvSCRtil5Y4oKZOUKyIWa3CuFnnbGsL27LYHnaonE3QTyYI90dkr/XhaIIynPORjwTc+rTGmbbFmbFLz1hjVGowrjToN9qctzcZ1ptLNnsaIs4SVC9CzwJ0eUFFt6kaM/SSh6CmuFKJhVJCDuPlcr6/zGCFDo1gwvasw+3OQ2oXU4KZTjIRkIYZ8iBCGUcos4Qsyeg31jhp7XNa3aFT2+HoYI9H1w7oNHc5N7YZGG1aWZ/d6ISN6JyGMKasOshWRGqJ+KaK4fjs3Dtl++4Z6/e7rD/s0biYYM09jCBCijOSZHmShHR5TpaBF8QWBFVI65BYMB5A5w0II4hTUFRYv7G8Bu0FLELwU4hCkASQ2mDuC5T3M5rrYGmgyRqKJpKUdcKJgq8rZBKsff0CRUkRRFD/3eVnpTJQurxQQsCDxIZgJtFxt/le/BG+KXya3zN/jKHf4qedf0yrOia0dylJN5kcv8n0/CHXDw5ot9uMRqOiQ2ju4lYulwuslWujS6VScV/LJb7T6fQxd7U333yTUqnEZz/7WcbjMd/5znfo9XpFPZ8oinQ6HabTKcPhkE9/+tN0Oh2CIOBLX/pSQY5JksR0OmU6nbK2tlbowrNs2bulUqkgSRLVapWXXnqJ1157jb29PW7duoVpmhiGwdHREe+88w62bWMYBvP5HEFY+o33ej2effZZXNcttp9jR8uyCpJ2b2+v8G7P2fFWq8VkMuH+/fvs7OzQ6XRYW1tjbW2N733ve/R6vYKsy2XU+Xzlio58TnP23nEcDMMojjM3HTEMgziOOTw8fCKWgR/CoD9J83sVNK2C1eKHaAWU56zxVfA2n88ZDof4vk+1WkXTNOI4LlqzrhZ75gBr1c4uB075e5PJpJCn5BW8OdizbbvwEM/Xm6YpX7/T5e/95tscf/lrJIsF9Xr9sQrinA3PAWSu6Vr1Qc+BZc70r85B7n+ZM+65run9PpN/7mqnz3x/0zTFtu0iTbK3twdQaJ9zBnc2mxXVxIIgFNvIG+vk6RbDMIiiiHfeeYcPfOADlMvlx+Z8dVwF7j9MW/6kDED+vBq45XOx+ni/7b3fuJqtWB2rRbv5dldlL/nnTk5O+MY3vlFYV+ZznP9w5AW2q0U4Ue8tgq0PIQQLtr/8n2GIKeenx/iujaHK7G5vsru1wadf/DimpjAZDth84Ws8/NEXady3uam+ibHzgPELH+T16Yu82nme3xn8JP/D6TretEIyVhDUFNFMQc7Qs5CPy2/z5jM3GG3WSCWRHXdC6+Rtovtv8yM7A/791q8z62UMGpu81nmRfzT6Ge64z9KLNvBuGRAI8BDEJKHcsGlv9Li5cZeNaodqY0qyI+G1DcoTh9pwRmM4ZuO8z/WXH/FM/y6lmkvWAEVKkbwEf6jzcHyTr3l/hPvjSyb80qLwXNtaeiUrD9mpLEH4H93+Df7sbh+l7XPONq5TQp1GlEIXqzSjvGkjrcfslo8ZssaEOmNpG58bAIhpQphoOGl5CcLTdaZJlSouu1mXnfQcUwjxpAh1nqD3Uka9dX6jd5NFr0zY0wmGOlIpQWlHSGsRStunemNCaX1OdXOCLoQsxmWCcYN0XCU4X2f49j53XZmGlWLoEUEW4AgpfgOygwxqArHVInYalGZjavM+lneM2stI7mospmXGkybz+Rqx3mBSSonLMmlZQixFZNWY7LmA0q5NbcvBqk+plKdUpQlNcUJNmmEJc3QCtGzZ4TNJRPBTlCxCEyMUOUaUEgQBBDUDJWMWW/TsDWZenUhU0YwAs+Qyj6vMFxWiuYo8TKmczlm7d8oLZ3fY6HW5ef6Qnf4Zvq4zXq/jbpi42ybO8yV6f7zOt3d/mrf3n2Jm1ZFI2PdPuGU/ZN895oPu2/yE87vU785JMpEgU0gSGcFb1iNID2LEOzGzu2ATYRsRcwmcSMB2wBlmCHNobUPNkDBVjbqssSWLWEKAIS1wQxjFCr1xmYuBROwlCAsfxfZIRZFAVYiIycIhUZLiyRI+kAgCWQaRrhPU6ixKNcJEQXJ8dHeGsRgjCTGxVcZUJVqZjRl6GN4cZWFDGJGMHJLRiJQlsFtlwIX8IUGpBKU21A+g/jTEBw1Gmwf0ygcch9e5v7jJ3eBpBtMyjBZsf+set+avsz2/x/r4JW6OeiijGUgg/7mnCP74s4wbVTrrW9iuxum0ziO7zbRUY9Bqk4wCxPMFja8esf+tL7Pxe18nTTJYxKROQFYzCXZa9J59npc/9gHO/8M/ws6iw5o/YC3rsa2c8CH1Vb42/lHKwZwX5i6yEeNVDexmBTJQvAjdDzFCj1LoUrOnbLg9Di6OuHZ2QjyWiWYKjDLUfow8jpCnMZKfMS9b3G/f5rS+Q6eyw/G1XQ5/4oCTtX3Oy1tc6BvoSsheeMRm3KGZDbFkm/3SI/YqjwjKKkIK2w/O2Llzxsb9DhsPejTPxlQnDoYXosYpaQJZ8h74zoAYiE1wKuBty4TbGkFJJEoykkVMPI8JxzH2QMA5zXDfXIJuheUjp1fCGA7fTFFUMKuwsQHWtoDxtI64qyGtaySSRBoIJHOBZJriDVOSToB+4lM9m1GPMpItCaWdIZWAGgSuyPSsxHG3yXdnH+Ql+RN0nvsUNCss1JhA9XH2m0w21gkFFYmEKJXp/p9PMUpl9vcl2m2H+0rMjPeIsDzDnju7VSoVSqUSsHSTy0k7oACuw+GQN998syieXF9fR1VVSqUSh4eH3Lp1i0qlws7ODr1eD1EUKZfLhc48B/atVosHDx5QrVYLdn0wGKDreuGCNhqNWFtbIwgCgiAopCW5/3gcxwWDf/fuXXZ3dwtMlzP9Dx8+ZH19vZDpaprGvXv3KJVKBTbK7+l5ZjxvJNRut6nVaiiKUhR9mqbJxcVFIVnpdDpFo6Y0TYv5W5VU58eT45ycPc+LQlfd8nJcuiq3fr/xg0tInzCeBIKuyl+uFuutgvQcgOUapPxvuf1MrvleXTZPteTFBE8CYzkQzaMTTdO4efMmYRhSr9ep1+uPab1/+5uv8pcGXyI7eBH5z/4k7T/4OQLfxfUdUsPDt6cQ+ZTqAjIxWeQRuHOiy2j0B2mZc9CZBw85oKvX64VmKy8iWA18cp27LMtFO/jVwta8De5gMCj08GmaYlkW1mV73/xiyLctiiKDweAxn3BZlgvNWJIkvPrqq3zuc5/j9u3bP/Rc/zDQvMqeX9WOP+n1k9jx1QzE6jrfb/ygYOJJcqtVuVG+7OHhIYPBgNFoVKSn8g6toigW+rr8OhMEgeov/zTJ3seg8yZB7FJpt1GG5/i2TaKqyBWBzp1z3sKj0Whw9+5d9J/+YyymT3HXfZb+NzaJhwpEYFQ8VPrIziN2g1eoD+/xRz+wwVTd4F17l6lX4o/VX6KpetyKBvy32RdozGyeu/c29x2Lc/2nOHIa/OLv/R+XLewDEMKUUsOmuTnkQzdeYcPqUK+OETYzFlsmuuOjOQGa7/PB197h4HvHPHt+h3LFhbaAIsTIfowzKPFwfJOvel/g/ugWDx4u5SgPtZv01HX24hOuSw/Zt45ZXz/n9u47rO91Udo+HXZwHAt1GlIKF5TNGfqGg7IesmOdMKDNhDodaQOfAwCkNCFMVOaJxZwqF+ka/aRNBZdNRmxmAxQhRBUSdCfC7Ec43Srf7e/ytZ5J2NXxBwaCkqGuhYjtGKUdUP6IQ2njnMrGhErJJnR0gmGDbFInnlRYvLrBuzOVhSLSrGbIZkakCCxa4O1AamUMEZBHMeXJjKY7xZwGCGcK4dTEnlaYThp4aZPIqtArLWUokhkjbsQk1zOUdZvq7px6Y0xT7VNTpmhqiKLGlEQXCwcl9inHLrrgoSoxQrbMashCgiQkiEKCTIIopqSGQJplzH2Lw/F17LhKLErIekzZsglinZlXIxjqyOcxpfsh11875bN3/hE3Lg4RyBivNbA3Siy2TJzrJtPPV/iN3T/Cnf2nOW9uIYgp6+GAp+27HNiH3HAe8dnwD6g/miMKyxbnSSYtPepHCfJhjPhOgv1Ohusl2EbCXAEnAXshYI8hHmU01qC5LlIyVaqKxloiY8kRpuQSVBMmiUJvUuJkpBAEKcIiQHYWkGYEmkYkQBpNSeKEhSQtnVCALM1IFJWwVmVh1ZcFv26I6tiY7ggtdEl1DUMSaUQ2RhBieA6yayMEIQmQHB7+YAAugG5CqQX1fWg8DdJ1g/H2Af3aAafxAY/cA+74z3AxbRAPQ2oPO2y/do/W+JjG8HWe6/4zPt87BsBZX6PcTtDWJNwX1rn7qc8SiBYhBrZWY1KpsxBV4kFC/dvHbL3xNs17R1hnF+j9MfLUIbF0vL028+vbTG/v8s5//tOU9lWsdkKt7bNWGtPShtS1EZb0z4nj3yJMVQZWm77WZhZV6AYbSEpCKxxTmdi0zofsD064dfoAo+fjz3WysYDUT5bSk2mM5KYEmsppe4ez2i5n1R3Omts8/Ph1jrf26FR3udA3CQyNneSE7eiMVtKnKs1oGH2aVo/nKgqRqrB+0mP3/gmb9zps3O/SPupTGzqYro8WJQgppDn4vvzZj4FYgbAC0z2ZYF8jrEmEZMR+QmrHROMQdwyzsYT77YRw5iKmoEkgZSCmeX4zQ5ChXVkCcKMGxo6MektD3NWgppIhkboC2QyEUYLcj9He9NF+w0XpT0nKIrElwYaA2AZlJyG+ITC/afKqcIuvVX+ce9s3uJvV8FOFdsNgdmuHaavFVCtjhg6bXod1uc+O8A67lXO21C4Nf8qucoSnGfw17z/FeblPNQih9P3Z65wQbDQaBRAHChlJzirDkribTCYFCZrbQPu+T61WQ9f1QocdBAGTyYRqtcrm5iYAi8WC0WiEZVlsbGwwHo/p9/uFDts0zUK+LElS8ew4DlmWMR6P8TyP8/NzKpUK5XIZRVGKIlHP8wpJ9J07d9jZ2WE6nVKr1ZhOp481AsodWyaTCf1+/zF5axiGBbbUdb2w4M790XPnO0mSqNVqdDodBEF4rIFkLnnJpcNxHBfynNz3PX/k280l3DnGy3v76LpeWDq+3/iXBuirY5VRz8f7SRGuLpsz4KvUfy7hyItHcxCX+6TXarXi4spP/iq4zdeZ2wyWy+UipZN7WOauLL/+5W+QffhPgaQSV3YZf/jfJ5M1UlEhFVWQdTJZw5c1kHSQL33M4wAiH2L/vefLhxAHEPskcUAcegixj5hFSEKKKKYMFnNCd04WeqThYmUdAVnsE8c+WRqhyAKaqZDMxpQjn8izSQKXNPSQBAqrxjzdEgQBpVKpaOIUhmEBIq860OTFuI1Gg0qlwnQ65dGjRxwfHxcAfTX78S+rSb8KzOFxcL76Q7IawK1eJ6vLXf3/k+QrT9qfq/r197su82viG9/4RuGBrmnaY1mhPMJWFKVoaCAIArhzpHtfWwaYlzKlvLA5iqIiCD07O+PTn/40kiRx9zf6DH78T+O8UScdC6y//l/xeetNXvjQ87z++uu4rsvOzg6eFDAwP4QzHUPq4Vef5v8efmHJhI5N0rdF+kGdfxH8GGbVpbw1x9o6p73Rp9EeYdXmCNUMc+7S6gxpnE3Ye/mItfsdXqpIbPz5XW7Y52x1L9g+6bAYmzyY3OIr3h/h/ugmDw5vFSB8JDe5Fh9xTXrElnXO5uY5H9h+nbXdPsqaz0m2h+NaqNNoaatnzNHaC5TNiB3rhJHQZkydC3EdX9gnRURO4wKEz7IKfWmNi2yDUubRZsoGYzTBQxYzDD+k1nPx+wZv957hld5HCXsaXq9Elgmo7RBpLUZqB5Se82j+2ABrc0KtOkfMEvxRA8YNsnGV4P4+ozee4nuxjFwCs5yR6hA2wN+CRBdgnuFMYmqLObXJhNo8IJ4peNMS82mVhVPCNVXc0gZRWUYqJcj1CGEnRWz7VLenbJjntJQ+lm4jmymSmaHKETo+aZxRWcyoRhOs1EUREjJBIkNAIkGUE2Q5QcpiRCEhzTL8sIwdWUSJjBuVmcUVQgxENaFUdpGUhEnWIBjqaEchG293+ew3fp9Pvfkd3EaZ2YbFYtPE2TWxP13mu//mR/jv9v80j9YPyGSRSjLnafsuN+cP2HdO+Gj4Kj/b+QeoFxE+GnEmkwUgTjKk0wTxnQj/nRS3B3Pdx9YvZSiegD0Db5BRq0BzC6yySlnXaCQKJS3FlBdkpZBJKjOYGVzMVBZ+Bl6I4noIUYKva0SCQBo7JFFcAPAouyzbkCWiamVZjCmVwI1RHAfTHaMtpiCIaAjUAhc9nqE7DortIIQhaZYRX3QL8J0D8JjLQkyW/2g6mA2o7UHzNhg3JWY7uwya1znNDri7OOD+4iYn0w28QYZ5NGDrrfusjx/RGN5np/8VPtw9Qkpj5usbxO0KclMl2y+TfKRCpL/AQ+PzDBrr9DY2mZomcZJQOTpn87vv0n73DptHHfT+CHnmgCwRtqvMbu0wfnYf+ydvk+5+AGErYsc6Z0fqIuk+yuwRYfdd5i+FuP88wnsQY+1LSPOUnRdMxHcX+Bcpdiix82KJ5qdtPhO8hD/RSKYS4jBFGSQokwjJTsiAXmODu61nOKts06nucPjpazy6dsBZfYdzc4uZWadNj+3olPWkS02YYmoLnrLe4UblLl5Zpzacsff2EVt3z9m422H9UZ96b0bZ9tCDGDnNSBMgASFbnocEiEWIyzDZkVjs6kRrEoEMSZiSOBHJJMIbpcwmIs6dFO8PXIRwaV+oCCCly/UBZEJCrQzG1hKAmy0B7aaKdE2HTRUUhSwUSWaQjVM4iRAOffgnPvFgQRRnSKZIfU0mSiB2U1I3wY0zRikMrQbnW3uc7x1wvrvPxe4evReeo/fMTfqqgasY1KMJ68EZu+kp+/oJe5VzNqMO7YszGkcnKI9mBMcpwWlKcJzgH6eMtj7E8E/+KAOhQuUDL/Pjh3+FV756G9bWn3hPzrPkOcGnaVqRMc67tgMFCRgEQQFaJUmi0WgwHA4LYJlly66izz33HC+//DL7+/tkWVYUWjqOU2Cs7e1tjo6OCpzSaDSAJXkoiiKTyaRg7fOiylarVfis5/fe+XxeqAlmsxmlUol6vc7FxQW2bTOZTHAcB1mWqVQqhbogxz5bW1tFYJDfs/Oi0tw8ZDKZFPOVE6C55Do3L9E0Dc/zCnyZE8F5RiLHq/m+5ARjqVQqmh7Ce/WMeWY+J2J/0PhDS1yugpz3kzA8aR1Pksq4rlt4dObWgrCMtjzPQ5blwikl1+sAhVb9qkY5vxjhPelCmqZ0Oh1M02Rzc5NGo8HFxQX9fp9d3eMDx/89j4znKP/+f0VluDTYt227iHLy1EWWZWSCiKgaxMig6CAtQTyKDoqBrJcRVINMVEklDUk1UU0LUSuRiAou0hL4l9dIRQ1kbfnZfB2Xz4ms46oGC8UguwwOMvlyeSBKwseDgyhgGnvM4gAhCRCTECEJiX2HLFwUAYWQBAhZhKZKJJpM31TwTY3ZqId/sMtXeiZmX8dURFQpRRdBFVNkYnQJNClbvhaeLCm5qu3Oz/2qBv/qtXA1C3FVe/8kUJ8vt/qZHzR+WJCRpinf/e53+cpXvlJE2KVSCc/z0DSNWq3Gzs4Ovu9zcXFReJyvRubwXtoql0Hl6cU8DZZlGY1Gg3t/9zewxD+KqD+D4rzC08FXeefGf8avzl7EunWEpMQstB0WcYmsKy6LM4MM3fOwtmdsb55T3phTa0+xGlOMmgdRSthZsB3P+FH7JbZ//xw9mLB/cooWRRi1BDHKmLgN7hu32J7e5P5/fZPfFv5kIUeZyxUOwkMOhEdsVC/Y3OjwwubLbO90kNYjDrnGfFFFGUfofkC5PENqBygbIXuVY4ZCiwkNemKLY2G3AOFRojCPKkyzKgOxSUfcRktCGumYdalHSVggCwl6HFAfzPG7Jo/6B9zpPkvY01j0SiShjNoMLkF4hHHDp/qpCeXNGfXmFFX0SRZlslELcVIlGq4zPj3gzUhhLIgYFohmRlyBYB1IIOtlyKMYfWhT9l1SO2ExUXAnJeyphYdEaFnEpTqUQSsHyLcj5JrPbvWEbeOMqj7BKHmIFQEsCVlPMPAQ0hRlEWDaM9ajAaXQQ1QgFSQSSSaVRcRKikSMRAIpuJ7MIjBJExlFjNDkkElYY+y0CAMNQU8x6h5GdcFsWiMY6FgPHfa/d8L1dw+5PniE1ExZ7Bg4eyb9Z9p884++yN/f/XMEmo6e+dx2HnB7fo9r9hHPBu/wb45+FWPsEwoqETJZICDMMsSLGPluQvx2wuAROEqAbQTYAtgh2HMBd5hRkqG9C9W6hG7oVDIVw2RZcKr7zBOJ0UxlYOu4oUDiRciujxRG+KpCJEskkU8a2XiSiCeKRGl6WTctEFctgloNV7VIvQzZXmC4Ewx3ghxGiClUFy5aaqN7HortIIYhaZYSz6aks2kBwmPeK8LMf4FUDYw6VHegeQusm+DtrzNcO6AjHfDIvc5D9zpHky3sgYh0ZrN15wEb04c0R6c0+t/mi70TlChgvrZB3K4uAfh2ieT5CpH5AY6NzzCstelubjEqVUlc2I/uUfrWIw6+c5+nj0753HRCPfS44wm4mo5eL2HctrAOdNY/KNASNLSahKn5aPGQ6bbNdPE29psJs3+RYp+BO4B3ppBF72ndZS510QL47y6vs/uvzVFlUDKQkpTzfzpl8U8l3Fggvb3D+Sd+hKOn9jj84wectPc5L23RN9uYqsdeeMx6ckGdESXFZbd0yHblGK+iowQh194+YuvuGRvvnrN5/4Lm+ZTy1MX0I5QkhfQ96YnAMjsRCxAbYLdEnF2dcEshMkTiOCF1Y5JpRDiOmY9F7DNYvOESu0vwrQrvsd8AGSmmDs364+y3cnPJfmdVlSyVSByBdJrBeQxHIdm3fOJ/apPEKaEhEEwzohTicLmf+RwKEsz1CoPNbe599ON0P/hBLvZ2Od9eZ7S5zrDaJBFE2otzdqJTtuVzdkoXfLL8P7I269DqnFB72CE79pcA/DjBO8twBwpuuc48yohmAcLIQQTsz/8orY+NkL6kUwt3+FONvwnAz//6R3j19YwvTF5n+Myz+PX6Y/fYq/fHHJznoLJWqxEEAY7jFFgKKBpA5n7geQ1efs/LmXPP8/je975X3D/TNOXo6Ah4jy2WZbnAcZVKBV3Xmc/nPHr0qNiPUqlEq9VifX298BXv9/sFEZarDMrlMmdnZwWxmHf2LJfLBZDOwXFOwH7qU5+iXC7z5ptvcnJyUtQm5s0EV7uP50x4HqTkTTFXu8bnxHCOc3JiOa9PzOd3lTDOHf/y7MXVHj1/GPLzXwmgP4mRvDqeZMmY77zneXznO98piiNzEJ7rgnLgkx98fmB5qsbzvMfA0WqXzjziUxSl0BG7rsvJyQmyLBdpj7W1NZrf/n8SXbKmedetvEA0j5LyfU/TFMIFQpKA9zgDuxpxJUmCflmVnBcOZFmGetmZMpfgvJ+eP8uyZf5UEBAvozBVVUEQ8aKUTFJB0ckkDdWskIgKiaAQJAKZrBFLGkIO7hUdQV4GEGqpglqqIJsVEsPCNSvMRYVZdgDrBl9li7ffrBBmEkGy9HH1E4EggTAV8JPl+ZaFDE3K0MTL5/z/YoYqpcvny/dUMUOXMjSJYvkc7Osy3/fe6noNWVguc7mcIYMuZyjS4yD9SdmbJwWE7/dlmM1m/Mqv/ApxHNNut6lUKmTZsipbURRu3bpFkiTIsky32y2urfyaWH2Ypomqqti2TZIkTKfTwt5ye3sbz/OYff4vM7Z+BBDhuS/Se+6PQSrC92Ac30ZQYtRqxPP/s5epbMwxqgus6hyRlLgXEp+MuaXW0Y9i4m/MWTwcEIwcHj18yH/+V19GGKg8eO0mb4Wf5FeVP8cD8SZHnRs8yG6ywOTG4iHXFw/YCQ65Eb3OZ/Sv8hOl30U/8PlH/96/zmxRQ5rG6HGIqbmkGynSRspedQnCxzQYizU6wiYpIkoSkUUCI7fFyG4xbVY41TaREmhlA2rCBCOLCAElDWkOp3g9k4veHse9W4Q9Ha9nEjoaaiNAXEuWIHzHp/6RETsbj2isTTAUDxIZYdpAGtcJ53Xm7+5wFKn0kQk1UEoZiQHxLkguZGcg90OsnoMe+CQOeFMNZ1oiWOhEJbgo1UjLddRKgLrlU74+Y1t7l7XyBRVjhloNyRoSaV1FLAkYgodCiOxH6K5D0x/RCCdofkwmiCSqTCxKpGWJpLz0qU8yFS9S8D2DKFAR0hRTWZCJBpGn4Hd17FkNX9bJqqC2Q0pVG08yiScK+klA9WTGxnmPA/uQ8prNZK/Gw93rvPtv3+a75Y8iCQn7/ilPz97lwH7Ei8FL/KT3W5TvuyRIhKJKFoIwzxD7CeKDhPSthMk9sMMQ2wyZy1zaEQo4oww5WhZi1hsCZkljXdTYD0RKeoCieziRwNiRGSwMziKRxI+RFgGyHxKoCqEkEacJWTDBE0U8SSTKlk4omSCQlEzCWgXXqBGFItJ8ge7MMBYTNM9HNk0qjsuOsEDzfJTFAtEPyNKUKIT04uL9JSgsk55GFSpb0LgBtduQHFQYrR9woS+LMB+5BxxOdpj2VdK+R+vBMVuzB7RGRzQGv86P9E75iWDBrL1J2K6hNFSETZ3kmQpx6Vk65icZ1teWALxaw1vINIZDdiZn7AZdridnfK7/OusnY1qzEcbJAuFBhOSnpFXIdkWkZ1PkJrxQy6Di4WUeM2fIsAvTR3DWA7cH/gyyEEQCRJa6aEVYPmuAloFy+ZupiUsJSCoIeIJClEAaRPiZTr+xznBnl/PdmxzvP0Pv2j7ipobezqhqNpZkUzMH1KwhT1XfJJYkdu+fsHv/lI13O2y9e07rdERl7GB6IWqUIK1IT3LwnQhL6YlXg/6uTritEdWWQVjqxaSziHgc4YwzZmMB95FPOPWQMlAlkB+TnqRIEqxVwFiDUhWMloB645L9XlfJZIUkEElnkA0S0uMIjnzi7wakC5dIhkAWiEKI5hmkoLQF1DUwnsnQdajIGboIsiDiZxXixKA5HyOS8WDrOj/13/wm7bDHZtbhYPIOn5j8c9q9M6pfP8c8GiLcnxOdJojjlPZtATPI0NXlCbqIG3zlxT/J+NkDjp73ubg1Za9do7xlcOONd/n43/0nWJWA6V/6LLJ0wab8HbR1AV2MUb2XyRJIZ/Cic8xPf29ELUtJT4/5pes3nojRVvu55DVxefHiKu6Yz+fMZrOiWDJvRZ8Dzlz6cX5+XhRFHh8fFwA5rx3L/chzQJo3fFQUhW63S6fTodvtFstvbm4+dn+2bRvLsrh//35RVxiGIbVarcgEuK5b+I2HYUiz2SyaCdVqNbrdLpubmxiGURR+NhqNQnaSO8hcbR4kimLBZq9aPefYM3dmyS2V86yDpmlomlZ8PselOYG32uMm/3u+/R/m4AL/EgB99W+rOqf3kw+sLnN1XQ8fPiwauACP+Zpf/Xz+Oge6OTC6Kp3JUwn5/uQFD7Vajfl8TpIkdLtd3n77bT7+8Y9z7949RqNRsd3VCcwfubf1auRz1aYvjxZXC0Hz6DGv6s1dY4Ig+D5P9NVtrh5v/tp13eLiyPdJlmVEQUBcKMRhSBQEpPmx5+fpct9yG0rTNLEsC8MwCpuiw8ND4uEQ0zT50R/9Uf7an/9rhZYdKAKOpdY9I0gygkS4BO/gRRlBKiz/dvnajyn+dvU5TAUmoUCQLBtcvN9yVz/jJ+8FCJKwBPX6Y4B++VqVVt4TrwQSl8utBgK6DJ2jc07qn8b/1M8gBFPk5DXmox6J72KVdDytjJRFPLh/B9UoYZY8rEspUX6N5ZF5rv/v9/vFlzNnJQzDIAgCDE25PMlAlrFx/BUS7wMM4xaN5Ih/g7+B++98GLtpIhsJJ7+5yc3v/AGNTOPw0SNm8zmNH//X6AcNTua7dFyDkVKnf1Dh+q9tkiYSN3jAtnrKw7HPregu/6fS32dr3mHjlR4PlRv8Xz78I4yuSRh7AuG+zEv7H0bd8tmrHjGSWoyyBjOxTE9okyBRilzShUjP3WA4bSF2RDjx+MxPfotae8p30xcZ6k3CqgxktIZTvF6Jfm+LTveAsKuz6Jv4UxOlstSES+sRRtuj8tyY9fVT6usTyrqLmAkofhlx0sKfNnAu1uifaAxSmZksggmZkSFUQIkh60PaD6lGC9QoJHYk/JnGYmYiiJBaEr1SA6USYpoO1eqQvYO3WDM7WBUbqZGQtmXilo5QldCkAAMPKY7RFwuqwYwGY0qJhxwmZIpAIsokukSqi8RIhJQIEIgihchbOpLIWYgopiShSjqQkA5T5IsMX9RxqwbD9XWErQxt0yOrC3h9nexCxDxc0HxjRDsbkG7B/f1bXHx8g+EnGthRGWUecsN5xLP+u3w++X0qJzYiGb6okcYCopMhDFPERwm8EzO/A84kxjZi5hqXbekFnOnSHaK9veyKWbIUWpLGTiRjOhGq5uEHKZNAYtDR6CcKkZ8ieAtkLyBWZAJZJk5T0nBOIIAnSQTZpW47y0hNlbhWxSnXCCMF0fbQbHvphhIsUBchluix5fqoUYziLhCDgCxJlk4oo3HhhHJVgiKwNEkqVZZOKM3rULsF8g2N6dY+F+UDjhcHfM894HiyRb9bIh5EWEcXbM3vszY+pDH4HT7SP+Mz7pzp2hZhq47U0JDWVLJbFWLrKS7MjzOqteltbDFoN1kEEuX+nN3+KRvRkP2kx0cm99jojVhzRpRP5wj3I2Q3RigBFQGxnCE1QaoDL4D/AkwdOJpXuCvscmjsU37zhLV/+BZJCIIuIwUxcgaysLxJq4AmgyyBbkBlG8wdkDYEhr+tUC6nVM2YQJOQWgZmVeJMXMPRG+yJfXQ15q0PPYfaTriu2syefhpxf4cbisuH/e9gvuWw9funbN3p0D4aUBvYlBwfLYpRLplvLqUiGZfgW4TIgumBhrejEbVkIjEj9WOyeUQ8DvHHKbOJhPNqiPe7PnG9hHhQId2pEO9WiD5WJdyrUPrmKXt/7yWMbTAqUGqAviOjXNcQdjRSSyVJJRJbIBtnpKcRHIfEX/WIZjZJmhIoECUCoZ2RLkBuLMG3vpuhm2DKYEgZqgKyKCHHAtIc5EXMXLM4b25y3N6g12rhWAqZP0MddlEeCoiPZvDVe/zNa9eQ42UBcMWCsrW8Bg0L4m0L+3O7THfbjNot3qaCu1BJ3IySY9OcDvns6Ku0v/drlMseRjVGFUG3E0Q9xfuPFILQoOS9RdQHv6PgjzOchYBwKKP1fVJV5Joxp3kjBQd6ToO79Q9Sk/THnNGUS0JQUZSiIU5ONHmeRxiGj1k+m6ZZ4LEcx+QSjxs3bhSfdV2Xzc1N3nzzTYbDIc8//zy2bWOaJs888wynp6c4jkOSJEUzoYcPH6LrOnt7e4VHeF7XNZvN0HWder2OKIqsra3hOA537twpWPwc/Oea+Pw4c0vu3BYx9xz3fZ+zszMkSaLdbhf7l0ujc4J0tY4vl9Lkio78/p7PY96gKMeaq5g215TnJGscx0VDzdUi0Bwn5vg116H/oPGHalT0fuMqQ77KBK++vzqSJOGdd94pun/maYO84UsuM7lqz7cKkq+OVUeXfKRpynA4pFQqFdvKDfKPjo44Pj4uNEz5sWqaVrDxOaufyzDyAs5cX7yq6c4LB3Mtfc7w57Y+eZfTqx6Yf5hx1c0lZ/aBoojxSecld4wplUpFt668Qtl1Xc7Ozoqq5DxKdl2X+kq6DN4LwpbFrhnm5d+XqZ9cwfleN9D8vfdjrfO/XzXof79A7z1XF0gQl80zLsF9lEn4CQWozwOHIH3v/37MY4B/FgoEqVS8fzSscX/tz7BYtCEQOEt/CtoRiBKnikp2aZWY3ZZBEIEEO40RshDSGCENEdIQkhBXXgYB0YtzwsWcHjGxb3NPgdjYJJU9dG/OXvcRnmKhTI5o9t/l2VsBQctgfvIavfIH+Z2/9dPYUYXrjQ7rg5f5A/GnWEht+lUTu9bmy4cSLWVKVRhSEi7Yze5QuXgZdfOn+O708/zF/+Uv0KoMOO6s0Z9VuHvzJsN2jfvrByQ1kT8mDhnRwBEtjoQmD7mBngQQhvgPbdKTBU1Pp+1ofP0nrjFslxGjECdpYm27CAcxrtPmH/SewXvbZNEzCS4M/J5BONYRS0sWXG5HGO0F+nWb5sYF1Y0pFdNGFFJcW2M02sAeWJhHFrPR0zzKFKaSQKgLoGZIKSgzSM+BUYQZ+MhBQuzI+HOdwFcQSylpSWVeFigZGXVrwH75gvbBKdX6GKmdkWwoRBslsoaCqsaYmYtChBoEWIFNPZtQUhaoSYQkJCBCJkNmCcSWjJ/pTNMGiBmSmBLFyrJhSZYSxxLxWEF8IKCeJlTOAsyhTWDq2JslvP0yznUTPpOhlgNm4xrRQEWeJcinEdNxjdl2GckSqJRsrq0fcct5wDX/iPVoQK03R+lG+JK2bCXuZgjjFOE0Q3gnZvF2hnMOtuq9pwMPwJ4JBFNotJZuKJWqTF1RWU9UzEWCavjE1YhpKjM8VzhNVYIgQ/A85IVPIuVWhJBGHmG2YCEvrQgTQYA0JdVlonqVhVUjSDQEO0C1bQxnghna6HMfKZPZWIQocYy68BF8nyxJloWYrkPiOu+5bPA4ABclMMpQXoPGAdRvg3ldxN7dol874Mi/zlvuASfjLbpdC7+foH1jsgTgk0Naw2/xVP9/4MPOjGl7i6BZR6pryG0FPmoRWzcZlD7CsNamv7FFb73NIpNRewt2z49pByN2GPL0/BU2J19m/eUhtYsJ0oMAeRYjKRlUBARrBYA/BcHTMFvAxUDlbrbNobbPmbVLb22P0f4e42s7BDfaaOWYjfEJa26X/c5dBPl5lJsKRiPi+f/mX1DZCNG2wMwSjGGCep4gnqSILmQuCBEQZPBjSy1GpkBSgtm2wnzTwthQCZsiD63bTGsV5nWL0FAxhy6tkwE3f/0htdM51RObnW90qHSW98JEuPT7NmGyr+Lu6oRrMokOSZCQOhHJJCQcxtgzkfm9CO9bAZGgwH6FbL9FslMl+liFaK9CuFch2q8Q7lQQkxSzN6c8nmMFDlbqYdKj8QWXyjM7JPOMtJOQnURED3zib4Wk4YJIyJZBsAfxLEM0QV0X0BsZ+haUFIGmnKHJGbIkIWcikgvKLCaUVQaVFmftbU5bW4wrZdLUpTruUO+fUxlMKS0WmP173JzdY/73YN0C6xJ8mxbI1xXcH19jttdmstlmUGrwyDXwXRHRDqm7UzaHHba6F+zNujxVidGsFM3M0LSEtCKyqKoEmwrhRCK+0Jjck0nOE6SBjDFL0OYhQjlCK4HcB3YF+Esy8b7C78pf5Hu3P0gzHfMfv/kLSEA/bfAx7x6eZvE7QsAvRr9dNDLM7QTze3iOF+A9hjhnoh3HwbZtFEVhd3eX6XTKxcUFSZJQrVYLJ5RyuVxYINZqNU5PT5ekk2FQqVTwfR/LshiNRkV9W967ZX9/n36/XwDW/O9RFDGfz4v6w1wekvdryYF3bg2ZM+bVahXTNOn1egWYzp3rcizmeR79fr/Ak7m1dU6S5rgxB8q5lCVN08e05KvOf7k8Jm86lEth0jR9TN6ak3c5AM+3n5+PXDrzwxoV/UAf9DfeeOOJIOpJDPqTJC1PAveO4/DzP//zfPOb3yxkALm3t2VZVKtVer1e0UI9T2v4vv+H0uzk+1mpVIqTOJlMigvp2WefZXd3l29961ssFotC1uK6LpZlFW1qc4CeX0zwHqOcn9Tcrzufi9WGSqqqFtXBvu8XXqT//473K5BcPQ+5heKqdVDeXnY6ndLtdov0j6Io1Go11tfX+et//a/z3HPPPbbOHHg/KQC62r10Ve7xfsf6pGzB+wWBq2m41WN/ki3j6nxcDRDe77qJoohf/uVf5r/+6tNMKn9que75y4jeEbKioxtlkkzA98Olplo1ECQVUdbJBJkMiUyQQZRJkRBFBVFWiZOMJAUEmTRbihdlWSXLBLJL+JFly8eqN/rlUSx9vdoCxNkyb58/UuHSXDlDEDKW03GZ5M+SZY1DKGCoCw7/1ibHw2s86t1g3G5weP0aUaaQ2BJ2z2B6VmZ41GR6vEM8bTLZU2h8sI/W8DCYYGxlJLqMfWExGTfwz02CM52wb+JNDEQhwTBCou0M9baPWg6ISyKzdhVZT/hw81VkMcQf6zAtsZiILBYSgVZhZGwQ19Tlrg9BPE8QhyLiPEL2Q4QAIkchnGsIckZWFhBLKaZuU88GNNNz2sIJ9foAeSMl3tWId8okTQ3JSCllLobgIccxRuhSy2aUJRdD8lHEaKkJYAmwEwTsxMIOq/iJhiLH6IqPIkdkKWSpSOLJZBcCwn0B9W5EueNR707Y7nWQjZCHz1zn7kefYvRUnWwHjMYC1y3jjpdSGlc0STSJsmnzgfgOT9n3uOE/YiPsUU9mGOmCUFRJEBEWGcI0g06GeC8mfDPDPVwy33YJ5iI4IdiOgDfKsCrQ2oV6Q0TXVNRUw1hkaLOAzAmYJxKTVGaYaXhBRubHyJ5PCgSqutRmRxFRkrJQZIL8hpRBZplEdQuvWsPPDHBDFNtBd2aY3hQDEC0LTVdRMlC8JQDnkgHPL9s8jBd4HIALIqilpRNK4xo0bkL5JoT7TQatA06iZVfMo8kO/fMydl9EHNqszw/ZmD2kOTyh0T+lbI+ZNLfwW02kuobakGC7TFIxcUsW4/oavY1NehvruJJM1g/ZPT5hbTFgU5ywLY7Zykas+0Oa5yO0Qxd5kiyL+8sgWCA1QawDFQglmLvQ7ws8DNZ5pOxxWt6l195juLfH+Nou9vVN2NRZt89Zm3doBkNq8oRWZU616rAeDVhzujSCCdWeTfnUQ+0kSN0UYQQseC9tcDlxmQypIWJvl5ltVphvWMxaFeaWxaxaYVav4JUNSpMFlc6cyrFN7dEc69imejyncmpjnjuQpEQqeOsKzr5OuKESlS9/052IbBoSjUKcCcwnEu4gJbCBzTJcq5DuVol2K8UjB+BxVUcfOJSHMyzHwYpdyniYqY8+89C7C6QzH45DOI0QLnwyLyKOU0IgDATi2fK3Wl0T0FoZWgU0DQz5MoOgiiiZhOQLyLMEIc6YNGp01rY4bu9xUWviiwmWfU59cEZtOMSau5SyCFODUnnJemsGZCKkKgg6RE2RuKUS1WU8RUUcBqT9mK98+3nK4wlKQ6DKnJo4RzcCTCvDrINRyVBMCG0IOhB2IJyJ+IFBGBsknoxsp1jDOYoXMm/UWFglZC2kpI5RWwnp0xr2sw28vRKJpSLKIIcxnltm5lXoJpu8Iz/LXek2J+zjeiXOsl0CNCKUpSSWjH/IP0bK0sc8uHOg6jgOg8GgyOb7vs9isWA2m3FxcUEcx2xsbNBoNJjP5+i6Xsh082VzS2zHcXjrrbeYTCbUarXC2OATn/gElmVx9+5dHj16RKfTYXNzkxdeeKEAs51Oh8ViAcDGxkbBkucWz6IoUiqV6Pf7BbuuaRonJydMp1M+9KEPFV1Bd3d3uXPnThFc+L6Prus0Go0CBM9ms8fIw5xczbXoSZJgmibNZrOQOa9aX+d/y7uBWpZVFHoKglAEBzlznuOU3Ekvlxnl5yRn1Vf35913330iPoE/BIOeb/CHgagfBJ5XP3t6esrdu3cJw7CoqM2yrGirnvuE5/KMHAznWu+cif5hxX95RW7OJJfLZcIwLLzQX3jhBV577bWi6EFRlIJpzxsd5YWqq6w18FjqQtf1wi0mj9zybTqOw2KxKCK1fC7+sIHG+8331bnNvUzz/dI0rdivSqWCqqpMp1N6vV4hBcr1aEmSsFgs0DStSE3lx7aaPci3nX/pVwF5/t5VTXa+jtWi3auFnqu+51fHk4pCi3qAK8e/umx+8a/O9ZO06nlhyvrobxJFIaFzgXT/v4Q0Yn19vZjHo6OjovNYXh0vimKh08szJOVymQ984AMMh0POzs5ot9s8evSIKIr4mZ/5GVRVJU1TNjY2iKKI+/fv4/k+n/7M5xAEmbm9QNHL/Le9L3EYbPITzZfYGP4zSpUKqmby6PiMRQTPf+xTeBHMFxGzRcgiyDjrjZDWf4S7iw/x4x/9Mv/lb/1VHh62ePd4g9rHa8y/UQVPIX2QMLU9kkxCVHRktUwimbhDBeE4YfGdMv5IJ14sA4olOLiEV8LlazklywQWkUYyAf+ugVROSasC2UQkqsJ3Z58DHZhkcA50gQkoUYQcx4huRjxTSEORtCSSlUFVQ2rZgFZ6TlM/o97uou5GcKAS7lpEawaiCSUWmIKDmqaocUAlG1IV5pjCAiWJEC7910QpJTVE5nGFodtmvGggSimmusDSbHTNR5RSMgn0JEDrhUjHGfq7AbU3Z2we97h58ZCt/jkn17b55o9/hvsv3ODRj10j2RQxmwviVGI6bWB7ZaJEpTqZsd8/5lPJ/5ftsEsjnmAlDrG4LAkVAmCWQTdDfJASv5kwvA+OGzI3wc7tCF1wJktg0twVaLXBNBWqgo7uCWizEKHk4SQi06HEaKDiRCKpHyJ5AUKa4qvqpRNKTBwHLBQZTxCIBQHSjEwWietl/FodTzTJFjHypQ7cdCcYc5dKEKPYPoogoPgBYhCSxXEBwFPbJrWXWDLicRCOAIYBpSbU95YA3LoJ4g2TYfuAUw44tC8BeKfMpKeRvurR/MoJm7MHtEaPaA6+yv50yKyxgdtuI9YMtLqM+IxBUtlhWnmWR9Umvc1tepvruKpKPI3ZunfKmj2gJc246T3kR45fZuPekPbFgPLxFGmUoqQJorkCwBsgbEOwt5z/YQ9O5hUeynucint0lV2GrT3GB3tMr20THtSoJVM2J6e0Fj22hCEfKr9Nvfpt1uQxa3aPxmJCbTSjfOKjnsVLAD4GXJaNaPKfsjxrownYmyVmW5cAvF1hblWYVSzm9Qpu1USfB1Q6c6qnNuobwdLb3ynhRHUOjh7xxVd+Ha8l4ewb+NsacV1k+lTKZE8gm6kkwwh/nDCdpLjfcPHHNomhIRxUSPcaS/b7A0vgHe5VifYsou0K0iKk1J9jTebUQody5lGigzl8gHrHQ+u4cByRnUYIHR/skDRICNOMMBGYzjJSD5SWgLYGWj1D2wJLWV7nsiogizJSKCDNM1Q3wpHLdOtrvL1+jZPmNo4soQYjGoMTGuMu1dmccjCl0h3zyflblCtL+0tESMtAGwQTKAlQgkzKCEOYBhBNwDuF4EIg9kDI/KXnQwvMJpQb8Kc/+xKCCF4fnEcwP4PxTObEUXBdEX+REnkR17OUfUXCblXIGjJmw6fWdlAbIe6uhb25hlc3CbZVZCEh8WDo3GDuV3kkXueu9BRHwTU63jbddJN+soYihjTNEbtmB04iLrZLaLrPU//i/82/LbzCSUfkD5pf5Py5f40/U+1SVc3H7qn5/TfvCJ/fu3K2d7FYFF3X6/U6juNQrVZptVqsra0V/VR0XadUKrG1tcX6+jq+76NpGl/72tcKgFqpVGi328BSVpPjuFqtVviQn56eMhgMCqVCXqsVhmEhAc0tt6MowrKsAuft7e3hOA7f/va3SdOUdrvN4eFh4ViXW1u3Wi3SNGU6nRbe6znWWSWOc/Y6TVM8zyv07zneEQShkMvk3e5zjXqOZVaZ9RxX5HggJ29zhUhuAZkz7rnpSS7rfr/xhwLoq/+/epD5WAVaq2xuPvLi0N/5nd/h9PSUJEmo1+vM5/PiJPT7/cL4Pm8MJMsy5XK5iLJyTbZt2+8LdHOQ5nkek8mkEOa3222q1Sqf/OQn8X2f119/vfD/zKOvXLOVs+t5gJA7cuSsbS53yUF4LnVZjcxW2ecnzem/6lhlklcBeQ7QdV0vfLvDMKTf7xde6Kt+6Plr13WLL8hq4LPqZ59v92qmZNXRZPV8r14PVzt4roL31WP6YYz36jW4+qWA97zn8/3K5321+HZ1vXkFdqVSIfWHmN3/hGg2I75S2e04TvHlyhs3rKbAVo9xPp9z7969Ig3WaDSYzWZ0Oh0ODw8LRqLb7Ra+q0mS8MpL3ym8aIMg4Jryq1wDStUqJ5NJERiMh0PCMORcPC6+T2kYst1sMj++Q3X6z3i+1cL7sse7vs9wOMRKU9Q317i593FceZveokIW1om0XUK9TRqYlJIezfoMM07YDL7D9OiEhvsKTXlAVioTru8wLlVxGhtw7TaT2gZeY42o2UCMEsReAOcgTUWEvrRsSONkJHOJyFWXlhFlAU3zqDKiGZ1TT86pNXtUrttwXSPcLxGulxBKIobgURIcTKJlV9NkTC27hyksUJMQQboE4EJKIktM4ypDt0V3vo4Xl1DFgKY5ommOULQQQYS6NaFuTWAkIB2mGPd9mm9NuP3d+9y+84BMFBitNRjt13jjE8/z7p+4xe/vfpKopWDWFqhqwGTWXDZW8kL2+yd85PRVPpV+h1Y6QcgyIlFeolQ7gz4IhxnJ2zGTO2CPYmw1XspQUnB8sKcgxtDaEWjdzLDKMmVRQw9k1HmEVPbxwozpXGI0VTiPJZIgRvQChDhZNuO51E4mkbsE4OISgGcZZJJAUi0RNOss5DKplyLbC7T5HMMdU3K8ZZv2mY8qiUhRvCzCjOOlvR2QBgFpEDwGwIuHsGQ3zTrUdqF5Ayq3QLsuM93a5VS6zpFzwFuzXXqnFpMLlejtiNI3+mzZ92mPj2gMXuYT0z7zWhunvY5QM9GqAtJtk6y6zrx8i+Nai97GJhc7Wzi6TuTGtN45Z3PUpS45bIZdPnr2DpuPhqz3e1RPxijDGDVJEbUM0QIxB+DrEG6DvYBuH7p9lYfiNqfhPhfRLn19n8nBLpNrOzg31tHLCZujY9adc9bSHk8bRzStN1gzJ7SDAXV3RH04p3zsoZzFyDkDngPw1cpVGTINnLUSs2cs5psV5m2LWeWSBa9XcGolFC+icm5TPZmj3IlY9Eo4TpVR1KIrbnDc3udo84DT2j6TG03au122Fids2kcE5ohtG+azDPu1Bd7vOkSRiLBrwX6VZNsi+kD1EnxXiParRHsVUl3G6M8pj2wqrk0rWVBmhJmco7/mof6Gi3QckJ1EcBEgTAJSNyaOUoJUwHVgPs2QKqCtCWiNDG0bSqqAIYGigSQryImI5IAyC0kEhUGpxfH6LvfXbjLRTYhsapNTWsMONXtMJfAozR7xfPCIT0+WkidRgkQDDkAwgLz7pgZRDHYA4Qz8U1jcg3gqQJIhqWCUoGwsC2lLMdQXkNkZmZfhLcCO4OhMw3FlvEVGsEiI/IggSUmASkmg3oBGM2RrP8PcEohuNwi2K/QtjUwREZWEWaYzi2pMozp3pae4L97imH3Oz7foJevMsypNcci62KOl9CmVXbY448XkWyjlgJde+ChVY8wL2RvoaYj/UpOLX9eQJYGnpIdMkk0O9i0+Kf0ew8GYcrxOd4VIXb3X5SAzb1LYVSS+/GMfR+pcsP/LDzEMg1arRZZl3Lt3D1VVuXfv3mO+5QcHB+TmCUEQsLW1VRRlApyfn/PWW2+xubn5mLogZ9vzJpI56SpJEs1mk/l8XrijaZpGo9Fge3ubk5OT4j7qeV5xD87v771erwDSOYFaq9WA9xQPhmEU6oU0TQvXQEEQCrCdy5JzzJfjllzxsKrpz1nyHF8kSVKQbqtS4MKGeQVrKIpSBCOSJBVFrz9M8vxDi0Svgpur8pV8mVWNTb5T+fv5BXPnzp3Czi6KogI05icgBz65NimPPPKIK8uWVbRAoR1/v/3O9ysv1IRlJe7a2lpxAizLekxKk1sK5Sc8B+f55OcAPsuywjYoj6Lyizmfix/G8P/LjhwM548cfOZemrkP+mrVcR48rHbDXNXOrwYgsiwzm82+r0kQPF7V/KT9ujpWz32+/lUwe/WxGuWvLvMkTfrqdvN9zZdfzWysNiF6EvjP7RV/8Rd/sWiqsOquMx6Pi1RUbrmZ72ue/lsNPIDCojHX3uVV7qZp4jgOnU6HyWRSXF/5l/2dd94BeCx7kc9HlmWFNi//0Xj06FHBgOi6zkc/+lG6gxn3BirJhUJmPYvSfAZ/b4/YPCDTWsj+GUwfINoPYP46ZnyGMr1LZB+Rrm8x2d7HdZ/m8DP/MennvsRRJYNyAKYBowVCN0FyJURHRD6LUacpoh0QujpxokIJZCOkLEyoh13qWZeG1afywRnSLZFwzyRcK4EloosBJWwq2MhpTCWZUM1mlIQFWhaCkJIhLDXeSEzTOsNFm+58k7lXQRJjKorNmtmjYs5IJZGKYFMvTxH1BMEAqZdifM9j7e0BN14+ZPOtLrGv4LRKuFsm8/0S737wKX75J3+GfmudrARW2cYqzXEcC3+uYzo+Ny8O+fDha3wy+S66EiwBl5ORDQU4zeDthPnbGW4X7GzJgjvCEiQ4c4gX0NwUaF2DWk1gTdbYiVR0O0YqB4R+zDQQmTyQOEoUwiBF9F3EKCZUFcICgHssZAlfkggFYSkbESCtGATNKgutQhKAZHuoto3pTjEXAdoiQJ8tkBUFKU4QwgiiaGlxx2Vr+7lNzuMIVx6qtnRCqW5D6zpUbkLpJjg7G1yYBxzZB7w526d7WmVyruLdT9G+M2Fz9oC16SGN4T/ng+MeB5UmdnuDrFZCr4rINzSyj7RZlK7RabTprW/R3dliVjaJwoTq2z22zjvUM4dmOOap7iM2z4Zs9bo0zkcYQx85SpGUDLG8AsCbEG3AfAH9AQwuBI7iDU5mu1xIu/StfSZbu0yu7TK9sUO2obM+77A5PWM97vBxrUfLvMu6NaadTahPh9T7M8pHHsrp+wDwfOJkyFRYtA3mty1mmxVmaxbzSoWZZTGvWtgNCzHJqJzPlwD8MMbuWUznNYZxk3Nlg5P1axy3D+hYe8z2a7Q3umy5x2xOj1gfPOTm0W/xwtdPsB4cUj48QatKcK1Cslsl3q3wyhd/fAnA9yvEe1XC9RLqzKc0nFGZzmmGC8rZAlOYYJz5aK8ukI4XcBrBWYgwDsCJSLyEIIbAA2e8bOCjrQtozQytBqU1AV0BVQVJkZERkRYC8ixGDhPGSo3z1hYvb97krLpBnPhY9gWt/glNc0DVcygHXfZ7FzznfJeSBZICiQTsXDLfJghlyAyIU3BDiBzwO+DeFQh6kHkZonLZOKoEJRXKKVQDEFxIFxmhv5SGTQO48GG+PES8ZPmIMtAMifKmjtnSMJ9XaTQEtsQp3v4mfrNMYikImgBiipNZHIZVusk6d+RneCRc5zTb5SLapOdvkCGwJvZoSz2qyhSxnJLUUlrlC2r1HlZpTkMes5EOUFUPM/MoJQvMbIEqB/yE8GWCTEUlBCFDqWbsrtf50cWvsHv+GlIpQ92VEcjoZ6/wT7z/zffV/3F5eZ76C5xyiX6thFspc+czH8VuNxBu7MGrb7D/6ts4joMkSZTLZSzLKjLyOcMbBAHf/e53SdOUarVa3AdhiX0cx+HBgwcF7hgOh2TZsgnR9evXqVarBUBtNBoFwy2KIvv7+1iWxXw+ZzAYFHhMEJZNGXPydHNzs2C7c0vk/F6eA+783puD9HzfVws5VwnW3IIyl9rkROxq4WjeqGhVxpwTo3mx7Wqvl6sZjPx8rAL3VW/2HzR+IEDPD+Iq0HwSYM8PJt/B1R3LGclvfvOb9Hq9Qheeg+zVat2c+RYEgejgPyHe/XfROn+X8sUvkWUZu7u7iKLIeDwuJuBJjGrOoObSg1qthiAInJ+fF9ZAuq5z/dZTzMUKo/uv4F9ud5XlzaOc3LA+TxPl4HdV9pHvz5Pm7F9lrAZC+QWXR5F5oLAq/8lZXM/zvs+KMj8nq6md/EIzDAPHcQogf/VLfhWcX80IXAXOT/pbDpivasavgvR87t6PUb+63vyLl69nFeQ+KZCE5Tl98OABf+Nv/A3u3LnzfZKp/LrJP7Oabch/ZIACYOefyVNa+XN+XcuyTKlUotvtFhKtHPhrmlbUV+QBav5lXp37JEmQFJ1Iv0ZQuYlUf4ZQ38erP8VXG8/if6GFsDiH+X0E5wHK7A7y6FeRZvdQFRvrmWcZl2tE+zukO7dx9r9IsrVPtrULCxepN4BZhhXpyO8MyMYCkaPhewpRUCZTITUTdHFOLenTEHrUSkMqt6aoz6SE1wyiNRNKApoUUsKmzhQtC7ASm0pqY+KiJSECGZm4BOARMtO0Tt9dpzvbYOw2kYSEsmqzbvZoGCMyGYzQ5bZ3DzmMkdUYwUhJWwLqMKR9Z8TmW12M0wBlGCKGGd6mgb1fprfb4r//D/4N7tdukQkymhRgGXMq1TlhqOJNDRrzMVvdLreC+3wsfoVNv0s2Fsk6GcK7Cf5bGe4JdAOwDZZ2hBHYDvhzqLUEWtsCzVZGS1XZTFS0eYY0DUmdkFkiMj0WOX2kEIYZmb9ACiMiRSaUVOI0Iw1DPClhIUtLWYogkGUpadkgrFdYlGvEoYhk+6i2je5MKQUeRn+KPnWQtSFimiJGMYRLAB6xVFCkC5+ApaXXVQAuK6BXoLK5dEKp31jqwONrVbrWAUeLAw5n+5x36kxOVZxTAel1m/bsiPXpI5qjr3FrdMFWuc68vUFas9ArAsq+ivChOn55l3v1Jt3NLbrbW0xqVcI4wbrbZevhOY14TiVw+WjvFbbPf5OtYZf2xQBr7CD5GZK8bIcutpYacKEO0RrY/hKAjy7g3K5wHO1x7u/RE/eYXNtl8qE9Rge7BNfq1JIp26Mjtv1jPqCcs2b8AZvlEU15SmM+pn4+oXx4CcAvngDAM5YSFAkEFfyGxuzGJQO+tgTes3KFec1i3qiQigKViyUDLh/F2K9aTO0ag7hFx9ritLHPWX2fjrnLfKvKWuOcTfuYjfEha/1Dbrz2G7xwdEj1wRHVyTnajkF6Cb6j3QrhxypEf7JJcO069m4FRAGzN8Maz6m4Nla6oCT2MYIT1G95aGcLOA7gLIRxgDCNSNyIKFzqvueTlDQAtQ1am6Xue13AUDNUFWRVRhQkpmGL88UOimuzyzFda523Nq5xv30dOxMwgwGt4Qkt7YK6P8NKZtRnE74Qv01pumTRUwHSdRD3WXbALC2fExH8CEIXwi64RwLuiUBsZ4hChmaAWYayBroIpRDafgbL+nxcByZd6FyCbztcAm9Xk1lsVUmvVZCfa8DTddKDGvGWRdAwWT8e8Ll//m2kIENxE9RpyPRjdS5ubNINq7zMNl1tk5HU4Jv+Z+n6m0zDCvuTe+y7D3Bur6MbHlkFZMtjV7vHbe016uU5VX2OqS0wRA8jWWBmAYa4QJUCHK/MbFyj7It0gzW+JXyEeKxyo3/B/+rdX6QdnbMo17G0MZVoihF7iEJMCATGsiA5izNc0eSN9ae413yOuaEyK2nYps7E0JgaGjNdRU4SrLmLNpmhjSeEvkaWLGujmmFSdO+0bbtoyheGIY7jFFIMWZbZ2dlBEAReeukl0jRld3e3sB6u1WqFQ8vqfSzHWUmSFAWemqZRLpc5PT2l0WgUtXDb29vs7+9TLpc5OTkprBPz9eZ+5nkH1By/1Gq1wiIyB9T5NnPQver3nt9Pc+BdKpUeA/w57s3J4zw7v4oF88xCjiVXsVWuXMi3c7VuMWfic5D/g8YPBOj5yq5KFJ40Vv++CgJzkDGZTLh3714BxPNUwCooWt1GJpnEt/8LAPwb/wWJfh3RP+E4HbG9ltAMa0wu3iL03feVMeTbz6Ou7e1tLi4ueP755zk8POTajVv8w43/LUPqKLd/D/X/85cJhZBIDEFfBYKAqqHVa2iahus6TJOYtNR+TAOdpglJHEOWd07IHn8Wih3LZ+3x93kcfJJliJKEIICiqsvXoohyGSFG0VLP5Pshi3BEWhS2XgJcIY/slutcNd5fTa/Isoxt2090w1kNfq5aTObn7Qfpx1dfrwLeJ7HjeRZjNUh60nm9OvLrbfUzVzM9+ZcjTVPOzs74hV/4Bd544433dda5qpfP15t/4fKAKe86qut6wTzkIP709LTQ8AVBUHxxc1ZC1GqEN/4tkouXyXrfAJZp4ETbgvYBYvU2Yu1pIusmcek6WWkfIZwguQ/BPUSz72Oev8qzisbR8C5uxcLf3CHbvka8/xHCzT9BtnOAb5bx7AnmwKbSjVHHAvG7Cv5LJr4f4QdVkqxOWspAdtEZUZcGVKwx5Zs2yjMh2XWFuK0hmAK6GGDiUmdCKXOwojmVdE4ZFzWJlj7IkoiQpcSpwiSu03M36M036dprCBlYqsOGeUHL7CFpKWa64Nb0IfL5PdQgRJVD5GoI6xnBvoqSxNTmU0onC7RRgOLFpLLAfL3C4d41vvy/+HFmapXUlzFDDx0fyUzQqx6SnNCejJDnKc3pmBvOIz40fIPbp/cQH8SEb2W4D5aAe6TCkQp2kuAswJ0ti8qa2xKt9ZSqIdHKdDRXQBqHMA+wE4FpB3onOosIssBHCiISWSKQNOIsJY1ifDFhIS8LMVNRIEtTsrJO2KiyqFaJIhnJCVDmNpo9wwpd9KGNMXZQ9AGCICFGEUTxshsml37TYUwcxk8sxBTly8K4tUsAfh2sWyBf1+jXr3EcLAH4a50m41MN50IgecenNuuwNX1Ac/wyW8N/RqNkMW9tEtWr6JaEti0hPlfCsz7Og3qT7sY23d1tJo0qYZpRetRj7e0OTX9KaRHwdO8tvnDxVXZGPTZ6XWpjGzlIkKQMyQCptQTfQhXiNbA9GA5heAGDkcaxvc35eI/+1h7ja3tMPrjL+GCP+fUNtHLC1vCQa+4jbginbBivs2X+Di19St2fUD+bUj5coJxcYcBz8/R0OVmZDIICYVVm/myF2abFfKPCrFphXraYVyvMGxaRJmN1HSpnc6SjBPsdi+msSldd56K0RaeyQ8fa41zbwV6rsmZ12JwdsTE4pN4/5sbrr/PhR4+onR3TkiZI20bBfod7FcKPVIn29/H3PojdNNHGLuXhjMpsTiN0KQs2JgO0hz7qNxdIjxZkZxEMQ4RZuLQ49FLCQMCbZTizDLnGpe4b1KqA1V76c8uaiCSqRIlB192m629yrOxz13qKu6XbPFKv00/XmMZ10GCt1OGnrH/A/3rxc5TCR3x08Igf8X8PzbgMBqsgbCzZb+ESgCcaBBEsPAj7sDgWcA5FgkEGcYqqL20Ky8ZSi16JoR5miPHSM38RwGwOk2M48t8D3wtJxNmsEO1UEJ+qIz7bILtRI96pELVLpLKMMfRpHQ5pHo2pn02ofv0B5X/kYnY9jOECajC/UWV+UGWyXcV/QWNeK1Gb9NkfvsFHB3PcC5nhhcVn++vUuj0MLcB5rsX841scfeKTNJ0JJgviqkRSl8gkgcDRCEY6E7vBqb3LsN8i6BoYgUdbHPCc9Dafzl7ievyQtXhIOXEgyfCnEE7An0LiDDmZaCzGKslYQJosSCSJ4dY2v/TXf453/sgnqZ9O6JZ3SGcS6UwkGyyfmQsI8+Wz6KfYWQuyGEkAlzIoGeJWjHW/g1EzsW2b8/Nzoigq7pO2bRcsdw7cNzY2+NznPodt2xweHhZ4bnt7G0EQuLi4YDabFbVveWPJvEN8bruYg+BOp1Ow1pZl0Wq1mE6nhS97fs9c7ZGT34fDMETTtMcy3zkOyCUkOcOd1+nluCe3Rs5BfC5hze2SgaJRUi7Lybeb1zbm+GAVnOfS2TzDnmfK8+PN5TY5YM+B/PuNH+jikleXXtUO/6CxKm9YBWHf+c53+Nt/+28zHo9xXbdIgeTm7quFlAAZAtmPvwXmAYR9pONfItN3wNhBrtwgUbdIRAsx7JEtTsjcY/BOllUf3im4x+CfIkRjNFXl2rVrVCoVAP7KX/krtNttXK3N//zrN0GQliB5MaZAszmaFt57FhDIlgXTy/eFJyz3P9XrH2K/8z/pyPLsA4g545zvTb57P+h19of/O09YbhWqC6xejhlXZuW95S57N7+3HqEAJe+/3wJkKbP5HNdZWi99XxD1fkHTlddiAfyF94IpcRmshZdyGO3yxynL3kvBhWFAmizbZ1O+Dn6ZpYm0DYmyvJsJKYIUIEghghQgygHyloy0JRGEAakuITZUqMpkFZ1Y15DjkOpwjHnqIF8kJGMJ3zFYBBZ+VCIOFNBB0XzK4oy6MqRRHlBrj7CessluiSyaFpGhoYoRJRxq2YQqM6x4Ti2cUs5cFDkGBVJJQsgywlRlEi4lKL35BuezDeJYpaLYbJYvWC+dY5geUSIjdgXkRynqaYw+9CmJLrq1QGv5RLsyo6cbhJZK+dRBH/oobkwKjMot7m7cZlBdQxCg5fdZnw4JIwVHsfBLGmI1QS95uPMyTEUq0zm7vVM+cOcNnv/qq0R3YpwJy26Y+lImbvvgzEBVoLkj0d7IqFogCzrqQkSeJAhTn0UI01hgGiu4sUASpEhBSCqKhLK8ZKrDiEAQcBV5aUUYx0sAXjGJ6hW8epUoURGcENl20ewZJd/GAExA01VEUUKIY4hikix7zMBn9Vsh8t73S5QENDOj3F46oTQvGXDjhsh0fZuT5IDD6TVOOm1Gpwb2uUA8CDDHQzbnD2mPj6gPO4S6wby9SVCvo1kyRkNAqql4VplpvbnUgO/tMG418AHzbED7lVOa9gRLC6hWA3azMTuTLluDC+rTGZofI4kZsrGUoAh1ECqQ6EsAPh7B+ALGXYGzeIOz6i69zT0m+3tMDnYZHewxPdgh2SqxMT3hxvwe19JDttQLdkr9JQCPp0sA/shDOYkeZ8CvAPBlZx+ILYn5lvVeIWbtPQA+a1gEpkZ54FI5myMepcy7ZcZxk568xoW5SdfY4lzf5VzdwZUs1hYdNiaHtAdH1M6PqR0fUT86pGV3qFsO4pZBvLOi+96rEl2rEG5XEOPksvByRnXhYKUuJdFHDwOUgYtyuIDTAAYRwjQkm0bEbkIULJvtxKMMUbsE3y1QSwK6DoaSIesikiQjZRLjRZuet0En3eae9RR3y09xT79JR9hmHDdwU4tqNmYjOWEnOWIvO+ZAPOaGdsIN44Rd4YSmNkA03gPeQglSA8IUQh/CEXjHAs6RyOIMUjdBUUEvQ7kMpgJaCnIMUgAE4IcwC2DqL59tH9wEFgi462X8rQrcqCE91yC7VSfZqxCtl0l0FW0W0Twc0joaUz+dUu3MqFzYGBcLzL6HJMW4N0osdksE6wq0BEQzRE1cJN8jDTL8gYDd0Qh6EJ8nJE5GuGuSPlWG6yWC/TrZpka0beBtmXjrJoKfkU4lFrbJxGnQm29wMd4gmBgoYcSBesgHpbd4NnqH3eiMRjTGSH2SEILx8uGPlyB8MRNZzESCCaSzmMxUSOoGac3A1FMayYKqv0BE4ELbIFwoqIMpJddDi0LUdVCeVvjyv/ffgSCRIpAikmYCSQpeEDGbO5z3+ownM6q1Br8a/hlG2RqV+JwfPf3LhJesd+5okrPJ0+m0sIoOw7AoJr127Ro3b97k937v9/je975HqVTi85//fMFyX1xcFA0lc9vqvMFP3vOmXC4jCEtP8SAIaDQawHugOC8ShaVcNzcRCYIAy7JYLBaF0iIH/zk+XbVPzIFxHiTkx5f3r1k1HcnBeg6gF4tF0YRyVe+eJElRNHrVUW5VTryKl3PFQi5ryYOVOI7pdDq83/iBAP3OnTuPSQO+78NX5ANXQXkuQYjjmF/7tV/j61//OsPhkPPz88KTs9lsFp2rvk9cr1qk1ofIJq8gpO95eJqmubRlrG+wyJpcTBV8cY1UWwJ4zD0w9sDYhSxFDDqoSRclumB/TeSPf+F5ntozsaQp/+Hvzug2Poz8tZ+H3/m575M65O3b8xO/mq5YNbW/OkdX522VQV4dq1rrVanGVQnREzj25eeKuReL5ZbbuVx3wXovQSSXnxGEy0BKFKnV63zus5/jz/25f4uPfuyjiIVrC8WzICzhcr7N5b4ttxkX/ufvLZ9l2TIzLIqkhWRl+X6S69EBURC/79iiOCaJE+IkIUuz5TPZ8vNZtgzeLtefH5sgCAh5UFNch+8FP5IogSjw5d/+Mr/4S79U1D9wudzqXEIuGbrUqxcZkPfWKRQFusuCXOmydqK9tkav22Nu26yvr9Pr9XFdl43NzWXTBMdZFp4mCeOnf55YuY4SL9jv/Y+41TFxS4K1KuL2Not6naDVIms2SRSN2rSPdTRD6YSkI3EJwEOLRWQRhjogIBkxhuJQVmbolofYjBD2EqSbAWo7wCr5lI0AA5dGOqbKjHoyoRpOLgF4ArJAIi8BeJCqTMM6A3ftEoBvswhMyorDVqnDVqVDpTQjFmSysYjyKEU5jjE6AdaFTWMwpqkMKTUcZjctuh9aZ/xUHW9NR5uEKE5ElCj0zHVOjB18DKrpnA/PXuem85AkUDgW9ujoW0xKdeKKhFFzCTyNaKRS6nls3D3nxu+/w63feQmmcxxtxY7QBlJobkk0N6HRSNEkDcWXkScp4iQg8BJmqcQkEHASmThIEYKl1VagysQIpFFMkGW4qlJYEWZxQmYZxLUyQbVKJGhkiwTJWaDac0qLGSYZBmDIIqKiICQJWZQUDPgPA+CCJKDqUG5mNPahkevAr4O32+JUuATg52v0T0vYHYmwG6KOp6zND1kfH1IfdYgVBbu9gd9oopYVjCrIDZXAMpnUm/Q2trjY22a43sYXRbTukPbLRzT7Eyw5oFSL2RXG7M17bI8uaE0n6GGIxCUAbzwOwF0fxmMYncO0C915lbPKLr2Nfcb7u0wOdhlf32d8bQf3WptaMuap0dtcj++zK3fYNbq09Qn1bPb9AHwMOLxnQ5gDcBlQIDFF7K1yAcDn9Qqz8qUWvGGxqJiUxgsqZ3M4TpmNKgyzNn1pjb6yRk/Z5ELZ5lzdZSGVWbdPWBsf0+wfUzs7on58SLN7zJo4oFp2YadEuGI5GF+rEu5WiCsaxsDGGs2p2DaV2KXMAoMAdeKhnrnwyF+C70kAs4jEjpde33ZGNEwhBjUH3xUB3bgE34aIpEjISES+wYW7RS/c4KF5g3etp7ln3uJI2mOQrjGL60DGetphOzliLznimnjMDfWEG/oJe/IJm8oZhhEgrADwrASRCMGl44l/KuAci7hHAv4oRhGW4Nsog6WDISzBtxyBEEIcwjxcgu/ppfTEjWGRgNsy8bYqJPtVxGca8FSD9FqVaLNMbOmobkL9ZELr0ZDG2ZTq2YzKxZxSd4HR81D9EP+ahrtfItjQSFoiYjVGwUeOXEJbYjRp44UlRFXENCMsy6dcWVA3JkiVjLQmYCclfl/6KGlFQZRAs0OsIwfjLCBzRP5ff/KnuZhtMRi1SGwFS5jzrPYOz8tvcEt6RFMYYgoeYhqTzjPk+x7RIC0AuDOX8KciwTQjc2Kyqk5a15FLEiU1oRb7lCOfyNDwtsqkbYFSzUM3AtQ0RbyTIndA0Ze2kBgw2ShDU2RNmyMIECQav/r83/8+/JVjiOl0ynA4ZDKZYFkWw8mcs4WFYj9k0D1D13Xa7XZhkZjrskVRpFKpsL29DVDowWVZpl6vM5lMeOmll6hWq3zxi18kyzLOzs44PDxkNBrheV6RWc7r4/J9bLVaRd+bMAyZTqfs7OwQRRHj8bgwCJlMJiRJQr/fp9/vF9KZKIqKmsAcN+W1jXldXo7L8ix3Lltd7RqfG33k9Wt5LVoO1g3DKNaTF4TmLLplWY/5uguCUFg+wuO9e3KclzPqedZAEAROT095v/GHYtBXT/ZjH16REVx9ZFlWGN4vFgt+8zd/k7fffpv5fE6/3y+itFu3biEIy6rcMAyLYtDVosG8YDSXF0RRRLvdJk1TLMsqUjN5WuO9fRUQzQ1KracJpQ0yfYfNG5+ksf0hnKROz9aYBwYqc7S0z2J0FynoEM0fIgXnWNIEKewQ2id4C/cxn8urkorVOVkdT9Jnv98VgIdmAAEAAElEQVTrJ83v+63nSWO1kjgH+asyjavL5uuqVCp84Qtf4Gd/9md58cUXi2LX1W1f1XOv1h48KbPyw3TsT3IAyudjtUnUkzT9+f+vFp5elbSsurpIkkSv1+Mv/IW/wMsvv/yYy8tqh6/8s6ZpFtfcagHwajOmfJ91XUdVVarVKrdv32YymXB2dsb+/j7Hx8e4rkuz2eRP/Nk/T+cDz/DgIwf85Nd/i7vt23yj9TkSDSaVNqYzp3YyRD9bwFAgcHQWgcUitggikzSUELQUTfPR9QVKJUBopojbKfrejNramLIVoJoJuujRTIbUhCkNJtTDMeXUQRFjUARiWYYMwkRlEjYYFAz4DtNFlZLksF0+Z7t6RrM8IFMEUltGPkyRjhKMs5DShUujO2Gr2+H6xSNkK+L447t0P7zO+Nk68+sW3rqOEGaEscpYquNkZdJI4NbsEc/ad9nxO7TjEV6i8br8Anf0p+iZawSWhlb3EABvYCIfhdTe7LPxygN2X34Zc3CGHYPjQuhBfUOiuSXSasWYmoISqsjTDEYBiRszS0VmkcA8konCDIIYIU2XXuACJHFClCS4moovCERJQhbFYGrEtRJRpUIoGaR+irjwUe05pjunlCXogCmApCpL+8L4cQCe8p6bHlA4oAgZCCLIukC5llHbhdYNqFyy4OyXOFMOeGRf46SzQe+kzLwjE1xEiCOb5vSU9dkhjeEJmSjhtNbxm01ES8e0QGnIhGWDaa4B392mv7WOJ8uoowlrLz+gfjSmIvrolZQtec6+22V3fE57PqEUBEhCugTg9Usf8CqkOrjBJQC/gOk5jAcaZ+Y23Y19Rnu7TA/2GF9feoJPD7ZQrYSnR9/jtn+XPfGEfe2cNX1MnRn180sAfhwjXyTvD8AvGfBUF3A2S8y3LmUojUsAbi3/79RK6HZA+XQO5xlju84objEU2gzFFj026EpbnGu7eFKJ9dkJ7dEx9YtjGqeH1DtHrLnntLURluWR7pQKy8E4b7qzaSEvAkqDOZXpnKpnL20HRQ/NC1C6C6SHLtlFhDgLYBqRTiPiBUR2SjzOSOYZSvMSfNcFNJOl7lsXkFQZWZAQIoGJ06Lnb3Iq7/KO9TTvXkpPLoQtJkkTN7WoZUO2khN20mP2OeK6vATf15QTtuQT2voQsXQpPSkvwXeiQBBCZC/Bt3u8BODeRQL+UvdtVMEywJRAzd4D4Fl0Cb4DmHow98HJwbel4W5XiXcqcLuO8EyD7HqNaMcirhnIYUa1M6f9cEjjZLJkvs/nlLsOZs9DmwVE2wqLfQNvSydpy1BPkNUAOfJJFzHDWZuFY4Ekoxsx5XKAZbmUrQVGyUe0UjAh9mUWUx1vauA7OrEvowU+mS0ijDO0cUhtMiNDYGC2cA2TYbvO5JkGwnqG2gqpMqURjCl3J3AWknZCouGyq/asVGO0vk732h4XTx/Qu7bDqN1mXqniKia1+QQtCWmNe/wH/4f/G1lTQK5GlDUPPU4QPQHFSZHcDCFY/h4IOpddaJfXexYIZC4kjkC0kPiaucNLxhp/fvsh69Kct2tf5O7Gv46AgIi4zKwJYmEq4Hkew+GQXq+39OUmQvt3DORthe7fOsc8MxgOh2iaxunpacFIT6dTrl+/zkc+8hGyLOPdd98tGOw/+IM/IMsyRqMR7Xabz3zmM2RZVkhlHjx4UEhQNjY2AAq3O9M0i3umIAiXRFavkI7k7mZZlhXNGKfTaXE8OXjOu6DmjHuOz3LmPWfYy+VyoRnPWfGcRc/tpfO6viRJcBynAPbVarVYfy6Tya2zS6VSgQVyUJ5vcxWL5W4vOeGb44icwT87O/s+/FTcK34QQM/dJd4PEF7V+a7+Pz+h3/zmN7m4uODevXv0+31Go1ERociyzO7uLrBsaZ9HTTkgy3VBnuex2P8pwvVPUL37/yAe3mdzc5MgCDBNk6Ojo0LLk+uPrhapwjLKabfb/OzP/iyf/vSnl9He8Tmytc/vfus+ZyMRX2jTd3Qw9siM3aWsRtTA64B3guCd8v9j7c9jZNnT9DzsiX3LiFyrKquyspaz3v129/Qy3TPUrNRQpIShTRKUDfgfATYFjEHSIigbMG3IgAV4gQ0JMGyDlAhRNEzDHFsSKc5Odc/C3vv23c5+Tu1VmZX7FpGxh/+Iijx5Tt++HBIOIFGZVVmREb+IyHi+7/d+7ycEF2TuKZl3lktplmcQz1/Z93X4XvcV/zwgf31sP+9vP61w8l91EQQB0zT5yle+wt/6W3+Ln//5n/9TzZrAy4DgT7N8lgvMZ9k4Qr4/602hXg821msOPgvg1x144KWv6W/+5m/yd/7O32E+n6+gvVwuv+LIUxSNFLaZRaOD12dKXgd6URQp1xu0vvJ1FrUNrrUSpTffZerUCbdaZLuHYJbQwwilv6R04VE+nzH3HGa+jeeaxP5Ne2YjxFTmlNQpguVhbUVsvJ+h7Y1A8YiqKrriU0+G1NIRNWlELRpjJ3NUMSKTXwJ4kGiMwyp9b5PeTQa8N9tAl5bsWpfsVs7YtK+RtYg4UJHOU+TjFP08xLxaUulO2Opec7tzxPagw8Iu0bvT4PrLmwzfqzC5W2bRKuFXNFJRxEtNglilupyxPznn9vSInaBDJZ2hpz5zweIH4s/wifgOl3qLhWMi12N0c4k7KJGeZBhPx1Q+PWbjex9S+vFDwnlGuSFS3ZFobKSUSwJyoiGPQRiFpLOIWSIyC2EaSwSRAEGMmKSEqkJ0M8sTxwmeqrCURKIkJQ0j0BQSxyIulwg1kyQQYBmgLhbo8wmlNEYnt1FWZAkQXgHwgh9/EsAFhCwDASRdxHJSqq1cglI+hNJd0G/JdK09juYHnFzt0D1zmFwo+J0Eoe9ijzs0p0fUh2cIwKKxSVCrgWNhWilqVSIqGUxrdTrbuQa8v7PFQteQJzOaP36K87iPE/mYdsyG5rG/vOZg2mFrPsSKfBRSJC3PgBeNeNK8JxGTUa4Bn3RgeilwpTTpbu4x3G8zPthjfAPgo8M28bbF/ekD7nsPOMyOOFAvaepDqkyodqeUXixzDXgnySUorwM4rAA808HdMpltO0x3bGb1XIIytfNumPNaCdmPKV3OSHsio0WVUVRjmDUYxBv04w26UosrvU0gGWxOzqj3T6hdnVE7P2ZjeMZG1qOqjbErS+J2iWivnLue3HS8THUZsz/DHs0oz2c32e8lOgHKcIl85MK5jzAJESYR6SQkdjPiWUY8SomHeXGrtgFqTUArga5l6DqIWp6tk2ORYKFzvdymm27z2H6Dh8Zdnht3uJJ3GWSbjJM6YpawnZ6zm57m0hPplFv6GYfyGS35jJZxgW6GCCaIFlCCxLiBby9voOOeiSxORJaXGdE4QVdAL4NpQSlXv6HcyE/EOM90j/0cvqf+S8cTV1eYtxzCHYfsTgXh/o30pO0QNUykVMDquWw+71M/HVG5nGJfzbE7c8xrD33ok9RE/AMDv6UTbipQB8kKkTIfwQsYzWrMZhXSVEXTUyzLx7E97JKLUVoi2wmUII1FlnOd5chgOdcJA4XMExDcFGWWoA1D7NECPfAZmnUmeplepcGzwzvUK320zQjD9ihLM2x/hno1Y9I1cQcqm50zfElhWN+g39zm6s4h3bv7DHa3GdXqzC2bQNUQhRQ5i7CFOc2wy453yeH1EbceH7HzrIt95aFNIqRFBhEIEitrSMHJz/kkFFlmOnPDZlKv0dnb4epWi/F2mWnZJkZDTEPIUmJBIJYEEEEQBYSb5z95cwUhE/KpuTTLm64lKUImkAoZgplzUXgaIP5f4dmzZysQLZfLhGHIfD5fNXaM45ijoyMALi4umM/nTCYTfN9f6dKLTP1gMFjZJBaNEot7t+/nxeqWZa2sFnd3dzk/P0cQBJrNJicnJ680B5IkiW63u1JYFEnBdVOSwpChuN+rqkoYhiuJyjrEZ1nuwldAeSGJKfTyRX8TSZJWvupF86KCPXzfX8l3iu0yTXMVQBRLlr10Eiy2vWALyCU7V1dXn3EA8+Vzi0SBz8yOFoNSbMD666K4zvf9VevV+XyOZVnYts1kMnkl8+l53qowwHXd1VRFHMeYpomqqkSV+4x//j8BUcE/+LcpP/0vWJQ0FCEiIkK1ThCWM6QsQIiXxP0rQndCFrlkkQexjyS+PEFOT0+p1+u5d6Zj4Ptn3HbOMd08kNB7vZeaeEEgFkpgtBHMfWTnFonaIqv9PLT2cjmN3oJkQbY8B+8MvLP8+fIcKbigqi9IvXMmo/6fGqbXIf+zwP/1IOBfdymiuaurq1Xk+PqxXf/89c/7LEvG9fevP/+8+oXXQb14/lmf+/q6X5cEJUnC2dkZV1dXq4uiuDB+67d+a/UFoarqqi1y4ZVfZMPv3Lmzam6QZRmmaRJFEa7n4Sk68c4e2c4e7B5A+xZp+5C0fYvhdpvhZIp6PiW5WJIuDaLnMumnJkQ6hBLLQMY3dURFwFAD7E1oOC8oy8coX1VJ72lkyhKpLFKPB9SyIXVpTC0dYcdzVCECARLyYiQ/05ksK5x6h1zPt7matuhMt1CyhB3rkv3aKU37kk2jS7U64o3gIcpVhnIWYV4uKV/P2OgOOOwcs3d9RizLjLZqLJoWs4MSw1+ocv7mFh+232TRKCFpCbIQk0UCznLO5qLPW4MntE8v2fAHiEIOpb4n89HyfX4ofokzo824XoFtsGoLlnOD4FxCfL7A+OghlT/+lMMHH7JVS6g3M6pOgipoKKIIByrZJMSNM2aXMeNjmctYIAt9hDghlmUiUSVOCwCXWEoioSKTphHcOKEkdonQNIljCZYxsutipBOsIETvTygNJqiiQCaKZMlNQMZLflxm4EU3DbBYA3BA0kRKdka1mdG4DZVDKN3JMO8IjKtNjr0DTrotnh+XGV9oLJ9lpH/iYY76bE2PaYy+i5XGbNU3qdYq4JQwLFB3ROLSHoPaF+hub9Np79Lb3WZuGgiux/aPH1P5uIN94WENT/nSiyfsxUMOZ1c03SF2tEQVkhzAZRB1YAvSQ/BCGI9fZsBnD6Aflek02gwP9nMnlDt7jP5sDuGLgwaH8RFvzT7mVvKcX1U+Zlv95/nsTG+K9Xv+ywz4OoAXgwj53ebGC3zZ1PMM+I7NrOEws278wCs2s7qNkGZYnTnRSGYyrzAe1Rhf1xj4dXrRJtfiDh1zj0DS2RidUu+eULs6pdF5zFvLb/JvSAMq2hirHhDv5QAe/exN6/nNFuq0hjScokxmNJZz7GyBKfRRzgKkb7vILzyEcUg2C8lGEck8I56lxKMUd5BCluu+1bqA6oClZ+hbIB1KSLKKnIoInsjIrdOLtnik3OKh+QZPzHucKPtcs8VIaeDqDrW0x056xl52yoF4yp+XfpdD5YyWdEZbO6NhDhGtl/CdWrnuO1pC0IHhucTiUxn3HKJeghhlGE5eeGnrYIhQylJ2kxTJgEC9yXzPcy/4eZRnvj1ZYrFts9xxSA8qZPeqCPeqJAcVoqaFIMuYgyUbz3sr3bf9/SNK/80Cq+di9H1QM4JbGsGuRrCpkTQEpNsxCAF+FNGd1RhPa8ShjqJkWFqAnXmUSDDtCHUnoWn3yRgQuCru2MSf6gS+jnttIh1lSIsYdRhhjpY40zmJJjM1HKamzYvWbc4O9+l9eYNRpc5UrTAS61xnm1wKLSZilao74H/27f8IcZkx36oSNC2WtyzCr2j4tsbSNPB0g0hWULIIWYioZmN20g5vJQ85vDzi4LdP2DgeYF37KNMEyc0gAVEBDBBswAZUSMoyoW3iCVWu1RZPlPt8LzrgSHiDD8P3eRHdJUOknUz4P+z8DmIqoj7L2HyasXnzXeN5HoIg8PjxYy4uLkjTvOHdu+++iyiKqJqKIApkN9+/mZARJRFJluJ6C677PWbzGbZTwpNdjH+/hCALhB+HzHoTRFHk4OAAWZZ59OjRyl0sDMOVY16r1eLJkyecnZ2xvb39iq1zoX4AVpnt4t5bq9VW8DqbzVauLKVSifF4zHg8XmWeC5AurBFzEwx/td51s4fCcKHoTwOsGhMVWfZ19cV6gq/Qfxe8s27ZWGTli+TweiPEYruKz1pfX5FlX7elliQJy7JWxamFG8y6HfTnLZ8L6IWV33oGsVjpTwOlwu6m0+nQ7XZXVcDFoBeWOOvWhVdXV4xGo5+IPApvzkyaFMJm0jhmlpaIqaOYFSStxNL+RcJMIpNNkA1iQSUTdVDM/AEkkUcSe0Sxzz+WU367I6EKETIRchZCw2OpDhhqF4TuGCIX4iVEHkLokoUuUhYipI/JRt+DcJGnJyIPkgDkCpKxS6Lu5NBu7kPtZ8msfUbmHqnkgN/JC1i9szzr7p29+jocvjL+61r415f1k+319/+rLsVsxXw+X1U4rwcGn7VN//9Y1gOMYjro9b+//r7X/1ZcPOsBSzGdtd6ydzwe8+TJk9X+FZnzwgO1kLrYtTpBs03a2udK1vH+7W2muwdE23vE220yRUM875Edz2GY5RWHH1rwwxKEInh1QqEGqkeiLlCkEaJwhLIxovFGyL1/Y4u0lpGpPtVsSiMdUqdPnQF26qESIhDnAK6IBLHGxK+uALwz3eFqskMUSeyalxw2jmmVz2kaV9TqA96QHiGPE9TTBOPCx+nMqV0P2eucc9g5Qo0ihls15s0S7raJt2sy/XqJb97/BueHfwWvYmLKS2xpgSTF6GFA1RvzrvuQ7bNrNtwBlXAKPqQzkbSXcTJs8/vCL/B08w6DwzrpoYLVdEkTEfdSI3nmo//eKbvPn/PFsx9xS+5jKBLSQkEcJGTjEF9KmQ4EZpcCg1giCUOEOCGRJSJJJk4zkijGUzI8WSJQhLxGIE3ILI3ULhOULJJUJvVTJNdFS2c44RJttMAaL9ABJJEsZQXghRXhMgMvySBJXmnEQwaCKmKWBKobCfVbuQ68dCujdA+CzTLH4S2Oui0eHFcYnhssLzLiHwZowxEbk1M2xp8gxz+kVtugVKuAY6GVJPT7kNhNxrW36G7v5ADe3mZWMsn8kK1PntL48BjjdIndOeP9R8/ZYcwd94rt5RA7XqIJMZIKogmiAdiQ3QEvhukE+lcwvoL5Q5jMNLr1XQbtGyvCW3uMf/YmC35rh6Y14J3Jh9wNn/Dz8gt2lO9Qz8ZU+1Os/26Jcpq8CuBFJ8wCwEVAzR9+Q2XWcvJizI0bAL/JgM/quRWh2XeJxjLjeYXJssp4UGWwrNEPcwC/svaJJJWNwSn1zgn1zgkb4ye8m/wxvyAPKVtTjI2QpF0ier9M/OsOwa4D1LH6CvbEojyfYSceJTpo3jHKHy0Rn80RBgHiNMqLLqcpySwlGSX4/ZTUBbUO6oaAWgbDBKOcIW9LiIqChITsZwRzg17Y5ELc5ZH+Bo/M+7xQD+mI2wzZYKw0EJ08+91Oc933W/JD/oLyO+yKZ7S0M9rWZZ79tm6kJ3Z+ToY+hAPwTkVefCqzOBMIugksctcTswwlEywJ6kJCMwVZyi0MJwGMlzC5hosgL7pcCgLzLRtvJ9fKZ3drCPcKy8ESqaliTEMaRwP2n/eonE9xHl9Q+tYTrGsXs+8hRgnhoUa4qxBsq8QNCeErGZIeEIQRI6/EcNog8AwkScQ0QhzRw8oiSlaCZiVsvjECZUToqbgzA3+sE3gag0kdOjVkN0YdxWiDgPI4d4ZyLYuFVuKiusPzw9t07zYZNepMrQoTqUpf2KCbNemK26hRSHNxyYH7gq1pl4rRo17rclh/QlRW8C0NzzD51p//8whihkLOAFtpj3Z2Sjs45fblC/Y+uaD6eIJxFSCNU8QlCCkIKrk3u03eIMmEWFbwKxaDqMSl3Oax/haPtHfpmF/gRdBmLDv0A4tJqGPFARVmiO45VjLAFp8iKbeBlPt276e65a3P3AZBwHQ6XfWEEQSBLM0ge5nEIwMplUjChGSWILkiTDJm4xkAj/+9h6RmghPkxhm6rq8aDy0Wi5Vk+Orqimq1iuM4K6i+d+8eV1dXK5CdzWaMRqOVTeJ8PmcwGKxstJvNJpIkMZ1OV/1nioRtYTEMMBgMVln3ddvtdQYtoBpY3d+Lme9CgaEoyiud3YvZ7iIAWHd9K/jhs3rFvD7uxcx+7qCXc26xbYVuv/CHf70YdN3BbT3p9y8zXvlTATq8bJzy07TDxXu63S7f/va3V52eZrPZqvV5saOFh/i61/g6jBagVRwQOp/A/+cvwvZXET75+6SLDrGuo1kWumGgpinT6XQ1ZVEul7m+vr7RL2WgGIiajaiVMOw6u4f32Lv9BkEikckGiagRpBKzyx74CaQy6BVQWmSSnoO/YhIreQDAzWsUM3+uWiDKJEmUA3vsreA9S5Zo4mOyOCBQAiiJwBYIe/lcl1gCycmNTdMU/AH4XXA74F3k8L44gfkRLJ5DOMl9pNfAdr3y+F9nKS762Wz2mT7kxfKnAfbXofv158VxfX2dRdD307T2r392cTEUBSDFOgr5VGGVVGxjp9NhPB6jahrq5jbz5i7z9iHh1i7Rdhvat2DvkMlWm7PhBOlsStoJERYqPDPJHphkoQmeTBq0QQ0RpCkIIwT5BZI1onTPpf52QumWQWnToCzNqcfXNBjQlIaU0gW6kLeiTxHIBIEg05gEVc69A67nTTqzFlfjHVzPpGl2uL3xnHb5jKZ5yWatw5vGA8RlhtqJ0c9D7M6CanfMTveK250jKvMJo3qVWdPBa5q4uwbzdyw+ad/nv9r7tzjdbWMoPg2GbDBEUmJ8XUONQ971HtKYDmksR9RmIyq9KUovgouU5EHG+VmN39r7Kk++8AbDt7eJ7+uYvxyi6gHzrkVylmCfDTn43hE/c/Jj9k8vkQYpjCJCN2GaCMx9OIlloihBjEJSSSSUJKJMJI1jlpKIq0gEipT3gEkSMkMltQ1i2yIUNJIgQ1p4aNmMku9iTF3MqYtJH1ESSbO8EHk9Ax5k4ANZnK6KMIWicFoR0SyRcj1hcz+jehvsW7kMRWxrnKUHHHXbHB/X+MG5gXslEn8SIA+m1CbnbIxfoIUfU6ptoFXL4FioJRn9jkBi1ZjVb9PdbtFp73Ld3mFSdUiCkM1HR2x98BTjZI59dsJ7P37ClrzgdthlJxjgxB6aECNrNwBeARzIjFxuMJnCaQdGVzB/BPOBQK/UpL+3x+Swzfhwn/Gv5hKU8WELqxnx9uJj7i8f8GXhBS3lYxrZKAfw7yxRzhKkqwTxp2XARUABNAirMrOdGwDfzDthzkoO00oO4KGmYIxcwonCdF5muigzPqkyeJADeFdq0bH3SUSZeu+URveEjesTGsvnvJd+h6o6winP0Ldikn2b+F0nL8SsmegjDXtYojxLcfwFdjbFpIv0OED67QXSlYcwjWASkUwT4klKOk6I+yn+MEN2QG28lJ5UtAx5T0S8m+u+5RCYwdiv00u3+bF0h0+V+zyV7nIlt+kLW4zkTRaWQyO7ppWesiecciid8evqb9GWzmipZ+wZZzSsEWLpJXwnCoQBhCNYnglcvRCZnyr4nQymMVKS33osC2wVymLKBilKCjRg5txIT6bQ7904nmTg1i0WrTLhtk16p0p2rwa3K8S7NklZR/Niascjbj3vUTsd41xcU/rhC6xrD7Pvocwjol2FcF8lasqEGzLZuyB/PSLOQnqeznDWwJ2VEJHQ9QhbXmLjYssJRjlhy55xy5wRL2WWC53lWMdf6EwWZcajCvIyRhlHaP2I0nBBxZ/Rt1Q8zWRUqvFk9x4X+y0GX2swLVeYKWWGUp0eW1yyQ5DpVN0Be+4prfkZ1WjCXmnIXv2IuCYR2gqeaeIaJqGiMqTGlDIaS3aSDrezZ+wvTrj1+AWtTzs4z+Zo3RhpliL4N0G5Ru7P7gAmZKZAgERfleglDt7OV3movc1z7T2OpTc59pv0BINhaOEJCo44p5LNqEZT2kLKgXrKr2zKbOgepXSElPksFgu+973v4boub775Jn91e4wnb3LXGX1m4nMdKGu12gqK1/twfBaXQc5wpVJpZZsoSRLj8Rh/vESYCMTlmDAMcRyH+Xy+0kUvl0tc18X3fc7Pz9F1nel0usrk9/v9lZe4KIqrru2qquI4zgpAZVlmNpuxubm50p4X2esC1GVZxjTNlVPLcDhE0zTq9foKrIv9LAB9vZfIer0asHJmKZgiiqJXZtKL9RRjWoB8Ae/ryoD1xoFFArn4ewHmxUxDYccIrCC+kNkU21kUiRYFqLPZjM9bPhfQ16OI16UPr08XFJrera0t2u023z6R+cj4S9STb7M4/t+sBj+O45WZfbHOYr0FYBWDuQ5r4snvw8nvr35XNONZP5GL9S2Xy7XW9QlZ5JHFS/CHEPZI1AmiPkRbm4rw+32cyYSg3ye+kdrATW3SZ7i1rMsvJEkiFSREtUQq6WSyAYoFiomo2aiVBhEqxMJPAn4B+YqZm9TqVXDKoH4BlG+ArOft1SQZxJsOgkkKaQRxmO9XsoRwBssRBOOXmf21QOHla3ft9RIilyQJmEkGi8xmHoogpijSZwP5v27Gvviiubi4YDKZvCJNUVWVZrNJpVL5qVM+r29LMRVWVF8XF9p8Pud6NOaFUuKP9V0UOSFQZX781RaL/9dfIWq2cUUFTnoInYBsmIGrw8cW/KgEgQSLOolYAWlBJo2R5CsUa4p1uKD+ToJ1R8DYVLF1n3rQYSPrsyMPcJijZgGikJHJIpkgEmQ646DC5Wyf63nzRoKyw2RapmH0ubP1nIPKMU3riu2NS95yPkHIQBmnaM8jrEuXSndKs3vNrc4RzWGXuWMz2SrjNk3cHZPFVy3Od5v88d7XeNK+S6BpbMZ9biUnNBggqgmZDnVjSFWcUPeG1N0RtfGYemdE/ckQ/SMP72NYnEE/0vidL/wMz772DsN320R/zsb4n6SUKgu8qUHSEbEvp7T+u6e88cMHvPm9HyNMQqaRwCKAeSQyjeDjKAFRyK0IM4E0TvBFgYUqESgyCVFeiKkrpCUj14HLOrEPortEn88peTOM+RJjvsQURkgCuZVYmq3YsciETwCSG7lUftLkMhRZRDEl7FrKZjvJW9IfQulehnYg0hF3eTHY4+xFnUfnFrNLiej3QqT/xxxn3GFzcozhP0et1tmslhEcE9mS0fcEsrdtprVf4HinRafdotduMWpUiOKE+tMTdj54iPV0jP38mHeUJ/yy5nKY9mhFI8qJiybGyGqWF2FWyAHczPMEkxmcFwD+GBY9GItleu09Jod7jA/3GH+tzfhwj9HhLsqByJ3kOW/PP+bns6e0lX/ORjqiOphifbJE+W9vAHwEzHkJ4MVEk0R+R9BurAhbdg7gW68C+LTuEFga2mRJdAPgk4nD+KTCcFGjF27SVXbpOvukgkT9OofvjdE59fCY94Qf8meMMeXqHG07Ib1tE/2yQ7DtIEUx1iCiPMkoLzKcxMdijDwKkT/2kM9mCKMwdzyZJCSTlGSckPRTwl6KIOUNd9S6gOaArWeomwLinowkqcixgDxP8V2dQdzkRXbAx+I9ngj3OBP26Uk7DMxNRsYmShaxnZ6xxxmH0glfVh6wJ/02u/IZbeOM3dIleilaFfSlN7rvcAb+mYB7LnJ9prK8zMjGCUKQouhg2nnhpSVlVIQENUsQHXDNG/j2oDOD5wl4KXiOzrxVXklP0ntVuJPrvpOGgRpllM+n7D69pnE8xLkaUfqn5yv41sYBcUMi2leJdiSiDZn0tojwMzGZHDHxJQbzLeaTMmkso2sJJX2JI7iYhJh2jLwTsFdySSMR39VwJybBTMNbWswXDmIQo0wjtEGMOfAoTV3QYWaUGasOJ5u3eL53i97dTSYbFeZGmbFcZcAGXZr0hQ2cYEpjcc3u8pTmsEvd7NCsnPFGQyYpS/iWhmuaLDUDVzIJMwVRSHCyOa3kkt3knMPJMYcfHdF80Mc8XqL2Y8RZhhDeFGAavARwA7KySGQa+DiMlW1O9fs8Nt/n4+iQp8ldTpMGF7GIX9pEyDI2kiX12GVL9WlqAV93rihlQyrSlNHpJ5iGupJMbG9vkyQJlUrlRrecsVy+VCIUMuCdnRktW0SRlZ/gC2AFeIIgsFgsGA6HqwY8wMpR7rPuyUEQsFwumc1mhGFIqVRiNBphGAaqqjKbzWg2myiKwvHx8SqxNRgMsG2bZrPJm2++mUs8XRdRFDk5OVlZChbstbe3R7/fx3GcV7ahAPuiuHQ9gw25NMbzvBUDFB7i3W539f9FJrqQPnue9xMNCddn0gtHlaKj6Lqbiq7rqwaThU3icrl8JRu/zp8FUMPLfitForoAe0EQWC6XhGG46vpdKEYKzk3TdLW9mqaxXC5ZLBarpks/bfncItGTk5NXNraILooTrIDz4lG8Zzqd8gv/4C7ztARZinTx+6TLIaQRQhaTRn4OmGmEmMWUTJUsCRGymMV0jEiMkCWQBKRJiJDGqLJAGvtkcUiaBKRxQBr5ZEl4A6tB/jOLEUkwNZksCVm6M9I4QLw5iKqqUq/X+eVf/mVs20aWZVzX5eTkhOFwiOu6vHjxYhUlFZW9r3ebfL0wtlj3egfP16Hys7LNxcW13mWqmC4pdFu2becHWCvhiU1i/SBvPGAfkhktImWTVNskVRs3vZInN485pC5kS8hCEOJ8nk5SfyI4EFQLrVQlQiXJBGQxw5RzSy9DKZ6DefPauPmbKWcYcoZ+8x5TyTCVl+/Nn+fvUYWYZw8/wp30UcUYmRhJzMe4Xq+zubnJ1tbWK1nx9eVlgAidIOJFmNJVTY4TkWd+zGM35ErSGCi5c0h6JcIAKkMXf5gRLBQyXwNXyKfnlSWIYwRphKiNUOsznDtLym8J2IcmZSel7l+xkfbYkfrUpNkNgKdk0g2AxzrjoJq7oNwA+PVkm8Gkjq3NubvxmD3nOdvWObYV4Ukm4qWAchSjncWYV0vKnSkb3QEHnWP2r88IVZXRVpXFloW7Y+C1TSbtMhe7Ozzeu8vcdqjFEw6Xp9xdPqciTkDLWBoGY73CwKrnDgLelPpoRP1yRP3BAPObQ8TvzFlMch/wiSDw+N7bHH35i0zeOyB9p4Z6IGJvzokDmbCrYpwu2XxwxZ3vfcLBd35EMvKYhyJBLECUIJARKgpRBmkcEwiw0DR8USCOE7IwBF0ls3Wiik2gmsSBgLjInVDsxRSLbOWEIgOZkHP2OoB/biGmJCKaEmZFYHMnpHEbyrdyJxTrFoyMDV4M9zg93uD61GZ6IRF2YoTeAnPUZ3NyjOVNWFZqxNUyQtlEM0Q0WyItqUyrNa53drhqt+nt7TDcbBBkKdUX5+x+8BD7wSXOJKSi+GzpPnvikN1kTDldoEs5gEtVEKrkEhQT/BRm87wIc3QJs3NwezD3Nfqt3dwF5bDIhO8xvtVCuKWxY/Z4d/Yhb8aP2Jcv2EyHeQb8bIlykiB11jLgRSfMGIpumAWAJ5bIfLvErGUzbb4G4DUHzzFRFz7hWGU2sZmObMbjMsNFnet4i466S6+8T4ZA4/qEjd4JjcUV9fia6o38xKm7aO2UZN8mbDskloYxmueFl7MZFX+eF16mS6Sxj3QyR7xeIkxj0klMMktJhwlxPyG+Tkn9m8x3Q0CrgKFnqCZIpowoyciZhOymCPOUSdDgStzlgXGXB+Y9jtRDuuoufXGbIZu4mUMj69LOztgXTzlUztiXX+q+960z6vYYsUQO3xZESd7p0r8Q8M4k5qcC7iVkgwTBSxGlG8tBMy+8NKRc8SNnEKQ5fI+9m6LLGJYpLAyFRauMt5O7niR3qnC3RnrgEG9ZKAjY3QWbz67ZeDGgcjHBvnYxr5eY/bzoMjUhOlCJWjLJpkRSF6ECkhmShjFDt8FkXCH2VVQ5xTJ8HMvFKblYlodqh/l5iUDgangzPZeeLFWSWIIUFDdC7Ufo/QB7uCBD4Lq0yUBt0LU3ebJ7j8t2i2GzxrzsMFfKN9rvLTrCNmKSUfUGbC2u2A3PqehjjNISoS6QVkViW8K1TFzdwlc1JCFBJr+XN9IBu+kFu+E5t3sv2H94Sv3xGOM8QB6miIsMMcrP7VcKMDVIA5EoNhj6GhdJg8fSbV44X6ZX+QqPwztcRXUGgcUkMrDkkLrq0lBdyuKULdPHESfMLj/BzkaUJJ/33nt35Rde3M8LecTTp09XQKmqKjs7OwRBQLvd5uzsjPF4zGQyWTXQqdfrZFnG/v7+ijNeB+0C7OI4RlGUVRZbluWVhWGROV7XOBcMEsd5hnw4HHJ+fo7v+3iet+oJMxqN2NzcvGnA6PLs2TMGgwHlcplbt26xsbGxkrcUenBFUTg6OuKTTz4hCAJ2d3f51V/9VYIgYDKZYJomDx8+5NNPP6VcLtNsNlca88K9L0kS2u32K17jqqry4sULZrPZaozW5dXFTL+iKKiqumoWuL7PURSt9O/rchRg5RqzPsu+zhnF79d5t+ik+rrlYhGwFEnh9YTyOqQXDAkvs/EF9BdmJvP5/CdYZ3Wf+zxAf/HixU/ozYuiwmKj1yG92KnBYMBf+kdNzoPNfAe+878giwMEWUVRDeJMBFFFkFVEScW0K3l1haiCpCCrBu4yQlJ14lQkyURkVScTFRAVMkHOH6JCmklk4svXCPl7cmHm2gRBEt0AfB4UGJqMLGaIpAhpSBR4yCJEgYs3n6wFEwFZcgP/RTDw2kPMEhQJ0tgnDrw8aEhCyOK1/wkhjVfrlYU8S62rEqoEopAgpDG6KpHFASIJQhaTREskUqS1xLIkSczn85WB/mKxQFEULq+uiLBAX/OCN2/84IvnegvixU1Dp5caeCXu8O/++s/xN/7H/z22KgIxAstYYBkJLGNYxmL+OhbxIlhGAl4MyxC8CLzifZGAt/Z/XiSwjGAZC7hhxtxPCBKJMMuPjSrEqGKCoAgkikBTTtgwJTQFsCEpQWTB0hDwdJhrAhNVIAUqs4TKGNRBhDiI6XU9FpFJNhRYhqV8Ot4GW5sgyz2WnKPvTqm8lVK+r1PekKhHXTaiLi3pmoY8Q8sCRCEhvfFN92OdSVCh723eaMC3uZ5u0x9vIIsRdzcecuA8Zcc6xTamJKpJNlVRj1O00xj9wse5WlBf6cCPUZKIwWadRbOEt23g7prM2iW6rU2eHtylV9ugksxp+5fcWz5jLzynEfcR1Iy5ajMw6wysGgO9zsQsY7ke9csh5U9GWN8dovxgRPZkjOenTEWBaSzSdZr0f+VrLH7uPuGbDdhTMLeWyHLEsmugHIc4j3ps/vAZO3/4Q8zTPmmcIqQZkSITCQJJHBNmsNBVlqKU+9MHAagymW0SVyw8w8lb0i981PkUazGjlMZoQEnID0kGJNm/AoCLAhgKekWk0YxoHiYrJ5TSHQgqFi8m+xy92KJ74jC5VPGvErh2MYZD6pNTbHeIX64QV8qIjoFmiuimSGLrTGs1ujsturstrvdbDJoNfFGkfHJJ68cPqX1ygn3pUVUCtjSfljqlxYhq5qFL0WcCeJDBbJED+PgKpqc5gLsLkVF9a2VDODnIm/JMbrcQbplUNl3eXnzMO9GnHAjnbKZ9agWAn74mQVkH8JSXEhQVUqOwIrSZbjvMnLwd/bTiMKs5uBUTaRkTjhTmQ4vJ0GEycugv6lyn23TVFv3KPkKW5QA+OqO+7FDP+pTVEWVnhrPhou9lue3glo3iBZSGM5zpjIqba78tlsiej3TuIXWmCOOYdByTzDLSYULaj4l7ue2gXM5131oV9FLueCJZEqIiIyGhBCBNE0JPpUeLx+otPjHu8lS7Q0ffoy/vMBC2GGZbqAS0snP2hdz1ZF85oyWesaedsWed0bKv0EtRfrzsfHIz8PKiy+WZxPxcxD2FuJcieAlSBoqad2V1NDBl0G7O5zi70X17MF3CPL7JfMsS8x0Hd+dGenK3RnKnRnarTLJTQlIlrIHHxrM+my9y1xO7s8DsLzH6S4xBLnyO9lSivRy+07pAVhEQyxFCGjF0q4xndYKFhgKYeoBjudiWi11y0Sw/h1UFQk/JXU8mOsFCI45k0lRAjhLUYYTWCyj1XbRlyKhUpadv0FfrPG/e47i9T29nk1nDYWE4TKQKA2GDTtZknjlUgyEVd8yOd84W19jmArkSkdUFsrJAYKm4poWrm8SyjEKERIKSRTTTDu3knD3/lMOLI9qfXlB+tkDthCjjFMEFMSEH8JtCWcHJX6eBTJRauFKdnrbPc/MdHqnv8SS9zSP/kE5Qph+YeLFCXfNp6Es2dI+G6rKhe2yXIjZ0j7rqYsjJimOm0ymSJFEqlX6iFmw4HNJqteh2u6RpmhtZRBFPnjxZWfplWUa73SZJEu7cucN3v/tdHj58yIsXLwC4f/8+v/qrv8p4PGZnZ2dV1Fh8/usJqgL20jTFdV2q1WqONTfgul7I+Pr2TqdTzs7OODs7QxDyxj6KotDv9wmCgEajwdbWFkdHR6sAIggCfumXfmkF/8PhkDRNV3KVbrfLN7/5TTzP44tf/CJf//rXMU2T58+fo2kaH330EY8ePaJcLvPGG28wGo1WdonFYlkWuq5jWRbb29vYts0HH3ywGofpdEqn0yEIglUB6vq+rhd7FkFMAfXFOBaZ9yLhWhSYrv9/kfh73aWtKPBcz6IXQUGWZav1Qp6ZLwB+vVC02Ib14KFwnSnOm39tm8UnT568ImF5HdSL372uEXr27Bn/4B/9V3ynU2N5+sd4Vx+tdr4YXMuyVgWkhZ9kEe1IkrTSKhWFC2EYrooHIA8OCm3VetY6DMPV6yCMiFMQJJUoERAkFUU32dja4Rd/+d9E1S2CKCWIM4IoRVYNjk7PefbihCSTiFOBOBPJBPnGBuEmiLgJAARJBUmlXKkTxBlhnJEggSCvBQlKntUWNZCU/H/E/KcgawiSQiYoN8GFDJJ683l5IMJNQ6G8si1GyCKELMqfF0FCEiKSkET+K7MTrwYUYR6kZDFwsz2iCZIJcgkkG9Npkkk2fihg6xlVK6NmpTTsjA0nY9PO2K5mNMsZtVKGKoEiZshihixlKCKoEp/5XBYzhsMB3/ve9/LagAyiTCJMJbrWJv+nt/4sqS8i6lApp4xFkVKY4YxStAGIQ4FkCP5EwJuC6wokiYCmpchyiignLEoS1pdnOIcTKu0xTm3CRjagkQxoZZdsin0MYYkopKSCCCJ5EWaQ2xB2502upzt0p00G4w3CTOFO/TGHlcfsmKfUzT5oMklooJ5kqCcJ2nmAfeVS647Yue5w++oFzmLGqF5lumnjNvMM+GKvxKDd4MXhLc43tinFS3aiLnf9FxyEp2zGPSrpDC0OWEo6favOQK0zUGsMzRqjcg0xSCg/HmJ9NET7dITwYET0aMRilrJcJkgyyLc2Gfzil+l/4R7T202CHRO1GWLaLsuhQXKaoT8cUf7glN0//oDmh09JJZHoJgsRJSkLXcOTJaIkzQFcEkkdg6hi41llkkhCdH202RRrPqWURCsrQjW7cfbiJTsW/JjxsiHPq1aEApkho5ZlqlsJO3thXoh5G6y7IGwqnCzaHL3Y4uqkwvBCx79Kyboe6mBEbXKJs+gR2GXiioNUvgFwXSApacxqNTqt3RWA93e2WMoS1mWP3Q8esPnRM5yTCZU0YsvwaelzdqQJFcHDKAC8BkKF3JnBggCYzmHYfQngiy4sZzAzK3nm+9Zebkd42GZ6ewfhroXRSrmTPOMLyw+5lR2zlQ6o9cdY5/5NBjxFHGQ/HcBlQF2zImzZuR1hJS/EnFQcpjUHt2JBlBINFWZ9i2m/xHhUpudt0E2a9LVdBrU9hDTJs9/TS+phl5rQp6xPKFdm2DtLtD0I2w6pKmMNZjjjGZXZlHK0oJQtkcMl0sBHuZwh9vw88z1/Cd9JNyHqZ4jqDXzXBHQnwzAypJKEqMqISCiRgDxPkBYJ42SDU2mPD7W7PDbucq7tc6226UtNBjRxcdjMOuxxyr58xoF8xq54Rls5o22ecWCfUbMnCA5kzo3u24fwGrwzkcW5yOJUJLrOEOYxUpQhKWAYufSkpIAmgnpTojAP86LL8fKl48lSFJg1bdxWBb9pkxxWcvi+XSHdtcFWMScB9aMBW896NI4HlC/nOXz3lujDJVKQEO4qxHsySVMirQlkVRAqKaIcMQ3yosvlzEJIBQw1xDE9HGuBbbkY1vKl3/dSZulqLCcGwUwjCiTSVEQgQ51EaNchZn+JNfHwDJO+2aAv1zmu7vNi5y6Xu9uMm1Vcx2amOIyFOt1six5bWLFLeTmm7vbZDi+pK0M0y0dqQFbNSEsinmWwMEssVX1VfCmQYaQe7eScdnLB/uKEg6Mjdj7tUjr2UHoJ8iRF8PLvA1Ryn3bn5joTIA5k/NhkKtbpWfd5rL/ND/x9LrT3eRoeMkgqDPxcJrChezS0HMDz5y5VeU5NnqMlA1rNzRW7FFKLgiXWn2dZxmAwwDRNHMd5xYQgjmOOj49ptVrMZrNVRjlJEl68ePGKJKPIHB8cHHBxccEHH3zA06dPmc1mfO1rX+PXfu3X6PV67O3t/YRt7+v1fkVmd7lcMp/P2dnZWcFmAe+vc5nv+yvbwIuLC0aj0Ur3LQh5g5wkSahWqyuZR5qmOI7DgwcPuHv3LoeHhyvpaCGtaTQaXF9f8wd/8AeEYcgv/dIvcefOHSqVCrPZjOPjYx4/fszZ2Rm1Wo39/X2Gw+EqY1yMfaVSWUFt0bgnSRIsy2K5XNLv9+n3+6u/FZnrIphRVRVFUXBddyVlKYC48B0v4Hq9W+j6GBcwXUD+esdQeFmH+brkqNiH4v/X5bamaa7WDS8z54UPfOGlrqq5HKoI2j5r+VxA//TTT1/Jkhc7tq4TXgf0Irr71re+xR/90R8xHo9xXZerq6uVZ2aRZS+maArz+XXBvizL7O3trTo3lctlTk9PV1C+bmFj2zaLxWJlxVOsY2NjA0VRODs7W2mei2mie/fuce/ePSaTCd1ud1Xs0Gw2mUwmPH/+/JVtXTfBL5ZiXCqVCj/zMz/DD3/4Q1zXXUVwxdi8Hu0VB6WwJSoiKkEQVuNQyGVkWUaSVbwgJkVCkFRk1UBUdIIoJRNlgihDUnQEScWPEmYLnwzp1QBBVD7ntXoTOGi89c77fOkrXyOIRWa+yNwXmfsCbiDghXkm3I8Egjj/8lTk3DlAFPOHIECa3cBZCnEKcbp2YgsZIgmikCAJaT4zICQIksDIKOVfypeg+BlCBGEkoEhgaCmWnj8Mxcd0htj1EfbmlPJ2H7PaZ7N8RaU0oiQtEElJBAlBzF4B8Ot5k+6sSW+yzWDSYBZaHNaec6vymJZ1SrN0jWRmRKmOeg7KcYJ+HmJdeVQ6E5rX19y6OmJrdM3McRhvVlg0LbxdA69tMGzVONo/5HS7jSaHbIfX3PaPOYhO2YqvqaYTjMRHiDMyQcBPFUZCjaFYY6jU6Js1hls1QlPFejxCfzBEfDgmejgh/mAAVwvKTZ3ytkypIdN9422ODt/hcrfNYs9B3M2wGzNCTyU4k5Afz6n8+Izm9x6x+YOPELyQJE5YaCquIhNlGakfAhmpYxKWbTynQpJISIsAdT7FnM9wIh+VPAOukUPLOoCvZ8B/KoBrMpIjU96EnbZP4zDDvgFwZUegEzZ58WKbi5Mqw3MD7wqSro/SH1MedagsugQlh6TiIDo6hiFgaQmhU2Jeq3LV2qXb2qW3t0Ov3cRVVfTekN0PHrL90WPqj7vYfkTT8tkxPJranIqYA7ii5RpwoUx+DpZyNp4tYHgNw0uYncGikwO4l2lMDnaZ3LqxI7zVZna7hXDPRG0LtPQuX1r8iNvZMc3kmvpgspYBXwPw4GbACisZgTwle+MF7jd0prsOs22bafVlBnxadVhUS6SpQNhXmPdMxtclxuMK194GvbRJX2sxrO8hJREbwzPqi0vq0TUVeUjZnFCuLyi3l0h7EtGGhTb1cunJdEbFm2EnLkYaIC08pM4C5WqeF1rOMrJRQtqLSa4T4m5KFt1IT+p59tswMpSSiKAriIKIkkooiwR1keD7Gh1xlwf6XR6Z9zkxb3MpbXMtNukLOYBrBLSzU/alMw7kU9rCGbvqGXv6GfulM3bLVyh2nDdNKnTfg1z3vbiQWJyJ+JcZwiRBClJEGVQldz2xtZumO2I+3F58A99e3njHS2AJzBsW890Kyy2buO2Q3q2T3K6S7jtkVR1jGVE7HrH5rMfG0ZDq+Rir52H0ffSBj+JGhA2Z+EAm3pbIGjfwXc4QSzGLSGMw32A+tiGU0ZUIW8/h27EWmKUlcinObRUjEd/TWE4N/IlG5MkkiURGhhymOXz3lpQGLikCQzsP7i+1bZ5u3+estcf1ziaLeomFYTMVq/SzBl1hmziVqflDSt6U5rLLZtrFNhdoTkhaB8lJCWyVhZVnv0NFRSaXJwpkVJJxnv2OztgfnXLw9JjNRwP08wClnyDNsrwAU3itALOUn/tRoBAKZabKDpfGPZ6Y7/NIuM/j8A5P/F0u5irzzEbDZ8v0qUhTJO+Sg7pAy45pOQmbxpKyGiLL0iqjXNyDe0nK7xk2taNn/NmtjVUGdP09r8N5EAQ8ffqUUqnE3t7eKyqC5XLJcDhcwfJ0Ol1BYr/fxzAMKpUKiqJQqVRWbeELELu+viZJEprNJhsbG/R6Pe7fv4/jOKtAoZC6rkM75ID36NEjJpMJ77//PrVabQWIrydQCw7xfZ/JZMLl5SWqqnLr1i00TWMymRAEAb7v4/s+3W53pc/2fR/TNOl2u7z33nsrR5ei74yu63Q6HT788EPiOOarX/0qzWZzlT0+Pj6m2+3S7XZXzfsWNx20i6LRguUmk8lqvwvr4ziOV0Dvui66rhMEwSuFl/ASnqMoWrFikfwt1lnYIq67uxXA/nqtY8Fn6z1YVFVdPS/gWhTF1XoLn/YC8NeNU17vw1JYd68XosqyzOXl5WfQ98199PMA/eOPP15tePFzfVrg9Qx6luW+5n/0R3/Et771LR48eECSJAyHQ8bj8SsOIcUAFxfI6wWYmqZh2/YqwlMUhclkQqlUWv1PcVAhb3RU/C4IAjRNY3t7mziOOT8/X0Uvtm3TbrdpNptcXFysrCABNjY2qFQqXF5erga1KEoo1l9sXxEVtVotWq0WP/7xj1fBRrGsF28U41Z4hBbTI5qmrT5rvUtlcSIU+1Qcg+L3wOpCXq/mvri4+Ilul5+3FMdOlmV+4zd+g7/9t//2K0HF+nteRukCw4XI5UjkYiRyMRS5GAk3P0UuhgK9mUC9lLFTzditpzSrKULQZdx9iCHOMOUFuhyQZgK6afNtfp7vPt2DDL52d8if+WIPtTpFqPbAHmCZF5S0Lrq8QBIKAE8JE42JX6HnbdJbAXiT4azBJCjTtC+5XX1Mu3TCttXBNJcEsoF8zY0MJcz9wDszNrp9Djon7PXOCDSN4WaNxVYJb8fA29MZ71Y4a+9y1DpE1GAr6XMQnHEYHdOMu9TSMWayRIgL5yORzBNIpwLTwOE6rHGt1Bhs1Rjfq+PvllCOZ4gPxvDpCOGjAdb5gnrkU6tn1JwEg5Sj7A6f3voCp/f2Gd9rkB3I2M0FopDiXWgIz3zMT7rUf/CE7W99n3TqsVBVQjLSIIQ4JnEswrKDW6mSpDKS66MtFpizMXawXGnA9ZtTJuNlG/oigbvekl7IT4y8GDPLSDUFyVYwN0R2dgOa+xH2bSjdA30PxmmZZ8e7nB/V6J+bLK5E4m6A0ptiD7tU5h1C0yap2EiOjm4IlJSE2DaYNBp0d3bp7La43tuht7fDwtBRRlN2P3jIzkeP2H5wgjWJ2DIDWpbHpuFRkTwM5acAuADzAsCvYHYK8w74U/BDkfnOFuPDPSa38oLM2Z0dhPsWyp5MrTbji96PuBc/ZzvuUu9PsM5vNODdFLGf5UWY4c2AFdMIawCODkFVZbpr524oVZuJ7TAtl5nWbOZVm1iUCK8VZtcm467NYFKh7zbop00GZotRrY2chDTG59S9DrW0R0UdUbanVLZcSm0fcVdCFMEazCiPZ1QWU8rBAitbIvse4mCJcjlFGETE84x0lJD1Y5JuTHKdEk9Aqd74fdfAtDKUkoBoKEiyhJSIKH6GMk8RlxnjtM5T9Q4f6/d5btziSmvTlbbpi016wjYuDttcsifkmu89MW+2s6fn0pOD8hkVe4pQzqUnYQzhOIdv71JifibiXQKDGMlPkYRcemKouee3pYAm5fWufpLrvUfeTZv5wvGkYjDbLeNtl4maJZI7ufQk3S+TbJnoUULlYsrm0x4bL/rUz8Y4nTn6IEAb+mjTkKgkER3IpC2JZEMkq4JYSRGcJHf9mG8xnVdIXBlVTCjpHo7hUrbmn6H7VlnOdfyxRuiqJJGYnyxZhjqMMK59Sj0P1QuZOGWGRp2+WOdJ/R5H27fo7G4zalbxSiXmis1IqHOdNRmnVcrxhLI/wfamNIMr6vIIvbREqSZIlYTEAc8yWZgWnmaSSQIKESIpUhazmfTYi89p+6ccdI/Yf3RO9fkU9SpCGaYvCzAlEPT82sLJpShZIhCFGl7m0BebHOv3eai+zePsPs/T+zx0t5gkZQIMKrJHTZ1TlRfU1QUbmkdNmaMGXUrZCCFeUCqVOD09XUlMNjc3f8KsIsvy4vGFpjMzLP7Ln/tlxpaNkKb8T//h/50t4WWScT0puO4oNxqNmEwmqxb1RWfNJElQVDWX1EYvW8IXicnCdq8A5yL5BjmkLZfLV5xCim1wXXf1GYVOOgzDn8jsFzruAjJLpdIrdWtFRr2QU2RZhuu61Go1NE1bSUU6nc5KpbBYLBgMBriuuyooLVxQxuMxhmHQbDZXDm/FeorgJE1TdnZ2VsEIwGw2Yzgc4nkem5ubKzvIQsdeAHZhObiuQZ/NZqv1F0nfoiatcJhZbzokCHnvknXOWtedr0uvi/EpAHydq4p1rrPtygDkJlO+rlkv/n+90VFhqbgut/F9/5Vi1XXXmGL7CjvKz+SzzwP0jz76aLWS1zVR6xC3LoOZz+d8//vf58MPP+T3f//3V1n0db3O+lJs6Gd5YMuyzPb2No7joKoqx8fHqyKDdZgvLp7idVFgsLGxsTpAvV4PVVXZ2NigXC7zzjvv8OzZsxW8A2xtbfHmm2/S7/c5PT1dtYAt7HCKA1GcDLZts7e3h2mafPe7311dsEUQUhR+wst2sEWhaTGexbRIoVtbvyCL4of17qrrn28YxmqKqLBGer0R1L9sWS9y/et//a/zN//m31wFPT8N0F9/vf7e4rkfZnQmObyfDwVO+xk//LTLp0czFoKDvGlQarrsHjxn5+CS3YMerfIVZX2CLCbEyEhSQpioTPybTpjzLbqzJv3pFsN5DuA1Y8jb9QccWM/ZNs8oOy6+WiIcq8gvYrSTGx14Z069O6TdPedW5xgpTRhs1Jht5jrw5Z7JdNfiqrXBUfsWvmOzmQzZi8+5FZ6wHV9RT8eYiYcY5TqONBNJfRCmIPQy4qOMfrdER6vTa9cYv1ln9mYN/14VYbBE/GSE+mxC6XLOxmBKcz6hli4RR5D2Mq6yGh+892Wef+ENJm82Se/oWC0f0/Jwrw2Soxjl0wGlD45xfvAJyourvBtmEJLYJmHFxrOrxIKOuMwB3JiNcXz3FQAXb6bui+z36wBe1BMiCHkmPMtIVQWhpKA3ZDZbEe32EucOWLfBOIRA0Xh+tsvZUZ3r01LuhNKNkHpzrME11dkVkWERVxxkW0M3BRwxIi5bTOp1Oju7dFo3EpS9baZ2CWm2oPXBQ3Y/eEj7wTPs3pINPWLb8dk0PSqqjy5/NoBHIsxdGFzfSFBOcgBfTiFYgl+tML6VF2FODveY3d1BeKOEciDjbAW8E33K/fAJu2GH+mCMeb5EPkmQXwfw9akEgZUEBQ2isvwSwOs2k9KrAB4oKkFPYXZlMuo6DMYVBl6DQbbF0GoxrLVRY5/G9IJa0KXKgIo+plKd4TRdzL0IuZ5hjhfY4xmV+UvttxZ7iPMlytUcsesRzzLScUrWj0i7MUk3JepnSEZedKnWBAwnRbNANBVEVUZKJZQgQ12kKF5MEOmcSXt8qt/l4Y30pKO06Enb9IX8obNkT8iz33viGW35lLZ6xt6N9KRVvUIuJ2TlXLsdzCE8B+9cYnYu4p0JJIME2UuRsgxZAV2BkgaWCoYMsgBhAvPC79u/8fpOwTVVZrvl3HJwq0RyWCW+UyM5rJBtWyiigNOds/Gsz9bzHrWTEZWrGWZ/iToM0MYhqSIQ7ikkuyLplkhayzPfUiUlVjJ6y01GsxrRQkNJUizVxzEXlK0FtrV4VfftKixdDX9iEE4VklDOPasFAdFLMbo+1rWHNfbwTIOhVWMk1zgx93jUfJPLnV162w0WDRtXK62y371sCzmNqQVDrOWc2nLEZtKlZLpoto9US5HtMM9+l0q4hoWvvCy+FMjQ0yWt6JJ2fE7bO+PW2Qt2Hl5hn3go3RhlkiHMXyvAtF9aEKahgB8ojKMSZ8kmj6Q7fCq+xQvpDZ6lb9IVD3HFGiBQU3LwLotT9LjHQU1guxSyZQbIfpf+dd5NsZAmFPfEghsKiDY3t0g2Nniih4xtg2BhsdwxmJs2fXmDkWMTCzJKHGO7CyYlh0SSELOUv/b//M+oTsYrkCq6Tb6UV6QcBW0ufnab5Xub/Px3H/Dhjyt0xEN+zf4ulrzkPzH+R0wo8VeD3+JL8UOCIAf1zc1NHMdZeXkXM+BnlX3+pPoWXx4+ZL//FHipdS5m+TudzgqyC2OI13XPhfudYRgreNZ1fZV0LApTC1AvsuNRFFGpVBAEgSAIcF2XTqezsmscj8dMp9O8W7vnMZvNmM/nK8tEXddpNpuMx2NqtRpZlq0UC4PBgCRJqNfrmKa5Ckh6vd5Kc76xsbGSfBSue0XgUdgTFhnpgtUKqC2y4kX2vAhu1jmpYL/C1aaQG3met3pdcNt6Eeh6gCZJ0mqsXpe6FI4w6zaM61y2zm0Fexa1gQX0w0snQFEUV/1XClDv9Xo/lc8+12axAMFiWY/oikF5fZpgsVistOMFNK63SYVXwfGnOaMUEpjCeq8oUgiC4BUZSbFd68+LKHM2m60OUnGgfN+n0WhQq9VWB7UYzK2tLW7fvr0KAopKbcuy8H2fg4ODVRFFmqaUSiUODg5oNBp89NFHq8iw2K8imi3GcT1CK97zujZq/UCv66MKiF4H9uKiWo9MX5+l+Jct62O/WCxW+/56vQHkUeZkMiGMcm9PSbxxn5EkFE1FFG4iTwFcOWBZW5BtXlOSetwWTzn4Kxf8VXGCJOXdMFMx10gKWUYv3uSTqy/QGW8zmG4yWDSYBFUUIeRO+RF71jN2zSPuO99F2JaJkxLqaYpyHGN8ElK6WuQ68G6uA7fdOaNGlcmGjdc08fZM5u9a/HjnHv/f3T/LpF6nwYx2fMlhdMJOfMn76TAHcDeDWW7nlwXADIQhpKcZ7sfgPYVhqHF9v87gjTrjtzYIvlAl/h9WEDJQn0+xzqfUu2Pu/ePn1B8MUY4CklHE0svoShafvvUz/N5X/gLT93eJ75fQ9lLKtSn+VMM/BenJBP0fXuB8+yOc73xMTVIIyg7zcp2lrBP5KqpZx0jGOESYcw997mEK14jkAL6eAU946QVepMGFdQBXZLKSilpTqbVS9ncX1A5TrLu5E0pqJBx3Njl5scHlic3DSxn/dxPE3gKr36M87RBr1yTlJVpZY98ARwiIdyym77W5bH2D7m4rl6Ds7TCtOGRLn50PH7H//U9of/8R71x9l19SYppOyIa9pKz5GEqMrGeI765pUy2IZZh7cHGd2xBOPoTFVQ7g4RIiVWN6sMv41j6TwzbzX9iBNx2UWwpWM+Ku8oKf9R+xGzyk0f+THMAfJMh/cCNBeR3AI34CwONNiflOiWnLYdbIJSiTSplpJQfwpaGz7GnMLk0GXYfhiyqDZZ2RsMXI2mFYbaNGSxrzC2pxj6o0oLYx4bB+ibP9Jxi7EVY2xxnOKE+nlBdzyuEcI16i9JZIDxbIV3OSUUoyTcl6EVzHxN2EsJu3904K+K6k6CUQLRnxLQXxzVz3rXq59EQMMgb+Np+Kb/KR+BbHaZuOvENf3WLQaHIttvAoscMle9IZ+2LuePJV9dNceuKcsV8+o1ydQSU/PqEL4SV45yKLY4nBmUi/JyHMMqQ4RVZAu3F8srWELSVBESGu3FgOujl8X4dwPAdXzYsu57tV/BvpSXKnTnwr131LhoQ98Nh82qP9vE/jZEjle48p/VMXbRiijkPIMoIthWRfIm0KpHUB4SBDLCfEpYzLsMlwtkEw0xEjMOUgz3xrcwxxQVlfsrFxDuY58VLCd3WWU41wouGNdNy+AWIGoYA2DLG6HqW+h4XPuFxhpFp05Q0eNN7heOsW1z+3ybhZxStZefabBtfpFsvUoBaPsP0Z5nLBRu+aDemaPesEuRKhVXwyR8C1DRamjacZLGSDEAmREmKWUkrm7EVnfCn8AfvXp+wfnbD1qId5ESD3E5RxCi6IKaDk+m8c8iY8FUgMEa+m0VkadJR9Hstv8olwn+fxfZ5N36QvtXGFCqqyxJIGlLIRVjqkIkw5lB7yc/ZHvNEykcMRtl1a3YMHgwGVciWH8TRDdyw085CgXGFmWIwUlZFm3PzUOMkcLgQHoZKBklGKPDRriSb4NKIFpjmhLAw4F7cxZB+RhP/9b/8Ay/N5ppv817u3uHXynPuqgnPnzmoWOpMk5obK3NDpSyrfmu/wabaJuJOSHsv8wL1LWDJAFnim3sU0IiapAQj8wPo6/059hvlr/2/ulz7k49P3+a3/qEKqlXBuv4nU3GdhVfmH9a+TiBI/rt3jP7N+E5101VGz0+mwXC7RaxqNwzqOX0ESpRXfFCCsqirz+ZyLiwvm8/lqhr1Wq6HrOpqmvQKehQwkDEMWiwWTyWRVl+e6LvP5/JVZ9uK+X8CjIAhMp1OAlbSl4LECaAtFQxRFeJ6HZVkEQfAK+wCvzBoUFo6FlWLBkL7vr5oWRVGEaZorMC6SrUUgVejYC7lKsd9BELyS6CyYpdCnF0xZyFCK7PzrVoqFZKUIDoptL7ZlPRld8GSRIS/2PQiCV5KYsiyvuq5mWbYKsoqx+LzlcwG9+NB1SFuvFn59SdN0dVIVkVwRNRXL60C/DohFBFgMYhRFdDodLMtaRWvrO7S+nuL1+vZ6nkcYhui6vtK2j8djDg4OVtv6/v/gFj/7v77N/Czg4v+Y2+r4vk+pVFp1PdV1nXa7Tblc5vnz56txUVWV3d1dyuUy1Wp1pXVf34bXJS9FhXExXsAr2qT19xXjvQ7IhT3Peoet9fUX0d2fJnu+vhRTaOvTL+tLlmV42Zjv1P5LzmoJnXCPN79rUt94BAcvuDa2MNIALYsRxRDEjFQQbwAwRRQEBATUJEH2M8Q5MFJYdCQeGvs8rb9DU+3y9e0/obo3Yp7aSOegHCXoH4dYlx7VzoSt69wPfHPUY1ouM96s4G6ZLHd13J81OW7t8Iftr9Pd2KAqzWnFHQ7iU1rxBW+njyilbp4B79wAeAQsMsQRJBfgfwruE1hcwDzMGKsKV/e2mL9ZJXrDJv2NOum7dbKahnk+o3Ix5PaDPs7ffUbpoyHihcc8BncJi1Th+3ff5uIbv8jw127hv1lFPRAob83IYlhcKGTPPPTf+pjSj56if/ocBAtRLSH6IZq3QF9M0aIMK/TRlj7WdQ8J4LUMePFzsnbY13XgqSyRWRpyTcPZhnbbY3svwLoD5m2QyjGXgzLHz7fonDj88bmK/8cp/KaL3h9QnnRIlTFxOUW2x7TMHMCTTZPpmztctr6WA3h7h95Bi3GjSuoHbH38lFvf/TF7P37GF/7pv6BKQrMa0Sj5OEaIoUbIOohvg/B1XgK4AgsPLvq5DeHkI1hcgjfJATwRRNydLUa39pketln8pRa8bSPfUjF3Eg5KV7wfPGZveUyj/yPMiyXyUYL8L14CeBbmrqOvALhEDuA6JHWRxY6VA/iGw7RkMynnAD6r2iysEsuBzvTSYNhxGBxXGC0bjKVNhmaLUbWFFrov5Sf6iI3NKbc3ulg738OpLKjN+3nh5XxK1ZthJUuUcIn0sYvy2zOyfkg8zaAfk11HpFcJUTfFW4BSy6UnegUcOy+6FA5lpFsaciig+gmam6D4McvQ5tg95CF3eZoecCrt05F2uC7v0Ku26Ak7WCzYE8/Yl/Kiy68pH7Ovn7JvnbFfOWO72kGuJqTGTbOdq7zZzuJSYv4jiScdkCYSYpi7Wqk38G2pKXU1RZMgMWGp5F7fkyUMlrB0wRVF5k079/tuOkTbNvHtGvGtGum+g1hWKE0C6i8GHD7v0zgaUH14jPPNTzCGPsooQgwTwopCtC+TtgSyBvAlEJ2UxIm5FOoM5hu4sxIsRXQxxNZdKsYcW15gyR7VSgdudXLd90JjOdcIJirRVKY/rCJQJs0k5HmCdb3E6rpYnsesbDM2q4ykCs+sOzxuvsnF/RbDX2wwr9l4msVYrDLIGgzSDUrJnEo0wfQ9SosJm5M+DaPHm6UHaNUAxfYJnCL7XWKp6UyEEi4aAhlKGlOLB9yOntNenrF/ecL+kxNqz6donRC5nyLPMvDyeAGNlV+7YAN1iEsSbqgzSKucCG0+kd/iifQWz7I3eLq4xyBr4gsmmjqkKs+oyjNK2ZiqNOVnxA+oiN/EFsaoBCt4Ke7JoigiZiKZV8O3HaYlh6sMeobNtV0nrDdwbYe5aTG3bBaGiRZFmH6AmgVoYoCq+ijanIo6pqalZDKEksZCKLHEIEXCR0RHpMQCM/YIBA0xTXm+mDIXRC6DALE74fv1N/he4w2CpMIy0Al9jXQpkY5E0kDKvV0F8qnDU0DIwBNABCkO+fLGd/mVgz+kt+HQrFxyxzqiYfYoqxPmWZn/lfu/4+Tfu02SSpSCOdXYpRy5eQIqTZGzhMH1NZqY30tns1kO2k0Z8TcixlIX94MZ5nfKK4Av7uGz2WzFRIXtXyEvabfbjEajV+7ThmGsOKrwPo/jmH6/j+/7SJK0Wk8B2oWjyDrb1Go1xuMxwKq4dDqdrjqOw0upca1WW8lPDMNgOp2uzolSqbRSUsRxvALtIltdZN8LX/VCFbDecX4dyIFVca6qqhiGsUpUFkGGZVksFotV1rqA80JWXcx8FEAtyzK2bROG4Ss8VviUF0nQdUZTFGWVhC3k0AXzrWffi4Cr+OxiPz9LmfL68rkSl2fPnv0EBMNP+nsXSxiGPHv2bFWY+ff//t/n7OxsFYEUO/a6zKPQ92xtba2mYYpoqgD3QobyOpR+7s6trb+IOmVZ5vbt29y/f5+PPvqIf/e3fw77IO8AFV+LJB2Z5x+ckE5E0omEe+WjRzb7uwd8+OGHjMdjNjfzanBFUXj33XcJgoDf/d3f5cGDBz+R3S+2ozhgBUSv69DWYfuzAo5irF6H/9flRcWJWBjxF+/7ly1Fwcav/Mqv8Df+xt/gvffe+4kgKk1Tvmf+53SNj/EEAyEDjQCRDCt2SQUBX9KR0xjFzzAjHdOv4PcNPM9ENCSEko9c9ZipMZ3UJLrIUF4kuQ78yr/xA+9z0DmlfX1OoGuMtmq4WxZuy8DdNZi0HK52W1w0tzG1gJ20y358RjvOLelK6QIhyotMMwTSRMhdAsYpWUcgfJSxeADuWS6BmGYivdRghkDQ1kjfqiD+bBO+UCO5VybYLlE6GlH99hXOD/tYnw7geEE8DPADSJIbX/a9Oxx9/csMvnwb750G4m0NZ9tF130WVxrhixDhyRjhaR/54RXq2QDLm6BPZ5TmM6wktyI0BVBuDlkB3uuPn2ZFmEkSiakhVjVK2xLbuwF7u3NKd6B0W0DeyBiNTY5eNLk8qTA801l2IL320PsjnHGHTJSJy2VkR8UwoIxPZulMNja5arVzF5QbAB9u1YmjmM0Hz7n7Lz5g7+OnbF9cUo1Dtsox9XKEY4ToWpwDePXVDHiiwGIJowEMLmF6DPNLWE5yu7s0g6BaYXJrLwfwN1pk7zjId3SMVsputcfd+Dn73hkbvWEO4CcJcuelBGUF4Cl5NrwA8BsNeGoKuNsW0x2b2abD1LaZOg6TisOsYjN3bBZjk+mFyeDKZjSuMg7qjMRcgjJydjCiBTW/S5X+Sn5ib3qYW0s2sms2pz3KsynVxQwnXKAnHpK3ROwtkDou8SSDQQzXMelVnv2O+iCVcumJXgPDyZBtEcFU8lmrWET3U1Q3RvVThFCgK2/z0Hibh+Y9jpUWV3KTntikJ+3Qvcl+t4SLFXy35dxycN/MM9/t6jlOfQY2hBGEPQjOBNxLidmZiN8REYYxkh/nDk030hNDgZIKupxfB0Gc674nXm436KZF0WWJWbuCt+0QbJVIblWJb9dI9ivQ0LGWIdXj0Y3l4IDq+ZhyZ4458FBHEZKXEFoSYVshaYmwBdQyRCdDdBLmusW122Q+d0jnEmoWY2seZWNO2ZpTMt1c912CTBAIFyreQiMYa0QzmSwQ8lbpgoCwFNCHPqWuizlasjR1JnaFiVrhUmryyca7HG3dYrCzwXirgmuVWMg2g6xOP9siS6EWjykFc7TlknowpCqMMEtLVCfAshdQznBtk7lVwtUtIkVZWQ8KZGiJTzPssh+esuuesd85pv3kEudkgXIdI4+ylwWYIjmAF/pvOz/Po0BmEVn02eS5sM8j7V2eCm/wLHuTp8ldBkmdNBOoyDMq4hRHnFIWJ5SFCSWGWMmQo4//iNuHbfb391fyk+IetswyprrJWNMZazpT02JulpjoRr5fdhm3ZJMKAqUgRIsCFHwU2UPTImQtQtJiUCCWZVzBYoGNSIKRLVGzCClLSRMRP9aIkXPpmKxABokvYozATqZMAgtvbBO4CulcJhnLpK5EFoov4VvNvwvENJ/B0bOQsnPN7a1n1Mw5zco1jcolO+VLmmaXsjZGkhJiQWYaOwzTDc7kPcZZjXnm4IkmkShDBmGiIg8SvvpfHHH78IDprsUfvpvizCLiS5PbUoeK6YGTEekBnuwRqgGpmeQdjQWwZjb7v3sP3/eZz+cr8C46fRYFn0VRZ6lU4v79+0yn01VHzgLOC6gtZCdFfVzhxV4ul/H9vKvp0dHRysml2+2uDDKGwyGyLLO7u7sqEB0Ohytte1FQWq1WaTabKyD1PI9nz54BuZViqVRarVMQBEzTXCVIdV1fBQVFp9MCZKfT6SqzX+i5C34UBIFqtboq4iz+vi55LpQHjuO8UsCZpukK6AsnwUKpUbBTqVRiuVyumhkVGfRCrg2s9PhFUFTYUxZsJ8vyKw40Rb1AISEugqdOp/NT2exzM+grEHhNe/zTliLlX+xMMeWxvhQRiKZpq4rZ9SmCJElWmdwiEikimte343WJzXpUt56ZL6KudZ3TYrFge3ub0R/FlPZU4kVG/Mc2S1wkRaT5s1WMLRm1ISI7ItlixpfOt4gGmwhzhXCQwUzGMGXGj4dsbW1xdXW1aoG7vhTbUpjpf5YW/6eN+zqcr+vWgVdO1kL+sj5985nHqvwWeBcQvdpiVpKkVYRbXCDrxyyKIliqCFqGJbr00g2qfogueNxaPuKj6rvISYI1tJCUHqdSjdnSRL6O0U5GGDc6cKc75F7nnMPuCQLZy0LMbRNvz2D2jRJ/1Po5LlstMiujlXbYS87ZTc65kzzHThcIETDJEG504CwzxElGeg3xc3A/AfcI5tOMSSbQS01miUAYBaRRiPLWBspf2ET+YoX0noO/abKMBPRHY8o/6mH8zguk/8uPoR+QLlPENCOVRDxB5NyqcfTVX6bzjXfw3ttGuqNT2g1xyjO8sUZ0AjwdIHzzAuE7DzA+OWJrMceOI1RyAFdvAPx1CUoKLLLPKMTMMjJRJDF1qOjoTYXNVszh7pTqYYx1B9StBG8Z8uKoxsWLKi8uDD7+RCD5Ax+tN8Yed8lIiMsush3RMKGMh2DpjPc3uWp9gW4rL8Ls77fo72wQABuPXvDGH/6Q/Y+f8IU/+C71wGPTSalVQmwzRtcTJAPE+yB8hRWAp1ouQekMcxeUyacwvwBvnAN4lkGi60wOdpnd2mPx89vwXgXxroHezmjVRhyIpxy4p2z2/iQH8OMU+Z8meQZ89hkADi8z4BpQBnfLYLbjMG3aTG2HqX0D4OUS02qZ2bzM9NxgeFlifFlhfNxgJG4xKLUYl5o5gIfXVMUB1eaYRnXB/tZjKtZ32V6e05z3qMynVJZzrMxD9jykD3L4TkZx3sTmOiK9ikg6CWEXEHP4FmsCpXKKWgbBURHrGtKbIqqfoXkxihejRBmea/Mgus9H3psca3t01CZ9fZu+tc212OJa2MEW5rnmWzxjVzrjK+on7Jv/jH3njL3KGc1GJ9dQA8EQwlPyosuHIt6FwLN+irwUkLIM5Qa8DSWjocS0ldyFIyjDQs8dT+YhXPu53/eiajBvV1jslPG3SiTtcp79PqiSbluYcULlfMLGsz73X/Spnw4of3qE1ffQRwHSPCHWRMKtPPudbYGwlyK8m5E6KWPb4NrfZjKvEs9llDjBUpaUjQVlfYatLCjrE9qbE1AgchWWCw1/qhKNFdyJjptqIAiksYQ6jbB6Hs61S4bLtFpmqpUZSlWe2G/wcOstLr+ww2inxrxm46olJkKVftpglpSppGMq8RRtucRwPerjAZv6NW+WPqXkLNBtj6CssCjZLMxSLj8RdUJEBExGmYMVL9gNLvlS8H3a/TMOzo9pPr3GuvCR+ynSJEWasSrAxFgD8BJkLfAqIiNfY6js8kJ9g+fWF3khvc2j6C6Pw9uM4xIyPmVhTFmaUs1mVOU5O+qAd5RjaqqLLS0RyF6RocZpykzVOFkmDL/wBaT3v8CTag235LAo2UwNi4lhslRV9CBED/w86y0HqGqAqodUtSl1ZUKiiPiCwVywSZBRsxApS29qeBTSTCNBJkhVlpKCSIYSCSSJiZsKJKlAuJAJRypxTyEZKCRTmdSXIBJu4Hv3ZfHMmpWUKoVslS/Yrl+yt3HCV29/F0v2UKQQtAzBylhQQkwSnGBO4svIfoY19zCHIU4QUPdHbAYD9MTno+o7BHKd+eU2hzWFzu2EWTVAFUJUIcUyBLq/UeZYX7BQfAJBpeFcsG0tkSYSSWqhzw2ccYXtQCMaxlyf9Eh+3SOqhGw/2FtBc9EiPssyLi4uVq52RUFkwU5HR0domvYKwBY1e2marpoQFU4yRTY+iqJV8ebW1ha2bXN1dbUKwIoM/MXFxSowKDzQdV3n0aNHq5b1BbAXXDIajVZSmMLUo9ifdWlJIf1dz3QXjFRknguGKWS3xaxAofMutOUF2xUy36LGoADjdYYq9PzFbEIhgS6cWQr1RzH+BR8BK/vvYpyKYGC94HSdPdcLTYtEbBE8FFLlz1v+VD7oxYd9FvCtA3Kv11v5fF5fX/P3/t7fo9/v/0RWWNM0ms0moigyGAxW6zBNkyiKGI/HrxRbrhddFv9f6MiK3xcHal1XVHzpwEutj6ZptNttWq0WW1tbeeRZEtEEnZ1mi36/z9nZGZVKZXUiN3e3kCopF7MTqgc2pR0NqZqhbUioDYHMTEjmGfMrn4sHXQbHU0bHM8Ync8anc0YnM0IvXu3/+ritVwkXB7f43bq2rDgh1k/s9fa3hWUlsJLA/MTsx5f/U7j31yDx4Pd+BfwuJAFkEbal8YX33uJv/Qf/Ad/4xjdeAf1ut8unRyf8b7fep+Y+5z8+/59zcbvN0zfukJ4qyKcJ1umS8vmMzYs+ratLbnWOKHkLhhs15ls2y6bBom0y37U53Wnzg80v88K5wy/L3+Srwg9pJxdspV2cZJ4DeARCmpEigp8hzjLSPqSn4H4E7vOb1ueZSC8zmcQSYRyShT6SY2A1TUqHGtp7JbJ9E19WcWOJpQ/SyRzrRz3U4xniMEAMUzJJIBIl4iQlSlMGpTJHX/wqg6+9if/2DtJ9G+Mgo9qYEAcS8zOF+JmH8uMLtv/599j+/ifoYYopgHYz5Cmv+oAXEP5ZTigZkBg6adlAbWq5DnxnzvaBR+k2qC0IQzg92+D8qE7/zGR+JRJ3ApTehNKwl99onQqyrWIZUE4XSKbOuLHJ5e4e3dYOvb0Wvf0d+q3cC7z+9Jg3v/UDDj58xO7FBZvejLqdUi0n2KUITU+RTJDKwFoGPNXADWB8kwGfHMP8/CWApykgisxbTaa39li+tU36fh3hnoGxl9FsjGlrnRzAu4McwE9T5MsEcZTB9DUAL2J9mTwDrkFmgN/QcivCrTz7PS05TMo2s4rDuFph4leYnpmMr2zGkzKjoMFQbjI0dxibW5jxnFpyTVUZUbGnOPUFVt1jM+7QXp7QdPtUF1Ps2EVNXKSph9hfQDcgGyYIvYjsBr6jq4zEB6UmoNUF9EqKXgaxpCBoMuJN0aXuxahejBokkEqcyzt8ot3lqXbAqbZPV92lJ7foSS06YpulYLIrXLB3A99t5Yx9I7cc3Kucsds4x6nPc7/vaQ7fy3ORRSe3HEx7KdIiQYpT1DXdt6mAqeZFw2GSNx0r7Abd9KbTZakouqyy3CoRbdskt2vEt6okLRtNgnJ3zsbTPo0XN7rvyxmlnosx9JGnMakkENSUvNnOjoBQzxCrKaKTEtkSPbHJcFYnnGlIQYopBZS1BRVzhm3OMV/x+5YI5hreXCMayaRzCeIMQYAklRC9DHO4pNT1ULyIRcViapWZSA5n2h6fNt7hxcZtBtt1JpsV3FKJueQwzOoM0g30xKeSTLBCF3kZUA6nVLMRpuVj2C7l0hjKGZ5jMLccFoZFoGjIQox8U2atJiHlaMJecMaed0p7dMLe8RmN5yOM6whxmCJPUsQ5eXNn5WUBZuGAkqYwX4j0lzrPlxV+HO3zUH6LE/ltjqT36ervkml1lHBAXXPZ1Je0qxlNM7jx/57hXT+mf/liVUwoSRKZZeHa5Tx4KDnMrRJT3WBmlZhbJWZmLjcR0xR5sUBPQwwlRlMDND1EVkNELSOTBUJJZUGJpWCiscTIfJQ0QkhSSCFFJpF1lpJGJIpISb6/WQqpIJCIAvFcIj7XiDoqyVAmm0tkoUCa3DjZILz8Mi0gHFDlgE27x07jnHbjjJ3qBRtWH9uYIhkJqSESqQqLwCZZSKheRClyqaVj6umIhj9kYzlgIxxQil1c0WIubuIKdWZyhZFYYmRW6Dl1ek6ZSUljKRkEgkqMgo+Oj06ISoqInsQ4QYq1TCkHEh0L+rZMGqfM/vv/Z5LLEXfu3OEv/+W/jGEYqKq6gkRN04A8Yzwajfgn/+SfMJlMkCSJe/fusb29jed5mKa5Kmwt9OUF0J6dna0Sg9vb23zxi19cdQm1bZvlcrlKmBZdNJvNJp7n0e12sSyLDz/8kG63C7DKLg8Gg1WWe3d3F0VR0DSN4+Nj+v3+SvfdbDaxbRvP87i8vGS5XK6cWVzXZXNzk1qtRr/fx3VdyuXyClYLB5ki218oCdaTuYXEBFgBegHHRV1ekdwtJDzrcpMCugVBWOnwi30pmKpYVxHQFExZyFnCMMTzvJV7YBE0FJ9byGPWGa+QEhXbXUhdCmeaosvrT1s+F9AfPXr0itj98wA9TVNOTk44PT0lDEPOz8/5u3/3766madY3ularrQ5QkbUtpmCKat91GUxR3ew4DvP5fDV1UUQu6/IRQRBW2iDXdVcXwrqLzPb2Ntvb2+zv72PbNoZh4DjOymjfdd3VPomiSK1WI0kS+v3+SvdUBBS1Wo3+uEdWilgqcz48+gHahkTtwKG6X6J6YONsm3jDIIf10znjkznTc5fJ2YLZxZLRyYxk+WoQU+xDceLAy9mH4oQqNP7FtEkx01BMqbyugecvPgf7dv4NGc3IBXYqSPrqLZKQoMqgShmKlCFkMUIa4MsiszdKyF+N+V/+1/8xf+2/+btsja/pVTc4q7Q5M3fpOZsYd3y+9I3vs3QMHkj3mC6qHCoXbNk9nm7eY989w164bKddtoUOfqaRhiLJVMQY+0gXMd6nsHiS+06PY4lrLCaJRBBFZIGLoKsYTRtnS6FeS7DtiMTUWAgabibjBhANAuTzBeqFizSPQBaIBYkoTYmTFFdVWOgarqzQ3zxg/JV3cb96l+ztGvqBSLU5Q5FC5pcq8nf7NH7nIza+/4TqyRWmH68g+6c5ocBLAC9uM7GukTgG8pZBuSXSbrns7U6wbotoexlpknLdsTl90eD6xGZ2JRN2I+TrCdagj5gmhHYF2dawjIxy5qFoMqPNTa5ae3RbLzXg/fYWrqZSe3rCW9/6AQcfPmTv/JzN5YSakVGtxpSsGN3MEI01AC+RA7gBXgCjYW5DOH6RA/hyDL6XS3tEwK9VmN3aw3t7h/SLdYQ3TLQ9gebmlB2zx553zla3fyNBSZE7CeLwpwB4xksA17mxIlSY7TqrbpiTksPUyRvyTKoVBvEGs3ODcddmMi4zDBoMlW2GxjYTfQMrnlOlR1UbUy7PKNVdqtqIHf+CA/+Yptuj7M8xMhfJ9ZBGLuL1kqwfwXUEVxFpJya6yohGIDs3uu8q6OUM0ZEQDQUxk5BDAX0Zo7kxSpAgpxlTyjzQb/NYv82JuseVusu13KInt7iWdukILcpMV/C9p+TSk4PSKXv2Ge36Gc2tLqKZ5kWXZ+CfCywuRdxLmbibIU4TxCBBkW/gW72BbwVkMYdvP8q7XE79G/jOwFVlZrsO83YVt2kTbeYNd6JbNZI9B9mUcQYujWd9Np73aRwPqVxMcLqLXPc9iSHLCEsy4a5M3JJh6wa+ywk4Aj1tg8Fig+XcAhdMIcBRF1TMOY4xwyp5r/h9B3OV5VwlGKukUwn8HL7TTIRAQJuGWD0Pc7jEtzRmZYepajMQGzwsv82jjTe42txhtFNlUbGZazYTqgzSDcJUpRqPceIZahig+CHVaIStzDFLHhVzhFF2CcsKC9tmbtq4ukkiSaiEiKSIWYoRL6mHA/b9E9rzc9q9E3ZfXFA5maEOEuRxhjTJO2AKKQgqUDTgcXIYjyOYLkQ6nsFTv8GPk1s8FN/gRHqbE/VnGFvvgKgguheI7jnC4hzRPUeSE5Lt+8jP/hm13r9gb7fJL/3SL9G+dYussclQ1RhIMgNZ4dnCZaLpeE4F166wKNnEioy2DNCiAF3w0ZQQVQtQtQhRjRFu5CaeYLIQcrmJmXl55jtJbmYtJSIUAkkjlBUyhLy3QwqZIJLJkCYCSUcmOtfJejLpRCZzRZJIIsuE/HgWOPEafCuST8Pu09q4YK9xzG71kg1rgGXMEc2UxBCJFIVZ4JB4MuoyphQtqKVjGvGQxnJIYzmiEQ6pxWMCwWAmNnClGnOlymlc50XiMC2lzDYazCt1EsMkkVQCNHx0AjRCVDJE1CRG9gKmLy7wXlzjfnJOdjllb3uHg3//36LuinzjmYAmq6usbyLAPz7+AX/yj/4J6fkQSZIIgoA/9+f+HL/+67/+ilSoyKi6rstv/uZv8uDBAxqNBrPZjDiO+cpXvkK5XEbTNKrV6koLblkW3/72t1fa8qLrpSAI7O/v02w2abVarxQuFo4liqJw+/ZtXrx4wQcffICu64zHYwRBWMlgCt321dUVW1tbvPXWWyuW8n2f58+frzjj8PCQSqXCZDKh3++v1iVJEo1Gg1KphG3bXF5eMh7nTjqFy95wOFyxWmGlWHiMF8WnhSSmYKKCgYpMeWH04bruytij4MKig2cR2BRa+wLOi3UWx6iw9y6KRAvILgKiIvBY960v7CmL8Sn4rXCwWbfyzLKXtpiWZX1uo6LPlbist5/9ly1RFLFYLFYnSFG9u649B1aV3PP5HNu2V9KKYnoBXjqZFJFLvV5HEHILR8/zVpnxdWvFdccZRVFW0y2WZWGaJsvlclV4EQQBs9mM8/Nz6vU6e3t7r0xnFAAOrAYSwHGclbtKYdgviiK24ZBGKfrSxv2uxB9/8MFq+7IsQ1JEKu0c1msHNrUDh/ZXN3nvL9+ium/jtEz8acTkdMH4bMHkdI7XjRidzJmdu4xO5/jTcFXBvK4NL07QIlteRHZFcFOc1IIgkH3wH8LX/m8w+B784V9CyPKIVJJl9g9u8+bb7/Or/+ZfoL1/GySVIIbzi2uGkznR7j3+0833+NnvfIcv/cGP+Fh6l3/2F/9DLhstBD+hteywmFlkb6R83/0yVz9qoh6FtJRLKhs+TaPPX2j9DlI3InseEj3xObmAue8zT3K96jwGN87Bb1E9IC1vYjg6NTtknxENr0uCyVSUmccx0bXP4HHIZBoiyAKxJBInGUmUslQkFrrOUjZILBncJcPdQ7p/5hvMv3QP4c0a+qFEeXtB1e+y9897WN/6JvY/uMA5vcaYzMmi9CcAPODGCYXXADzLiHWN2DYRNk1KOzLbuwGHOyPqhzHaoUAqBEx6GScvTK5PbR5d1PjxBztI3RnmcIAUhQS2hlwKscwBdzMXRREZ3Wty9Ytv0t3dpdfepr+/w/VBi4WhUz6+4N1//h0OPnzI+z/4mKY3oqbFlKsZpVKCZmZ5w9hbwPusADwzwAvhegSDCxg/gfkZeKPchjCOc7VIoutMD1ss390l+XfqCG+W0A4kNrem7JSGtMJLtq5OMS8f5xKU7ySI/+2NBCUAoYhYimY8RTt6PZ+qjyoys9ZNO/qyzcRymDg207LNqFajL2wxuzSZXJUYTSqMxht5BlzbZqr+/0j70xhL1jS/D/vFvp/95J5Z27236i59e+/pbmrIIYcj0h7PmBQtWQObtACBsA1IhgALEvxNhg3QsADaMOwPFLQBBmiBskhTEskZzpDDnh72vsztu9S9teeeefYtTuzx+kPkG3WqehbaDOAgs7LOEifiPSd+z/P8n//TwysWdNQhLXdG48GSTnPJg+L7HCQn3I2esxsN8MoVRhKhnoQoP4pQrmKU6wwuU8RlTnZekg2g0Cvpid4BpyXQmhpqW0fpuhhvKlhJgRXmmHGOXgrEQudJdsjH/ps8Me9wrh9y7e8yaO5zre1zoRwRKQ6HyimHN5Muj8wTvu79NreCEw7bJxxunRJ0VqRpBd/JKUSXGstPVZJzhdG0YJqU6ApYZqX7dg3BgVFgagWZCkkAK6NquhzHEEWwVlUWewGLwzbhboOk75MfNSnudchuNdFaFv4iofNkxP6TIf1nIzofPyf4J0u8cYw5TVFSQeaoJLsG+b5OuaOgvlugfLMkDeDK32KY7LBaBIilglVmBGZI017QdBYEZkjHO4Ptsxvdt0G0sEhmBsVUIzy3WJcmpaIhchU9zHHHMc3BClBYtAOWTsBMa/DMucNHnc/x/MFdRr/cY95rsPQCllqTUdllVrRpiAXNfI6TrdHjHHu4Zqu85o7zHN9d0AsGKP2SsOGy8Bus3IDYtIgVjQKbFbsYZYabrdiNr/jy4gccnrzg6PKE7WdXNE7X6HOBPilRZwIlurEjlQN4bmw+lV3IujqztMFZvs/H4h1+on+Fz5T7HOf7HM+PWGkd0HKwZiiMIb5GWV+gRKeo2d/DLP5LymKNolvQbCK2exS9Psk3/00ITFLnfwTDbxMeHvJwZ5+5rmFkOVaSYIkUS4swjADTymhaES0zpNQ1YtVmpfgU6BgixRQJRpkjSshLg0wYJLlJqlkoukAUKqHwWSkKwlQQKZRrleJCpzjTESONcq5RJiploVMIDaHK7DcvZSfy2qwldIMRB/1TbvefcdA+p+OP8JwQxSkpbI30Br7TyMaMUxr5soLv9ZjucEIvmtBPxnTzEQKVURYwSExmWpOp0eCx2+CnO+8w7e0ydFvEhkWKQYxTZb2FRYKBUBS0OIF5iHix4ACPN8sG7VSlmao4ywxzXSCKgr/zd/4Ov/dbv1UDX6PR4KzxhP/prQqesSw06+UgHEVRUL7/jNtGE+N+rwZP2VsH4LoumqYxnU5r1zmAO3fuYJpmbVIRhiF3796tp3m2220ajQbj8bhWE2xvb78y8FEmPafTKUIIms1m7ZiyOSXz6dOnCCEYDocsl0uAOsMtBwRJjpBa+Ol0WsOpzMZLe0OZwZY80ul0ODw8ZDgcMp/P62bMLMtqHb2EXqCWfkiJDlBLQTZtq2WD6SZbSrnKZkJZmmpId0FZvZDnSSZ15Wtsqg6kvn2TTeWgzM0+QslhEuQl9CuKUnvPb/qgC1FZSTqO84rK4w/b/kQN+h+mZX793xJ6oyiqoxEpvdh887L0kGUZWZahaRrz+byOmDY3GR3JzLWu67iui+M4GIZRL0AJops+4bLMICG/1Wph23ZtUSQjqTiOOTk5YbFYsLu7S7/fpyxLFotFbfEoyxmvN2VKMJaLJs9zGo0G3/zmN3n69CmLxaI+2XlaMHo6Z/R0XgcTm9ol3dRoHvi0Dj1at3y6dxr032vxxl/cpXXLp7Hvki4rYJ+8WNzIZqpM/Ow0ZHG2Rs3VetiBEKL+oMgvFCEEyunfQ5z83Zfn7eZcBr5fwXoeshi94Fl4XZ/DNE3xhMA6O+Y/Sj4i229S/OWvMjcMPt9t8AWm/Onv/btkTzJuq6D8f1zSSCE7D1mOq9HYq7KC79/LYZVBIaBrQdvXWLx9hNZzCcqEvckMa7SinMXMOWG5uCAbFChRQajAwtLJ8+p4RrpKaJuEhkXmGyjhmkLViAOfkb/F6L0vkH75DdR3+rjbBfujZ+w//ow3PvgA6//5T7HPZ+izkLIof04HHlM1tsm1LgG8ME2ywEP0Pex9i629jDv7M3Zuhbh3FISREU7mnDw3uHzucH7m8/TDNsr1Cmc4RksTUt9H8wW+M+UOa2wFJnd2OP9Xvsl17QO+x/XtPRaBR+vFOe/+zne5+9NP+Pwf/GO212O6VkazKfCCEtMVaC6ot4D3eBXAMxhMKw349LNqGmY4qSQo+U0gpKgqq4Mdos/vU/xyH94JMO/qbO0s2Qkm7BZX7FwOcc7O0F6UGD/JUf/xTROmBHB4aUkox9HbVak+b6gs9wIW+w3mNwA+DQLmjQrAB+Y+80uP+YXHeN5msu4znmwzNnZZ6B08saCjj2n6M4L9JVvGmC+k3+IwecEbyTO2iyFmvkabh/AiRrtco16lFXyf5+QXle47SW4mXXbBaQr0joLqmShv2Gi3qqZLK8wwoxyjEGhrGEUBHzv3eGLd5sS6xYV1yMDb41o/4FI95FLZo6XMKvjWKvj+qvOQI/+3OGodc9Q/YWvrGpSS9BLSFxBdqCw+UYjPNbKJ4Hido4uXTZeuAVtmwaFWVD7hHqxv4HsRw1UEa0Vh2feYH7QI91tEWwH5rl/rvuk7eElG+1nVdPn20xGdF+c0v/sp3nCNNU1R1yWlrRC3dbIDg2K3shvUvliQNQrGQZeBssN80aJYaphpjq+taToLWs4C115y17rmXv+61n3HS5NoblCMdNIrjUkWIFSVslRRY4F9k/1uhivCtsvSD1gaPpfaFh833+Px/n3Ov7DHdK/NshmwsJpMRZtx0UMrS1rlhCBfYWQpSljSnM3pa0M+531A377Eb65ImwbLRsDCaxBaLplhEKOSETDDx85jgmTOm/Ejji6POZi84PD0hN6LCd5VgroEfVqizSpPUlWlDiZFE5RAQTkURDs246LDiXLEh8b7/Ex/nyfiHsfZLU6iW8SFU0W4lqgCUl2tPhd6CWoBalzZq9gewvXAvYXwVBRXoXQKcEpwBYpXOYmo6wwzT2jqMxwzwrEizHfbaOaC0liypRmE+KwVF5MYu4zRRYpalBRCJRcmaW6RaialrqEgiPCIVA+hVnayItYQcyjOBeW5gjLRYK2T55Wso1B0yk343tTrAaaWsNW4YK8n4fuCXjDGciOEIygtlcwwmadNotjBSir4bok5vdWE3mBcQXg8ol9MMETKTDRZqE0ip8fMajFzt/hh920uvTYjt8lKd0kUmwiHRFikwiRVTFAUzLzESUqaC4VOqOFNUlqJwvL5Jec/fYgVFViGWfPHgwcPuHWrcu2oOEVhcWNOIeUhm+4cErSCIHgF7qRUQrKHtA2cz+c1JEsNuZSSwEtLQql/Pjo6YjaboSgKDx48II5jHj9+jKqqdLvdOsschiEAnU6nbqxsNBp11lpmoDVNY2tri+FwSK/XY7Va0Ww26zkqcp9lU+gmA0oDkPfff79+zc35M5s6eMl9pmniui7r9br2Jm80GgB1FlvaFEqHus1J65twnKYpmqbVTZfyXEiGkn+XUC25dDML7rpu7bkuhxW9bt4h3QMlS8om0E05jHyMPFfyvG/Owdm0yYYqUSyTy5IjZePsH7f9CzWJvu55LrdNl5HVavXKSZUp/U2d+OZY+06nU0/f2pzQuWk9IyMOz/PY3d3l8PCQ58+fMx6PX4lG/rAhR3K/pCOMbHyUXcbytdbrNdPplPPzc2zbptFo1B+QZrOJrus8ePCgjsw2rSdlFCUjKMMwuHPnDvfv3+dHP/rRz2vAN7ZNw/00Lhk+mTJ8UlkayYUoyydFmdPY8/D2LNq3fDq3A3bf7/Lur92mfTugdeiTRwWLszXT41UN8MuzNZPjJaOnM+bXq/r9v94TIAOQ1WrFYDB4Rf8v98cwDO64Lr5SMN+/VVUGFAUlXvKt/yJj+xA+uYZ1tiYpFDxTJVBL7ECHrk3Q1XlzEVGsS7JlRhhDuC4wf/icvKhsp+emVmm2U4hVQeTA2rRIdCjDBJFB1myQuy6lblEoJpPde6zf3idoCLrrMb3hJfcuLrE+/E20f7pCxPnPAXhONWkdblSOqopSlhSGQRa4FN0AY9+htyc42ptz63BMcFsg3JR4lnJ5VnL+TGN84vDdzxy4CrGHE7Q4JvObqJ6O7yw5ZICrlkz3tzn/2i/cAPgew6NKhjJrBTRPLnn3n3yPuz/5mM99/E/5lfWErpHQaArcRonp8ocDuFtNShxNYHgOs8cwP77JgK8hy24AHEg7LeIvHZD/xha808C4p9PbD9luzNgRA7YvR9hnP0N/UWJ8nKN+6wbA4xsJClQAXoCQGXCr8k0ufYXlns9iL2DebjB3AyZBg1mjwaTd4co5YD4ImF15TOYdxvM+k+U248E2S7WNryzq6ZeN3TkH5SVfT3/CrfQF94pndMsx2mqNchqj/ihEP4tQrjLEeUZxkZNeQjYD0azg224JzC6ogYl6aKHuqZhRib3Oq8bLvETLIb/WeGju8KlxmxfWbc7tWwy7hwyMA660Q86UIxIsDtVTDqXu266y34fNSnpytHOK64YkA0ifQ3IBq2OV9ZlOOSiZhCWL4qXu2zWgbZbs6lCWBYkFsVLJTpYpDJNKerLquiy2mywP2qy3gpuBOy3yO22KvQC3LGidzOg9GnL32ZDO8YDWjx/jy6bLVYEwIPU1kj2dfE+DbQX1zYKiVTBsNBgYu0zDDvnSQIsKPDWiaS1pOQsa7pJDa8KtYASHkK81kpVJPDdIxwb5NSxihzkupaqjpGCsctxxxNZ4RuJbLJs+K9urbAftN/mk8x4v7h4x2uuz6DdZuA3mWpNx0WNduLTLGUGxwM5i1KxAH2X0iiG37Bd07SFb3hVKtyBqusz9JkvXJ7IcclUhQuOUfbSywM3WtJIJX14+5OjshIPBMXun53RO5ljTHG0h0Kcl6rxa06oMJgMJ4FUmPM4spkqbM2uPh+7bfGS8x6P8LR5Fb/F8dY+0tHC1NaYSYpYxepGCkpObBZ3mQ+gW5C2dvO2R+B6p75K7FhgqiBxFBwwFJcnRkyq36+gxtpViWxn6hrtJhEOo+qgUeCLELFOUUlAInQyDtKx+5pqOphQkwiLRrEpykqmUkQpLKKcq+mWGflki5ip5apKWDplqkqs6paL9vOzkZjO1mN3GOXudc25vP2W/dU47GGN6KYotKCyN1DBZZE3CxMNMM7wixCnX9Fdjetdjuusx/WRCLx/jsWJFg5XeZmG0mNtNpm6DnzT3ufb7TLw2SyNgrXhE2KSi0ntnSiWpsfISPwN3UnDx/U/IXzyilWvoFxOykwG3W1v8T/61v4Ki6PW1e7ms9MRPriKGqwxzY7CNYRg1xG1W8GWVf/Oa/7p8VMoYJChKB5DNsfKbemnLsmq/ccuyaLVar2i2JfMMBgMWi0U97AeqyeWffvop3W6XVqtVy2/X6zW7u7s1gC6Xy3pgUbPZRNM0ZrMZSZIwmUzqEfPz+ZzRaMRyuURVVXZ3dwmCoJaKlGVZZ4bDMOTx48f0+/1X+GATZG3bJgzDVyQjMpm6CfGSKcIwZGdnhziOa1mMTOBKvpLHUB4/KWmRzZ0yYSsz75tT36VTiszUy/2VXLOZfZevXXPZTU+fYRi1WkJWDeRjXp9MKtlRSrelfTVQ+8hvyq3/UCOPje2PBfRNWH7dtm/zicuyrKdRyQhhc7jO62UL3/frBfp606SMgGTq3/d93nvvPRzH4fT0lKurqxqwJTBvRkByMckGDJnJ35zKJQ/abDZ7JRqTAYTjOJyfn9NqtfjKV76CYRgsFot6eJFcdFLkLyd8yWMjbRhfL5nI7fWg4vXFLiNaoD4O05Mlw2dTnv1e+XPnQNVUWvs+7ds+raPq1nuryf2/eEjr0KN56FGkBdPjFZMXizr7Pj1Zsjhdo68dxFphNpvx9OnT2jdenkeAw4MD4k8/Jet0yG6Z6H/lGvcnI5Kn97B/cZ+zVYr6toP67hFiOSWdxoSfzciOl5ifrsgFLBRIVchKSBSIbJ24oRELhXydIfKSvBNA4KBYOtd5D3O9xl1NEb1djJ0WrikI4iXudIo5mcOzTyl//9VmzJxKUQGve4Hr1YWyG6Du+bT2FQ53Qm4fjugeRRBkpKs544uU02dtRicuH327yYdXJuZohr5ek3pNFM8hcCJ2xQRPyZhu73DxpS9ztn9QDeK5tc/g9h6TXpvm8QXv/u73ufeTj3nvd7/Fnw/H9MyYoCHwAoHuUbmgHAJvUzdhChfiEsbTqglz+qyahrkeQxy+BHAVKG2b5Mv75H9pC/FeC/0Nk+5BxHZrxjZj+ldD7LPHaC8+w3iao31PIBZA8hqA5xsAfpMBFw6s9jwWuwHzboOZ22DqBcyaDcatDhf+EbNpk9mVz2TRYZL0GSdbTCZbrE5a+OqClj2lESzotobcK075s9k/5075nHvlU/x4CosY5XmMebpEvUjgBr6zc0E6AmGB1VOwWwKrA2rTQOkZaF0b4w2BHeXYYYaeluiAOoazmccn9hs8NW5zbh8yaOwz7B1wpR9wrh5xxS5tZcqh+lL3/RXvUw6Df8xh+4TbO8dsda7J56KC71NYX0J4VgFquSw4TUtMfWPYjgl9vbKUScxKDrWMqyrSJINYwMq3mB82WRy2iHYaxD2f4ujG9eQgwDJVWucLuo+HvPlkSPd4QvuTF/j/VYgziTEWVekjtyHeMch3dYodBfWrgrJVMA0cBt4u47RHsnRQVwJXRDTMJW17TtNdsmOvOPAfwr7UfRvEC4t0rFGeKYShTlQG5KoBhYoeFdjzhNawkp6sOh4r12Op+5wZ+3zU+hxPdt/k/E/tMtttsWo0mFktpmWbadHBKde0yhlevkbPcsoQvOmaO+pzvuj+lD3jBL+1JG3pLBsNFl6Dpe2TmiYlOVMCpgRYeYKfrdgOL/jq9TEHkxMOr4/ZOhvQPl+irwTarJKgKMuquqMYgEPVX9FUUNoCOgqr0mVgbPHUvcvP7Hf5hLd5Ed3mWXiPs/A2QgPNXqFqC4xihqON8O0hre1v86W/cEFgrThcvIBxSNTYYmZ3GWjbXCh7DNVDlFLgpBFGmdFUYyx9jmmlGGaGYghKQyVRLVYEFIqGJ9ZYIkGjQAiFBJtMGKTCoFB1FEVQorFUGggBIlcRkYoaqTATiEFJfqaTXJuka4dSmKApoIvqp4zWxcbtxnbU1iP2G6fsts856D5mv3tJpznH9NJqHoClkeomy6zBMvPR0wKzTLHzjN5yQu/yRvcdj+kVI1piQYRD7PRZWR2GqsPQ8vh45w2GwTYTt83E7BAqHjEOqbDIMMkUHSGAVBBnDtbFmtbT5xjDMb94+wHd0sBZ5XipgqooBEHAeDzmW9+6vIFDjVw0KPerGSYSpOVtk2skVEqIfd2AQQK3hK/XnTleZ6FNKbC87supoFIC4vt+nXiTyUtpMS0r8oeHh/VjJpNJbZwhmzcfPXpUTyuVdoqmaTKZTGots+u67O/v0263CcOQLMuYz+ecn5/jui6DwYA7d+4wHo8ZjUY1Z7iuS6vVqmfHLJfL2mpQZrqvr6+J47geNCTfy3q9rlls01pwU0EhmzmlrrzVapHneT07Z/M4Sw33pjmGbKzc1O/LHj0p65FSGTmsSQYKkgFfnzkDvOIiKLlOgrSE89cVHvI8S5WB3Gd5TBzHqeXFUtEgAwsZDGiaVlcU/qjtjwX0P0zK8vomyzwyYpCyCgnbcvHL6MOyLN577z0uLi7qKG3zuTdtCKWk5cmTJyiKwmQyecXcPgiCVzw/FUWpoxTZfbxer+t9k88vgwD5wZUG9GVZMhgM8H2/ntQ5Ho/rzml5MOfzef0FMJlM6gU9mUyYz+c13L7+xSDfpyytyA+nPM4Syjc1TJsTtV4/J7W8pyiZnCyYnFQae+mHKi2ZsjzD6Zk42zrBvlMB/JtN3vpXD+ncCmjfDhAFrC5j8jHoa5t4WJAOSpJhQTIqeeP7P+XOT36CAKb/1tfw//4laphhPv+HmJdrtKQABfJ/dFJZuQFrQ2FiaqQNkzQtEHGB0rCg6SFMm7nlUGQCZzLDZ4lXFCiLAqMsMEXCvfUQNUkpBOTzEcXVyybM+Oa2aUVYahqp55J1G7Ab4O8b7O1F3N4bs384RW/nROGC5WDN6bOU0YnHix8YPP37bYyhhh6G5G4Anotv5/S44o7ImPa3ufzcFzg5vNGAH+1xfeeASb9D4+ySd771I9784c9479u/z044pmfEBI0SJ+AlgO8B93kFwBNgPIPxWdWEOX8B4ejnAVxRVfIv7pD/qzuI91tob1q0D2P6nQVbyoSt6zHW2Rna8QnGaY72kz8CwDMQWvWpV2zAuZHC7Dgs9qtx9FO3wdS9AfB2l3P/FpNVm+l1g8myzTTrMV5uMV1tsTpvEGgLGu6MljNly77mneIRt4vf4S5POcyeYYcLOIsxz5foZ2uU84zyPCM9F6RXkJc30pM22G2B1tGqUfNvWui3BHZYYIdZ1XQJaEsIl/Cpvctj8zbH5m2u3UOGrQOujUMutENOOSLDqLLfN37fR84Jv+BX8H3UP+Fo6xQjW5O+uGm8vFRYfaqSXqowK5klBaH2quNJ1wDISBVIHFirlePJMLrRfds68/0mi6M2q90GST8g3w3I77bJbzXRfYPGKKT7aMjRkxG9F2Pa37+g8fdXuJMIY5ahlFVAknRUkl2TYleFd0D8qYJVQ2cYHDBWtlkvPMRSYOcpDWNF21rQdOd03RW7/mPwHyMUSJcm8cIkmeoUA4V4Dnnmkms6pdDQ0hJzleONIlrrjHXHIQw8lqbHWG3zqfeAh/vvcPK5I4Z7fZbdBjO3xUxpMcm7lEKrpCfFCitPUDJBOYFOPuGWecyuec6Oc47WKQhbVfZ74Qasb5ovYxRecFg1X2YRjWTBm8tPObp4weHohN2rc7bORwSDNdoatGmJNhEoq5vg26zWMS2goaBuCcotlYUIuDK3eGy/wYf2e3wm3uJZeIfn4Rtcrg9Q7BRNWaBnM4xyhq7N0NwlSuf7dPTfRdgmhe2ROwG532bevMW0/QVOLBMtjDBWGQ6fx+mlWHaKaeXoZk5bn+BrS0I8YtXBIcIVEYZIUEWJQCVHv2lCtCrfdUUQKj5h4VMmaqWvC0uUWU45TEgul0SnBWVogxqA1QTDA1Xa4UryvvndeXnNcYyIfmNAszHl1tZzDjvH9FtDDC8DG3Kzgu9F1mCV+6i5QCsVjLSgt5jTvRjRX4/pJWP6xYi2mFGgMVMbzPQmc6cK2p/vHfI978uM3C4jo8dSDUhxSIVZBRqKjgCMJMcMwRpqqKGGHpsomYOeeyiZy/Eo42Hv7ZsLXMn/+u//e1DkvNt8v7oOF4DGK5DbbrfrxJuUFshEnbQIltdQmXltt9usVquaV4IgqDliUy67qTOWScFNnbO8DsuMr3yNTWDfvJ+US0hQk5V30zRZLBa0222AWgqjaRrL5ZIf/ehHvPPOOzWLbG9v1wlRx3FqH3SZofY8D9M0mU6nNJtNBoNBrSaQQC0ne0rg3gRZqd2WWf0oiuj1ekyn09qxZDP4kQMd5bGWzi95nuP7PopSTSfd3t7GcZx6ummj0aj91JMkwfO8Gro3LROBGoR1Xa8BfhOoJcfJRlDJV5t8J9+/5Ckpqdk0HtkcBuk4Tp3klY2mUtYsn0smsuVxlD2AeZ7X8h4ZEL5u0/gn2Sz+iRl0uW3C5qbDihCiNn2XDYpFUeD7PqZpviIvcRyHZrPJcDhkMpkwGAx+LpMsM8bygzKdTpHTpGTjxCaMy45eGYXJSEt206qqSrPZrDuiZWS0OZpVHiipe5IHPc9zPvroI+I4pt/v1xok+RoyOJFNmjKbLkfp/mHVBhmhyyhLPla6sbx+/82yy+sSIOnd+Xp2QA4HkF8WmqZRzEtG1ytOvjd4ZfEKIXA9l703tgn2HT73px7QuWPg7+po7wj0LugdUMsvs/6rU8xPp7hXI9SipP2zMaWqMOjZDEcxZVpAx4KeDYaKsqoGjJS5hpkn2KLAmiY4swQdper4L4tXJShJSJmErwB4nfxRIPV9knaDcreJc2izvZNyuDvl9sEAu52TxkuiyZLzFy0GLwLGP9a4/u9ttIGPvlxRuD7C8/DskrY64iiLKwB/8B7nB/tcH91owO/sM97q0DwfcP/3f8xbP/wZ737nu/xyOKoy4MFLAFftnwfw0q1seqfzqglz8hQWzzcA/Ma3W6OyueOdNvmf3qV8v436lk3vdkq3u2RLndK7nmCej9GPRxjnOdpHZQXg8cuKNGl1kxlwxQLsCsATaUXYC5i5DSZewKzRYNTucRrcYhL3mA6bjJcdpmmXadJnct0nvAoIjAVNd0ZHH7EdXPKl8kNu84Lb5TO2o2OsxRz9aYj1fI56XklPsvNKc10sQWkrWB1w2gKto6IGBsqhi74Ldlhir1KMqEBFQU8VuCx4YXT42L7DiXnElXnAsFHB96VeSU+uxA4dZVLrvo+cE77oPeSo+Vsc9Y452jmhaw7IjwXJcTXxMnyhEF/oiKlAiXIueTnp0jGgaQj21IK0KEhsiJRKdjKN4SKCtaGy2G0wP2qx2msR9X2ybZ/iTpv8dgulaxPMEzqPR2w9HfLOszGdD57R+M0l3ijCmlVNl9iQeZDsGmTbGuWRgviCIGornPn7jIxdFlEDsVAwk4xADWnZC9r2nMBd0ndfoDRewAFkK514aZLMdPJrlfxpyTI2KJRKeqLmYMQ51jShOVmRBCZhyyO0XRaazwvrNh933uPZvbtcbO0y326xaDSZmm2mZYdlHtAQCxrlHDePULOCItQw5ylHHPNV8wccGi9otqakLZNFI2Dut1g6PolpoSolYxpMCDCKDC8NaUZTHgw/5nByzP7whJ2rS7oXU9xFhrpS0CcF6rRqwFS4CSRdUNpAoKDsCcodlXXmMSy6PNPu8Yn+gEc84FH5Nh+t3+aq6KGsL1DXZxBfoNkzjG4GzYeI3iPcrgP9PkWrR9HokgZ3Ea6DmucYaYZJgqMlNMwY00zRzRyMCYW2IFZtQsVHI8cTa0yRoFFSopJgkgmTlEoyoilF1ZhYOohUQURAKBCzBDFcoV5dYF2MMC7n6EqTzDsgsvZYax0SxaNQdIRycw02qKoA8nteKfHMJf3GNd3mgP3+GXudU1rNKYaXo5gv4XuZN1gVAWWpoBUlSgSd2ZxeWGm+e+mIfjGmXU7QKJmrAXO9wcxpMHcbXOxv8Qfee1zbWwyNHgu9SVJapMIgu3mvAgU1EYhQoVhp2FoXRIvBuGCZukxjj1kZIBQVr4jxiwS/iGmQ0SSnScY2Ce7smBN/n9hwaYcDLF0jKfJXss3SiWSTUTZ9pWUiUF5rJXxtyko39cGbcgP5+NcngMtrr4TEzRktkhvkc0vIk9lVWZmX4+g3s8KSNyQjSQ23russl8v6MZZlMRqN6sBiMpnUZhcSiiXvhGHIfD7n4uKinm4us/kXFxesViueP3/O9vZ2LTPe2dmpZclSWRCGIaqqsre3V2fsfd+v3UzksbBt+5UmTinpkFwSRVEt7ZEZ8/V6Xfu6b1YMpHOMPN6SmaS5iJQKyfMvDUFkBWLz+Euglnr/P4rHJDwDNcNJRpLsJc/vplOeDK5k0rhmrY3X3/R2X6/X9XNuGqj8cdu/MKDLA75pFSN3er1e1ydLLmLXdesPicwWSy3UYDB4ZbLU5iazxhL05WLudrsEQVDLY+R2cXFRdyrLgyeDAnlf6RMuSz2bQxnkB0Sa/282f8gPy6effspsNqvdZDabFeTAo80TfXV19XMlEfk4eezk3+TJlQvkdX345jHf1MY5jsNbb73FcDhkPB6/8njZMwAvp5DJ8t0m8NdfUgLOH13RvG5yoGWsf7rC6moc/Nsm6ZXgyd+IubcjSL+6T/jX3yd7u0uxZXChA7lADEKMD8c4n84w/pOPMV8sMYoStSpa1AN5pJFHNYxHgChuJCg3oClA1SqbOL8JnX1o34b2G+DfV1B2VZJ1RDxeMTyZcfWiwfRDk4e/WfLZwEZbrCgdF+H5uJago07YLSIW7S0uvvkOl9KG8JachtkjuBpy//d/wls//hnv/PCH/Ll/9pt0zYjAL7ED0GQGfAfEm5VGFQ+EB5n68wC+GkK8egngKqAroN91yb++Q/mFDuoDh/7tnG4vpKfP6F9PMc4j9OMnFYD/wxIx548GcP0lgONC2jYqAN8KmDk3AB4EDFt9Tpp3GOXbTEcNJssO07THtOgxGfdYD30Ca0HLmtJXrtk2r3hg/pDbyjN2sxN663Ocqyne8ynGcQhnKfl5SXoB2bhqTq38vgVGV7mRnthoHRXrjQJ7maGvBJQ6WgH2KGE8VXno3OOFdcilucdoa4+BecCVfsi5esSJOCJH50jqvq0TDr0Tvhz8Fke9E25tn7DfOEW7ikhfQHIO8QuIzjWKsYK6LlgVgmxD9x2YsKMK0iIjMSqpSZhUAD6IYa0pLPs+86MWi4M20VZA2vcq6cmdNuW2h59ktJ5O6D0Zcu/ZmO6jMxr/bIF/03SpRSVYUNqQbKkk2zrFtob6hiBuC64b2wydHWZZm2JpYIQZPmta1oKWPafpLnjTveR+cA4uFGuNeGmQLEyyaxXxoiRaKoQElKqBQK2ykauM9ngFikLYdVl7HqHhcq32eei/y6cHDzhtHzDe7TPvNpk5LaZKm2newRAZbTHFzdeYeYrIFfKJRjOfc6Qfc0d/zo57gtYqWLc85o1KO76yPXJdJ0HhOUco4vCm+XLJ3vKUo6sTDkYn7F6d0r8e0B3MseISdQHa+MYBJQVFvQFwH2gpEIB6W5AdGsxocGns8Mh5i0/sd3iSv8Fn6/t8Nn9AaHi4rRA7WGF1UzQ/Ba9A8xQ8Z0E3G7PWHDL3HkXzc5SKSrmOsYoEV0+wzRTbTtGtHNWYUuozEs1ijU+haPhiiSUiNJGjlIIcnUyxSBWLXDEruYmisyiaiEyBSKCEJeoyR1tmaPMF/iJFnRXEkUFUNIiKFknhU5QWQtGqbwbpv7rDq96sqsB2Qnba5/Q6V+x1jzlondP2l5hOCqZCYWokmsUyD1iVPjkaZWGgrhQ6kwW9cMxWMmA7H9DLJzSzBTYxSzVgbjSY2RV8D/Z7PPTe5MLcYWj2memtm2ZLiwydQq0QoUxVstggnjuEsUeYNUgSCyUEdVXiRDluHlc9AErBN957CzEbEl1f4ecx4eUJVrRkt+mibfQ2yYypzLh+MPgZR0+/x6CxT2f0rK5QS7mCrCjL7POm/lkaUEjgk5aH0jjBtu36tplck/Amk3QSvoBXZK+O47wieXkdsje1yBLC5O8S1OT9N19T8semXBcqzfdsNuP27dsEQcAHH3zAwcEB9+/f59mzZ3Q6HcqypNls1mDt+z6apvH48WOur6+5d+8eSZJwcXFBmqZ1Fl06m8znc7rdbi3JkMlTefwsy6p92qMoqtksiqJXegUl3MvjLXXkkrXkTJcwDOvGWSl1keey1+u9ojmX4L/pOiMVAjKYkoGJ5DGplJAJ1k0d+2Y1RLKnrATIx0qgl4YbmwGA5DDpViPPp9wfGVxsusNYlvUK1Evu3dyXP277YwF9E6A3HUw2tUEyY7wZachIp9VqMRqNKIqCbrdLo9Hg8vKynra5CYmbwv29vb1a0y5PnrTJabVa9Qkfj8c0Go1ajiIjaMdxajiXi0V6Uk4mE66vr2v7IGniLxeT1ByVZVk3WHz5y1/m7t27HB0d1dn3zYlWmyOQwzBkMBjUx0z+XQK83GTEB9RSnE0N2+aJ33weubik7kyIyoP04uLiFZea6XRaw7+sbGwueFmmq2UyN2Wv73znO5Vf63/8Fey3DlBUhQd/06GYKOSP7xD8re9i/84Z2iQBy4NViCiKWtZS8JoLChLAFRAC4RroPZ32bsG2mdL1wPfAaauolCyNAFVbElrV0JurFzY/+XtNlEGIOg8pbRtcD8eCtrrkrWzNstPj8qv3uT7YZ3BQwffg9j6zrTbecMob3/uABz/8gLd/+mP+7O//41cAXPUqG3h1C8Tdm2YxD/ArAJ8vKxeUyROYPYVwWGXA05t+aBXQVHAOdcqvbZN/oYvxtkv3bkFna01PW9AdTtHPc/STc4zzF+i/9ScAuLYB4A5kTZ3FQVABuBsw9RpMgwbXzT4nzbsM2GU6aTJddpikXaZFj+m8SzTxCKwFHWPElnLNrnrB591P2C+P2UrO2Zk/p/HZEPvpFPU0pTgvSM4huxagVNITpy0wu0plN+iZ6G9qGLdKnEWGtcpRc9BUBWMuSJYpx1aLz+y7nBpHXLf3GewecK0fcK4dcUqV/e4po0r3bZ5w6Jzw+eATfq3zm9zaOuGoe0xzMSR7IUhPIbmE+FwlHSooyxI1F4w3/L7bBpgaZEVBokJiQZjCOodRWq3DVc9lvtdkftQh2g6Iez75XoPibot8v4ErSponM3qPRzx4OqR7fEXruwuCQYg9SdDDAgwQJmRtSHd00i0NvqSQdkomzQ5Db4ep0iNZWejLAq9c0zRudN/OnNvukDeCqxu/b4VkYRIvDNKJBk9L0klBWtjkmolQNfS8xIgy/GmEsc6Jug7rwGFtOcxo8My6yydb7/GseZer7R1mW61qHL3RZlJ0SAqTlpjRKJdYeYySC/K1AQvBfnnON/TvcFt/Qqs5Je0ZLBoN5kGTpdMgsmxQYUiTEe+hlzluuqYRzXkwPuFwXDVfbg8u2boe0liuMdYl2lwCOJDfNGBK/ffNkCu1A3GsMc8bDPRbPNHf5iPtXR4Vb/Iwe4tPV2+wFi6mn9EOljitBDUoEUFVeTD8GNsriDydld1GSwvMPMVWYmw9xjITumbOljkFfUamGawVl1hxcQlxxRpDZChUQ9AyDFLFJFNNxM1I+BUBy7yBiBTKpUo5UyiGCsVVSXkuKK8KimmJQAPPQfEchGUgDK36MtgwOqkupJtX1QJbXdD1z+kFF2x3zjncH9HqhlheBpb6Er4Ln7D0yVSDIrVhGdIcryr4Tsf0sjGdfESnmNEsF6x0j5nVZG5XGv5Bq8dn7je5sHcZmH2meosYl1SY5Nw4sgjIMpMktUhmFllsUiQaIgItKtHCDHudYKdr3HRFP7nGi1a4qxl+GmGkOVYpGP/qn+J3v3KL7vGKX/2HH/CGP6zNHLIsIyxCdNdA26g0Q+UtLUFNXhO3fMG2mBK5NsqNPeBwOKTdbtdTIx3HodPpAJVDhuM4NRxJ8P7DJKabg2ekVTJQW+FJ0wgpGXm9N20T1BqNRv1vRal6uADa7XbtAmeaZq09l97cRVGwWCxqgwypOIBK1it5yvd9XNetXVp0XefDDz9kNBoxn8/p9Xo1j0htu5SUnJycMBqNGI/HbG1t1c8nK//n5+dcXV3VAYuE9k11gdz38XhcBxVSOivfqwwuJI/JYyYlPnLAkaZpDIfDOpB43WxDZsQ9z6v5R7LkZrJTBjKSvzatp6XuX0pLNjlVcqSmaaxWq/p4bvYayMqFDEg2+w0kD5qmWcuqNwcPSeaV71lWWBzHeWUfN5uB4eUAzT9q+2MBXS68TUCUOy7fWBiGTKfTemeTJKmjsG63y+npKXEcs7W1xWAweMUlZNMGUJ5o+cZlBCf3QUZfz58/pygKPM+j3+/Xk7hkdlxGajKrLDVq8sNy7949Dg4OWK1WCFG5vMj7Su2SbGbQdZ27d+/yG7/xG+zt7ZFlWT35dDab1fspYdf3feI4rks8ckHJD4XMbJdlSaPRoNfr1VHbZhlNHmPP8+qTKisEmxNR5YdGBkFbW1tEUVQHHK+X6V53vpHHXu6n9KfPsozjH13y9r++Dwj+4b/7Y77k/yJvf++niO8+IlM1lkGL2Te+yvDuDoWfsf3jD1CnE9KjDokf4P/klML3uLftUR6+x/GOxV/+X/xdkonK+Ud9sh+tGQ9SnkUm4jxC/+4ccRWjOyFuoOIa4IiSdhqjtzwuP/8G14cHDA5ufMDvHDDvtXHHM+7+6CPe/uFPefujP+DPfu+f0DUjfL/ECioHFM0GpQ/izmsAbsByUTVh1gA+gGhVTe1EvARwd19D/UILfqOP/Y5H756gsxXRNZd0hjP08wLtZIx5cYX+TwvE36MCcNmMlQLJBoDbldZYOFAGKssDn/l2NYp+6jWZ+gEXzR2Ogztca3vMZi2myzbTpMsk7zFbdohmLg1zTpshW/klu8kZ943POLCveDP8EQfXjwmejlCOE8qznOQc0itBua6mXdptgd0BtaOjuAbaoYWxA06YYc1S9FigCNAXgnKdMTF1nnn7XJu7nLdvcdE/4tI84kI74kw54qQ8okTlSL+Bb7vKfn+p/Zt19nsnO0U5jklPIb2E5CEk1xpiKdDSklgDIZsuDejrkJcliajgOwLCAmY5RDGsAov5QaX7DneaxFsB2daN68lRA9PSaJ4v6TwacufpTdPlT5/TuLppulzeNF26GkmjGjefbmmU7yhE/4rCvNVg5G0zNbZYr120ZYmdJrT0BW1rTsuZs+8uuOOPwL+RYS2NWvddngmK64RVopFrLqV6M848ybEXGa15SOobrNsOkeOw1hwujF0+7rzHo+ZbnLUPGO32mHdazOwWU9FmXrTwRUgg5nhF1XhZ5BrxxMIrVtxSX/Cm8in7zil6u5qmuWi0mHkNVo5PapgkKDzlDgq3MfOUIFnSXY14Z/ARR8MX7F6d0B9e05tM8OMULQR9VqKNxc83YLZANBSUdhXohrHDddbjSXGPD7X3+Ex5m+fKPY7zO5yIQ9LARPEK1EaJ3hAoQYlyA+FlIFD9NUUJ00QnosDV1lhmjGOlBEaOYgpyTSO5kZvoZARiWQ3ToQAUMnQS1SRVLIpSQxM5seoQ5zYiKmGVoywi1NkKfX6Fvgxx0hS9UBGlT5zvEMZ94jggzR0KoVP5HQrYprpRfUcIAEWgKiWuNaXfvKIbXNNvX7O7PaDZXGB6GYoFuaGTaBarwicUHqlqkSUNWCY0RnN64YhePKabTejmE3piQocpiWIxNZss7ICl63HV3OYHzhe4tHcYWn3Geoc1HikmBXr1PSNApCrFWkOZKChLgb4uMcICMZxirBM6lkmWLDi+PGb/8ACjFVBYJrmpU1gGRdsg39HJDI2Z2WJk9ckNndzSb37e6OCFAEXhs1sddudD8k9fOnHI5FRRFKxWK8IwZDgc1iAkk0dSNy4rvY7j1MNsLi8vOTk5qZNSvV6vrgwD9TRGadaQpiknJyevwJW0ucuyjCAIODg4eCUJFscxk8mE8/Pz+u+9Xg/Lsrh79y69Xq++rwwUzs7OuLq6qrXjAOv1GiEEe3t7rFarWgbTaDRwXZenT5/WgYRsUpWqA8MwWK/XjMdj7t69S6PRYDAY1HLhoiiYTCbEcUyr1UJRlNptTgjBbDZjPB7XPDGfV9bOn/vc5xiNRnUlYDgc4nleDZebIConlsoAQioJNnlCVh7gZUNmmqYsFouaZ3zfrwOnzcfIfZVAL6FW8s0mvEqpyaZOXP6fzFRLvpLZbtn/KI+XrL5sTp+XXLnJm1JmtKlUkDwm1690qJH7Ic+fDAhfn1VjmiaNRoPFYlHLgKSLjzRM+eO2f6Em0c2TtylJkcAqbYqkbmk8HvP06dN6cFGr1SKOY66vr19poJTSlcViUXcBq6rKbDar35j029wMCPI8Z7lc1o2gMnqR+igJ/JtRmiyBhGFYly9kJBUEAcvlsm422SxfnJ2d8fDhwzpCk1GmtDHK85wXL17UXqdy0ilQR+ry/cqTKMtgo9GotuTZhPrNRSE/PKZp4nle/XcZabuuy2w2q78Udnd3ieOY0Wj0yiJMvvbXufjqv4dx+gP0/+zXEaUA1SQ3NHLdwglaYDmUBZQ7X+SD9/53+M9/wHJqcf3gF/jw3R2e/bU/jdeZ0OuP0PWM5ajF+swiPdN42P460bWL2djDO36Mu/+ChhYRLR7T/Kc/pDUY8J3/aIpiaVjBksAs6Iic/VSwDFpc332D6188qDTgNwC+7DRwZktu/cFD3v3+T3nw8EN+6Ue/S8eKCLwScxPAeyBu3wC4D8JTKAzBcgmjS5g8htl3YDWAaFlJUEpRacA1DbwDDfOBg/aX+/jvBvhvKrR2YjrmkvZocQPgIebFDP33CsR/x6sAnlX/FjfOCJsALnyF5X7AYttn1mgxabaYbHU4ax1woh8wEFtMwy6zdZtJ2GGWdpisuiRzi6Y+p6NP2dKn9MOn3C9/xp56xRunP+De8Sf4p3PEeU5yVgFvPhXogYJ1A99aV6tId9fC21awwoxgHGOGAlDRUwVlkBMpOWd6j0f+XS6MPa6PjriyjrjUjzi7kZ5ci2366pAj4wa+3RPeb37Mr3X/EYfbJ+wbJzTPB6SnkJ1Xvt/xpUo5BzWuhu2sbuDbu2m6LEtIiqKWnkR5NWwnjmHlGCz2G8yO2qz2W6y3m8S7TfJbLYqjBoan0bxe0Xg2o/Vizu2TGY2fXNG4WtEYLGkMl6hFyazTYN7ySfcMip5C+K5F/nWB6lvM3S4zu88qD2ChYMcJgbKibc5oOzO2nSW3vE9RGp9Wft8rvXI9mRnk1wriLCGel6w0l1IzQVXQ8wJjnRFMlwhFIew7xJ5NZDpMtBaPnLf4NHiH543bXG/vMN1qMfM7TLUW06IDJbSY4hcrrCKFHJLQIp/r7IpLflF8i7v6YzrNMWnPYNlsMA3aLNwGa8uh1FSu6TKkjVYWOFlEEC24PXvG7tNzDq+P2bk8pTse0g0XuHGBurqxHxxTTcAUN1UclwrAgwq+2YXV2uAqCXiS7/ORcp8n2js8Vj/HY+MLXLs96MxRnRWKl0KgIJo2ZdtFdHyEnWOsQ2yR4+gplh5jmgmGlaEaJaVeuZuEigeKgidWOEToomoPLxSdVDFumg9N1LKk0HRmtBGJSrlSEXOVcgTZZQ5XBeU4o5jEiKWgFDql6YDbANutpj/pavWGNapyH/xc1lshxjHGbDUv6bWu6PZH7O1MabRiTCcHUyE3q6BhVfisqRpxk8ilXKwJhjP6UaX37uVjusWYbjGhU8xQgJnZqDLfjs95a4+f2e9y4ewytPuMtQ6h4pMJgxINod5cl9eCcl4web7LeuDRmV/zpeQD/EVEIwYrEXUifzObrCgK3//+99nb26Pb7VaDZ66uOLiK6uuYzOzKJJqUCMgstbx+O65L92CPH/6bv8S3zAR3GbOTV/1h3W63lipIUJJZcukOEgQBnue9IofdvO4FQVBD8Xg8ptls1k2W8pongbzRaOB5HpPJhPU6rq/v8rorx7tL4JPOcvIaLd/fpqWehL1+v0+73a4r/tIYQzZtzufzV8wlNuWzb775Zm1nKDd5PF3Xpdls1jbPtm1XzZQ7uxRFwdXVFVEU1UHM5z//eT777DNUtZpwLq0ToXKP29/f5/LykrOzs9pt7v79+wRBUFcrxuMxQlRGGlJK7HlePYlUQryU9EilgDz2hmHUvYFyPUn4lElOWZnYdIKTx0Vm62WAJrlPSpck20jG3EwObwYJr/udb8qHJFzLv8nXeF2aJGUocl283pgq7yfVHL7v1+t4syFYKh5e32f5GJkslpIh+Vi5Rv+oTRF/jAjm0aNHP/+ADWgfjUY8efKkjhpk1PrBBx/w4sULVFWt7QrX6/UrzZOyeXN/f7+GXLn45Qel1WrRbrfJ85yrq6v64G02cWhaNUpWdsjKAxmGIa7r1pGp53n1CZnP56/YLgZBUHfgSq2QtCfyPI/79+/zK7/yK9y7d4+iKHjx4gWz2axu8ry8vKwjrg8//JDvfve7yEZSeZLkQpWZbRn1yQ/rpi2RPM7yRG4uSl3X2d3d5eDggLOzM4qiYDAY1BUJVVXp9/uYpsn5+XktC7r8d/6A3O5UmQ5R3NSfgSKDIoU8RRU5SpFS2i101+AbX/s9vvbF7zKbN5mPukTTDsp5iZg4rGdtvG//Nl/74O/SiYb4xQpzOkLRVAzXwtNzfL3AEzlaBhe3bvP8rTcZ7ldTMAe39gjbTVTg6Mcf8/lvf497p8/YDsd0zQjPLzH9Gw24dWP5F1ANDPEr6M0NQbiCySWMH1UZ8NV1BeBpUgG4yg2AH2q49wzKL3UR7zVw3lJp76a07RWt0QL9vEQ9FVjnGfqweClBERV0KxLAofIwNiu9seIAHqx2KyvCadBg4DYY9vpc9W9zah8wENtMoy6TqMc0ajNL2sziNmlh0jTn9PQBXXVCzxiyqx3ztvIxD5xPuP0HPyP7f61IzyC5FOQDgaKD2amkJ1pPQzR1dFVFzxTMKMdeZZgJaEJFUxQ0IydTYWK5HDu3OLNuMTD3uDZvmi7VSnpyUh4BVPBtVdKTo+CEw06V+T7wTugPz1BPY7JzyC4gvoB8pqKsS3RRyU7sm2mXmmOycl2mlsfU8JmaHjPHZeZ4zD2PRcMl3AmId32yvoNoGiiBhtEA0xd4RHSvp9inMe7ZGvc8IrhY0Tqf0j8b0z8f4oQRs06TRcMj66ko3RKtlWE2UtRmwSzoMvK2WdFCLDXMMMUXIS1jTseZ0XTmuG6IGoha950sjcrve6SgnmZYgwRR6OSmBZqGJqrst7VI0aOcqGsTNW0i2yZUXU7NIz723+VJ8CZnnX3GOz2m7TZzq8VEtIlylwYLfLHEKSK0vCTPdda5g1aW7BdnPFA+4sg5RmtnrFsus2abmddi6QQkpomqlOjkKAjMIsVLQprhjM5kxMHolMPLU/qjAf35gCAOMdc52vJGfjKhasBUNvTfzRsA96q1vogsLpIWnxWHfKi8zUP3CzxufZHj1tvMbB3VWYOXgq8iWiaibSMaNkqaYaYJlpJiGym2lWKaKZqZIwyFTDWJVIdUsXAI8USIRSU3KVDJFIO0tEhKi1zoCE2tgt0MlFAhneooU4Xo2kIZl3Rf/AP8uGB+VZClTVJ7i9Q5oPB3SHSrav5QRdWFrSovm11eueKVIEpsc0W3MaTbHNHrj9jZvqbdnmM5CZhQmDdTOEufWHEoFBV7HdNdTOgsJmxFIzrpTda7HNEXY/rFGLNMmVsBSztgajU4d/Y4do+4dHYYWBV8rxSPDKOaqKqpVXBUFmhKganl6GUJCThZSpDlOHGBtsxYXo4hzBGRRh47dIkwMxUjBbvUIczJowx1o/kxdxQGv+Ry9ekJdz7Q6DTbdXav0Wi8ku0GapCV13y5yWu4aZp89atf5Utf/hL/9Q/+OavHLzh98pROp4OmabWPuNT7yqSe9Ko2TZPbt2/X10N5Ldz0EZf6cpmJXK/X9Hq9OuOsqirX19f14J2fjj7H337457H9jD998BF/rvvP0FTqTKkMDnRdp91u1/IQmWVfLpf1PjebzWpSKNTSGtl7JpOHcgZMr9erj5k8jhKg5ZCenZ0dhKjc366urlgul7VsQvqE/7fZn+Kz7V+jV/wB7r9dkAce2//h36T58VPa7TZxHL9iFhGGYf3epLPd1dUVL168qA0ufN9H13U+//nPs1qt+Pjjj185r1IiLMFfSn4UReHx48f4vs+tW7cwDIPlcsnjx4/rZlFZWcjznOFwWBtVSJlzs9lkPp/X00hldQReTnpfLpesVqs6aFqv1/U6kNwWx3EdrMmK/+ax3pQAb/YDyEBPSk+kekImOiWnyUZO+X/yOeVxkPeTgYl8fbl2JdspivKKe6FMwvb7/bpCIuXIZVnW1Z8/bPv/qUn0la+1mwzw+fl5LZNYLBZ11lyOg5XlitddSlzX5f333691as1msy6lSKlLHMcMBoO6/CAnYskDJ/dvsVjUB0bumxwnK0+ktPWRbjCbmiNpVRSGYd2tLA+2/GKQWvvLy0tOT08JguCVRSxLOTIal18cMnqX0ay0QLQsC9d1cV23DnBktCothzatjOR7kyOBh8Nh7Vl6fX39SgfxYDDg4OCAe/fu8ezZs2p077PfYvzg30ALr1H/L99AS5eUWYymUEd5Ozs76LrOYP+XUP7qX+dL738fpSi4+Bs/4Zce/DL/+s/+zxw9/RbFGuKZYJ3BVQKGAortojZ05qucYh7iUhkPKNUlkMXXt9nP5vzCjz6h/70ZTX2N6QtU5wbAuyBubWTAfYXCFKxCmFzB+DOYfb8C8PUC0lRQljdNmDp4RxrOHR3vlxu47zdxHug09jI6TkhztESTAH52hf7Dc8TvUAF4WVkPKlKCIriZAFjdhA14EG47zPcC5o0GF16T806P89YBl/4tJtoek3WXSdhhmnSYpx3mizbZ1KShz2mrc6x2hOWGdKwhvx78N/xK8Fu8Z36Emgm0nymUaw11IrBXCU4ckys6g6c6U8XCfsPHfeCipqAoFmYG5mqNORvgrBMSBS7NPk/tIy53jrjybnOpH3KuHnJ6Iz0ZiC22tMFL6Yl/wufaH/Kr/X/AVveaxnqEMo5ZzDwWC5fl2mM59FlNHH58cch3gwekgUt66JG87bF2XZa2x9LxWDkuoeux9qq/x56DZWS00gmtdEKQz/HLJZ4S4hgxnhrTGc/YO14RHA9o/fMZnZMpnbMpzasFjeEKK0zIHY3CVigCKDslZQfKnoq4r3DZ3WLgv81c71JEJvoywy9CWvoC05rRcObsuydowfNa953e6L6TiQKPS/KTiFWskusWwtBRNQU9z/FWKe1lQuqZRN2AuGkR6xYDrX+T/X6b4+ZtLre3mfW7TL3KdnBWtLGIaYo5brnGyHNErhCvbOKFzU5xzXvFz3jT+Ix2MCRrG8xbLaZBi7nbJLxpvrxiiwFdVFFiZTGNeMne/JTu8xGHVzfZ79GAnXKOG0WY6xJtCeqgQJ2BklBXcZQGlFL/fReK2wqzyOY07fIz5S1+1PgKn7a+wHHrHa6CfdYOqF5+k/nWEK3KT1uPEiyR0NUjLDPBslJ0M0PRqTLFmsVa8TBJqyZLYjRRUKoquTDISoO0MClzBUUpSAyHBAczAjcqaaxztlYF/rrADmOUlU4y11hNTeaxzTixCGObZWnV/t6h8htV4P6mWnWcbm6KgDJHKRNcfUzXv6DXvqSzPaG/vabVTTDdooJvQ6/cWUqPWLWhhGxtki0MGpdLOvGETjqlW0zYYsR2OaSXj/CLkNBwWdgBY6vNWXufF84R/9z9BQb2FiO1w0I0yEqDQlFRLQUhIJvrJAOL9dAjmfokY4tkrJAOS9JBTrFIUIsIU825dec2ny16qGbGwe4L/tLBf0Npq+QmOL4BHZvcUtAdlZXTpLQVSkejdBRKS4VcoEYFrAuUdU7ZNikbOq0vBpTWEPHpS8c1mR3fdNyQ1yApMZCZUQkpqqpy6/ZdTs/HmMOc+Vzlam4yS1VyoeJ4RlWpLTUK0SAvVZZhn0JUNp9ppPLpZwGKZlEI/eamEqeQFWr92LRQKIVGkinkpYZ4apCJasJpLgwyoVIIjVLRyIQBpkokTH774vM0iufctz94WXFGwDqkq6h1JVwmB6Moqhv5pOuGnGuyaU0ozSakO4qqqszn81cqFZKDFEUhzXLmmcZ5umKaG4z1LYadQ8JDn7TVJG8FZL5N5hrkTZeOe43a7pEFOSgK0V/9dd79v//XNWTKeTCy4q/rem2Isbe3x97eHs+ePauTdqPRCNM0+fjjj19hH5nVns1muK5Lt9utM9zNZrMG7yAIgJeuKZtyWck0q9WqrhxI2JfBhFQeSFnHpi2m1L1vPm+r1cIwDJ4/fw5Qg/3r7LaZFd9UZshgRyY4JdTL36XLinw/WZYRhmF9LiXLvW6ZCbyizNhMnkrmk4GnbICFqoozm83qdSalNf9SNosyWpHbJixuelAqisLFxQWffPIJaZrWRvrS41uWc14/oVKDpOs6/X6f09PTOuKQzYwS/m3brsfSbnpLAq9k8DcbAmTDqDzYW1tbtX/5dDplOp3W71O6vsjX3PwCkk0UT58+5YMPPqjlNLLMJT+MMmKTUC5PpIwGgyCoZTTypEldk9RHNRoN+v0+SZIwm83qIQHz+fyVkpLUuq/X67o0JRen/ADv7OxwcHDA+fk5zX/4H3L3R38LfT3mMp3e7GuBcvOh2N7ervVQe9e/T/7/+ITht454Vjh876/8J/ympsHJIw4Dn3zLxno0ZO/FC656e4SuT0tZ0s3HbM/PaPgprl9gBKD5lV3vO873KQNQ35UArlLagtUaphLAfwjLK4gWkCQvAVwzwD/ScO/qNP60TfB+C/ttg2A/p+VENCcrtLMS9Uxgnk8wfjJE/DN+HsBTECUVvJgVfIsbJ5Sob7HYD5i1Glz2tjjv9Dlt7HFuHjFRdpjEFYDPkg7zpMNs1SKfm/jKGDcdoE3O0MePUC9PaV2c83ngm2/dRikLgu0uv/O/2pMfItS54FLdYZr2Ofz2GW+Nn2BlGf/99b9GfDnjr33vv8PIMvbMjB1LYW7rPM6bHFu3OQne4My/y9n2bc454DzfZ5BtA4KuN6YVTAlaC7zuCqcfsd9/wYH/hNIWRJpNqHg817f52LrD2vGIPA+hqjjrNV64wo/WeOsQdx1ir9Y4qxBrFWKGa4wwxLieYl5d4FgZXV+geKC4CoqvovQs2LbxooLmixmdRyN6z8d0j8e0z+cE1yH2NMEIC9CrY1+6kHcg70KxpVG+q3DZa3Pd3GdqbZFmNvqywEkiWtqcjjmj5cy45wx5Ozivdd/ZTeY7mWkU51CcRqyHBYVmUVgmqq6giRIrzmksUoSisO67xH2L2LRYqT7PzTs89N/lcfMeF+09Rjs9Js0OC7PFpOxQFBpNZY4vbjy/c0GWG6wmHmpZ8tX8+3xO/IxD5wVGKyXccpk12kz9Sn4SmzahavAx91F4C72omi9b4ZSdqwu2rq44uDhm6/qKznJAp1jgJSnGWqDNQBuVMAc1o7LSdEBpAi0VJVCgC6WwWKs9HjU+z49bX+en3jv8IGlz3rjLzGuSeUAgUFoawtVQ4xyzSLDVhIYxpW8lmGaGYpSUmkqqmaxv5CY+SxyxrrL3ChRCIylNstwgT3U0shutchvCHGWyQh3M0YcTGC4oRhFipkBo0XTu4Pq3WeQu16nNo8zE0At0s0TRoFBVCkWhRKFUlOpKJeWayo2hgMjwrRn9xgU7W0Oa/TGNTojfjDHtDExBaVSZ71B4pIqJmruka5toucK5mNJJpvSyCVvFgG1xxVY5pJtPaeZLYt1iYQWMjBZnwS4n7hE/8d9nYG8zKhvMS4dM6AjtpmO5FIjJCnE6R1xMKS8+Ib+aEp8OiY6vyS6mFNOXJW1VVckLQZwplKqDbgQYpo/f2qZQbN75/Nf44nu3ePh71dTP8JlDOU3ISw1VtxFoJDmgGAjVpBQGuVARGCS5QlpCphnEKCQo5LpJcjsgbzuUmYb1YYo2oYJlxSQv1RuQrkD55b/l37Sbv1d/y0udEo3/4NsVvKjKHXSlQFVyNKXA0EpMXWBoJbpaoKslhlqg3oyVU9TqXOqljqrqlECJQqEo5IZCqopqHzSdTNHIhEaq6KQ3Uh9DybDUFEtN8dQIW4sJzIJZ5HK82qnWjAJtT9AKWqAozN57k//3X/ozCAX+jb//bY6entWyCOneIQFPeolLtpAuIo7j4Lg+s0xjWdpMc4Oo2WPpBcwdh7XnsrZNUt8isTVyV0W4oLolmpujOAJKUNYl6ipDWyaYyzXm+BzzeM5Evc9UfQs/v0b/H6cIXee9RxccHh6yt7dHURR8+OGHrNdrPv74Y+7fv19XzbMs4/HjxwA1i/yZP/NnmM1mfPDBB0yn01qnL33WV6tVbagheQaog7OyLOtMtzTVkJUIyWCWZdWadcknQM1yUhMuYTfP81riIm0NNxO4MmkoZcubdtKbfQMS7jcd8TYDLgnQ8r1ucqxkUtkPILXhr/dEbrLg5u9SSy+z5RL2pR5e7q98Xdn0ugnpMoH9R23/Qhn0TVmLfFEZcUjP8RcvXvD06dPaO9O27Tq6lCUF+Vye59FsNhmPx2xvb9elhl6vx2w2q8X9EuylW4yqqmxvb6NpWt0QKhfDpovMpoxGarykw4rU/KRpWmf75YKQnd1lWdZ6tfV6zfPnz1ksFlxdXaEoSg3sUj+3tbVV39eyLBzHqfdXloHkiRgOh3S73XpRz2YzZrPZK9aRm9vOzg79fp/xeMx4PObq6qqeUCWrBPL4yYhRfgDOzs64c+cO/X6fy8tLjBudnOM4dSknTVN2dna4e/cuYRjWC922FYxlzPjuLyBufG7/9sGv87/5rR/xpY9/h2C9ILgr+NrRMZpT6VWFXlWRS0Ul00w4LFHfKVA8ARmoZ8AlfOs/hbOTkuTGilAxoXlLx7+t0f66Qfv9Bta7Fv5hQdOOaEzXaOcC9bTAPA8xfjZH/D6vSlBubGTEzSCLGsA9UFxIOgaL/YBRv8Npe4vLVpfTxj6X1hETdbfy/163KwCP28yGbfJrnaY5pWVP6HgTGsqAbv4zGDxHnD5HH4xJhznzk5DFeQTpy9HNRw/uE6mQWCal7/P2H2Qwec7I2uK9x59SGBaPt77Ad22TfLvkfHbARG2zaDX4G7f+TyzDBuHSJ5475KGBGhSovRK1k2O1Y9x2SNBeshWc8Yb5AX46w5mucMdrvGWIMw9xPw7x1muaSUgzCWmnaxpRBdz6Yo0+C9EXIco6Ii1KYgWWgc10p8HsVofVfot4JyDre+RvNCiOGpiOTvO8oP3ZhO6zEb3jCZ2zGcHVCncSYy7zqmxiVxKgrA1lF/I+lG+rXPcbXLf2GLs7RARoqxI7immypG1OadszDpw5b3h/gNLgpe57YZDMdLIBiNOE6DwlzlQK2wFDRdUERlbgriK0JCfqOMTbAYltEqsWF8Yunzn3eRQ84Lh1i6utbSa9LjO3xZQ2qzzAV1YEYoFTRuh5TpnrrFcOYemxW1zyxfTHvGF8Ss8bknV05q0m00aHqdcitD1Sw+SEXS7oV/KTLCWIF/QW17x5+gm7F5fsnZ/QmYzoZ0Ma5Qo3ytFCgT4FdVjCEtTypgFT6r8bQBu0XRiVDT427/FT5x3O7/0yn9h3eWzsc2W3SRs2ogGld3PRzHIsEWOqaywr4siao+kFwlDIVb2Wm3iEeKwwSFERlKVKWpjkuU4ea6gio9BUlq7PqvRQJmuU6xnGeIYYLVHmBcpCg6WJCH3SuEmqdkmNuxR6gFIs0ERcBWWahmiYTEwLoeiUhlKV2oBM0cgVDU0tMbSSlr9gqzOgtz2g0Zrg+Ascd1Xp1c2S0lSJFZu1cMkVHS2FZO1irCCYhvSSEf18RD8fsCWGdMsx3WJGM1tRKiozM2BsNDlx9jnxD/mZ/w5X5hbDMmBWuGSYCN1A9SxEWVKM1hQnEcXFmuxqQXI1IB/k5OOC9CqnWKqUioFQTAQGBXuU4gihmJToCN+i9HUU1UKoFgKdgur+qCaKZmPaPoXpUpQ6P1h4fPcfqJV/fqlyzW3+r4P/A5qS39wKNCWv4VdTCnQ1R60EQ2hkaGqBIlIUJafsGWTfm6D4M5q2hb3I0ZQMwwBDK1FEiqGW6Frlb0OZoqsFpi7q1zI1Qbvl4XseORq7h/cIWlt88viYpDR5cjImLm0yxSPMDHLFY11YRLnFOrcZZyZhppOVOqaS4hopHhkNXeCZGb6R4RoZjpZgKWsCq8DREmaTUyarSw7f3KG57aM6Ck+vzxkkEf07tyl9j9yxKFybhaKxKgSJYqJ6Jb8dfIF/ZH2F2NAoNe2mTArHD26z9fETptMphu0S7GxT2l2GicLSazG1HZaOy8IymRsqkaVS3JzD0gHNzdHcogZudV2ihTnaIsaJFvRLaGcZ7VFCM1zSjiOM+ZKHv/9d1sMR3/zGNyiKgpOTE05OThgOhwgh+AvvvUekuHQcheTboLsOb/a3KZtNZrMZ8/kcz/PqbPeDBw9qUw2ZJf7xj39cA2oURbz11ltkWcajR4+4f/8+RVHUUtwsy2g0Gq9MEZWKBemGYppmLVeSPXyb9oebwY3kik0dt3SE2XSq2wRXaVMos+/y9aVTjmQ8mZWWUC4fXxRFrbDYHNoE1MdkU/IiGVYmdw3DqPd/s4dRZvXl+5A/5fNJhYZ8TzJBKvsyZTJ5s5dDOvZtOsb8UdufaLMof76eSZcnbzKZ1DC92TUr39zmgZMnp9ls1s0KT5484eDggMlkQr/fx3Ecjo+P64hJwrPMxl9eXr7U0+V57XQiF5rcpOxke3ubPM+ZTCa1rk1m0aVERUZ1jUbjlbLGer0miiKOj4+5uLigKAqCIMC2bXZ3dzk9PeXhw4cAHBwc1HZGSZJgGEZdMpH6dxnQNBoN5vN57ScqG1U2gxhZCbi8vGQ8HtPtdrl9+3ZdflosFrUmC17q44C6ozqOY05PTzk6OsL3fRaLBaqq1pp7Gendv38f3/cZ5vfYuxdxu/0xp59VJa17D7/Fl0qNh7uf53/28L/F2IMPv/GLNA5j3pi8QMzGeGGIuUzRphWIK7nAilPEGZSfKeRTvXIw2NdYbhu0/wOH4L6DfSBoOjH+ZI12JlDPCszzGOOTFeJ7wM2wEqHeaMATEDk/lwFXXMhaGrP9BlcH25y1e1w2u5z7FYCP2WGWdZlFHWZxm9m6xWzSphhpuMUQfXmBGJ5QXP+E7PqcYjrELEOanoLb65A7Ns+UEr3vYW43MftvYP/Zr6K1fPDdyvrRsEmEwbI0uVRNPlINlLLEWOdoQwXv+RL1+m2Kqc63F79IsnIIv+uxWgWoSkk7mNDzR2wFV7zVfszR7ikH9gu2ZydsDc4wns1R/8kQ5yzGTBQMVcMoc+wb3bdT2w1CkkOSQpJBWkKsVLeVbTDeaTI9bLP8Qo/17j3SLY9i2yO/3UJrWTQHIa1HI/pPRjw4ntD95IzG5aIatrN4OekSG7ImFB0o2lB+TWHSdbnu3WPk77JUmyiJgr2KCcolbX1Ox57Sd+bcch+iBp9s6L51kplOOlbgUUFyEpPPoTRNSstANRX0siSIYsxVRuqbrLtNYt8g1U0mapvn1l0+9d/mSeMel909BttbTBtt5lqTadFBFzlNZY4rQswigwyS1GIVB1AqfD39Dp8TH3JkP8NqRoQ7HtNGh0nQYe40iGyXhWrzIe+iUlbNl2lEYz3n3uAxrasJB+dn9C6u6C6HdJjQLNc4UY66Am0iUAclypqXEzCl/rsB+Y7G4MEuT80jPrHe4CP3Ph823ue0cZdJo08UuBQNBUwFLckxywTXSLGMCMuM2DeXoEGuaaSqxVpxsZQUnyX2TZNlKRTywiDJTLJMRRQZqlKydgwiuw+LCK5nKKMF2jSinOSUC5VyZZItXbJ1g7zsk1t3KDULLZ2iZUs0XVAaBqVhITybsmUiVONmyI5AEJCrQRVNqwWKlhE0lmz3x3S3B7QaEzx3iWuHGFaKapWUxg1844IALSkoIoFYKzRmC7ayEb1sSL8cVQ2X5YxWPqeZLtBEwdxsMDLanDqHvGgf8kHwea6MbQb0mJUtYiwUQ0FzSkShkE5M4iuH+NolHjkkI5N0qJEMVJKhQrksoMxQyVBECiJDFVkNsopIUeybn6K6T5nH1X2LOVp93wSFDKVMKfMIyhRVyaBI2N3u8hd/6c8yGV1ysLfFwV6fMo9IoiWnx0/QlQJEhqK8bHxUFAXdNsHUKXWFQlOIipSEglyFXBVkSsnwV++R7vqIUtD89/8BB2qXshuwzk2E0SQVLqtUJ1N8Vkr1eyocstIjjh2i3CQqbZLSJr62SUsDU83xPsxw9BRHvY1rpJi4uHqKbxZsuSGBtcBtCgwfTB8Ut0RYOaNwzDSNaR0dIHyX1DJZayqRrjLTNC4UnVXRJioNotwgzR4g5qAuFNS1BkuIsxyRqfDQRBEGZalSFhqFkAbzAiXIaY4/4Av7BqFhE7bbfLbdQajwo2if7/yFvwaBiRKoaM6rwK1ForIPXcZkV0O0wRjr6ZR9TeHLe9s0o4i+qsN4hrqOefzoEd///vdrm8cv/8Iv8PWvf50gCJjP5yRJwve//30e/eSn5HlOt9PhK1/5CsPhsIZFXde5vr6uIDk4ZH9ri+vr65prBoMB19fX7O/vc3p6SqvVwrKsWl0gmWY0GjEajcjznMViwWAwIM9zer0eH3/88StZaZkVDoKA8Xj8ShZaWiJKGfAmmNfr70YRsAmyMvEpm05lQ/DmACSpMtjMZJumyc7OTt3DcHZ2VmvTJdRuKjJkhlzXdTzPY71es1qtavttuT8yWNmUlEiYhpcOM/I5JQduMrB0q5GJYcmgm72Tm0ltKZWWxihSMraZOf+XslmUO78J53LHoiiqbQ+vr6+ZzWYEQcBsNqtT+TJ7vKkZ13Ud13Xr7mTZrOH7fj31SjaGZln2SvPE5sQuuS9ySNGmHaS0POz3+69kzWW2W0o5nj59ShRFJElCURR1maMoilfKObIrWAYby+WSRqPBN7/5TcIw5NmzZ3WDxosXL+qAZdNvXGa2pUm/DGBkI43cd7mQ5HGRUp/r6+vav11mwaWlojyucsRvt9utP5zr9ZrT01P6/X6t3dqciLq7u8vR0RHH6/vM7v0Kv/7r/yWG8YDOL6jYVsxuf8iD5/9Hti5HlIaOpgmc78T46xXYgtzVyfcUrnq7TPf79H/pEm7ljLRD3GKMbca44wjtXKCdFnTOY7Z/tkJ8m1clKHn1b5FVq1IxNgDcgaylMrzd4eTWESe9PS4bPS6DPQbaHrOiyyJpsYhbzKIW03Wb+bBNOVCxtTkGSxBrhJpQGBGKG+HuXqM2TRTfQTF3EXEbdfUm+ipErEIII8okJU4S0tkCsVyRrkLiRyPMj68oUFHjjOV1jEkfjS66vYVp9tD0PqnosYzajGOPoLFE65S8c/aQbeuKLeeaPe2c5j2Fz33593gn+JTyacn4bxVkD0EtwNAUbFVgmFXzpaVDXkJiQIIgyXJSAYsMBgWEmcZsq8HsoMlsv8N6t0G6G5BtVwN36Hs0FhGtz8Z0no64/XxC57uPaV1Uw3bseYqaicp5xoLSr6QnZRuKt2HZt3jSv8ugucdS71bTYVcpQbaipc3o3Lie7LlP0ILPNnTfBslcJ5lqiCc5yUlEeQ0UGqVrotgqmipw0pzm6kZ60vOJ37DILIO1YnNmHPCp+zaPg7c4aR5xtb3DuNtlbjeZijZJYdNQq8ZLu0xQ84I8M1gvPFZlwEFxyleSH/KW8ZC+e03e1pm1Woyb3br5MjYsniv7nLJdZb/zFC9e0V5OuXXxlN75kN2zU3qDAZ1sSFtb4OcJ1rpEWwq0YYkyvmnAVG8cUAIoWwrTrQ5XX9jmsrHLY/suHzmf4yP/HU79faZBm7hpU3gaSl69rqXGOGbl6W0YKbv6ZSU3UU3WqouiQMASlxWGyKGEotTJCwsSAw0DS4HCsFgYBrMsQxmtEMMljJeImaBc6BRLiyJ0SUOfPPYo9D1AQUuWkIYoFCi6RmlZCMOibBpg6lXXtaJQiC6F0q16NnRAF2CC663o98/o9wd0ggmBvajg20xRLEGha8SKTYyNVhaocYEe56hJTm85Yisb0s+HdIsp7XJGu5jTzOc0kwV2nrA0AkZGm2P3kOPWET/1vsCVscVQdJkTkKoOwlDAVhB5STaMyZ6tyM6XFNeXZBefkl5MEIMlxeWYYjpHFAmiiG8kGQKxmmMqVWDob1xsXzcy2Jx6qOoaWDqKZSAMlVQrUUwd03dRbQPFNlBtA82xwDJQLR3VMXGaHVTHxG54hO8KwpXDeUdl4K9JREGKRZi/gdAVSkNF6Cq5qpFmFmlqkscmWahTLHWKlU6+1MlDnSw0qp9rg+S/cMhik3xtUCx/lby00Mmw1AhbjbHVGEuNcbUES40x1Yimu8JprNC8DIwMp22gBypux8XuuKSWSqRrrBRYipKVprBCMDANThSfWJgkhYGIFdQl6EsFViosFIqVQroWaEOLolAoMp2iUMlLlVLcGCUAihAIFIRQQJQookBTSzQ7A7NA81NUL8FoqKheZSJQOgLFFahOgeoVZPY9flRUwG3Ggr1ogr4IWZ6/wLq8Qh1cY44HNKKI/+EvfIMd3aZchTx98oT1es18Puf58+esVqsqY2rb9H/t1+oBP+t1lYU9OTmpE19pmvLkyRO++tWv1iwlE3qSBWazGRcXF1xeXtacIYFaQrJsKFwul7Vl9e7ubg23klMajUa9PoUQHBwc8PDhQ5bLJWEY4vs+u7u7NZu5rgtQa8OlXBaobQOzLCOKIvr9Po1G45UBPJua7+l0ShAEr3CZBE+pHe/1epimyWq1Yjqdcnh4WCcb5XNJDnzjjTfqY+u6bi2FhpdTRTeVEjITv2mbuClTkYAteXazAVqCtLTOlEGClKpIJpMDrOTjJYhv7pf8m6weGIZRBz2bJh6y10N+f/z/DejySeQblMJ6mQ32PI8HDx7gOA4PHz5E13Vu377NdDrl6uqqzrTL6CdNU3zfZzqd1ron6YKyu7tLq9Wq7YHkopD2jDILLzVOm2ULuX8S0qV2SXanA3WzZ6vVqruwX9c2ySqAlM3s7u6yt7dXVwmSJKltHj/44AO+8Y1voOs6t27dqqecPnv27JXGhM1JUlBp6QeDAa1Wq3amkTaRsmmhKIq6aVZquTY7i6UNpbSnks2tcmH5vl8PRViv16zXa3zfp9FocHx8XJd/fN/nrbfewjRNlqsdXGfNydVtfuUbv8li7vLx4z0+/3fPefDbz9DWBc+/8ucY3r1P9H4Tb/oBz369hf2nJ7ynfMSibHBVdDkut/jV6e/gKQmL326g/VcKg+1dVkcuqWexaDVYuzZR5LKyPNZNj/DAJWy4rFsOq45P4hmUhkoqDNLUJklskthlETWYxF1mUZvlaQMhVGwrxNQjDCKUNEREY7LRT3FnF5STa8rFgmSxpFyFEK4pl9VPsQphFVIuQ0S4ho3qiwx4CsUC9wi9eZfC2Uc4h6jB5xGdtwitXRJ9G8ocK7/Gyq+w5wMC9ZKO/hkNbUbPWvJrd0u23v0y7t/8j4kvn6L9+XfZXZ/TO5uhJSX2306xkowS6OYKiSVIkso2fUnlN10YCvPtBtO9Fk+abVZbDZKdBsWWS7EfUO4H+FlB89GI9pMxbz2b0PvwmPZvLfAHa+xZgh6VCPPG+tGF7Aa+y9uQfknjdGufq/YBc7tPJmyMMMWPQ1rqnLY5pWPPeNc544vBs1d03xK+84uS/DRheV6gLaG0TfB0VAPMosSLEvSkIGrbREc2qW+QqgYjrccT643KdtC/w3l/j8H2NjO/xVxpMi+bOMQEyqJqvCxyylwhiR1W6waKgG8k3+FzxR9wx3mGHaxZdT0mrS7joFs1X1ouU93jp7yPSokqSuw0prFecDA5pn01pn8yYOf8nM5yTEeMCPQVfppWDZgz0IYlTG703zcNmEnH5OLwkIs7u1x8ZZfnwR0+sR7wxH+DM3+fWaNF1LARmoKR5tUIeSPCMmNMI8XWI3a0mFw1iDWbTDFruYklkspCsFBJM5NsbZOnKkqZU+gacz9g6TZQ1irMNMRMo5jp5HONfK6RLTSKpUa50qosowAyUZVY8qKKAi3AUcHWoKFWhv8oFGULylbVAGIAJjdN0wLXX7HVvqTfHtD2JgTOEseOMK0UDMh1nUhxyDAwihwtyirXmySmtxjTzwf0ixHdckZHzGnkC5rpgkaywE9D1rrLxGzzwjviRXCLn3qfZ2DuMNc6rNQmsWqRqSqpoaDkBcokRBus0UYrzNmY1vKSRqaRXk348T/7fZJlSKGrCENFGBq6a1HqKqbvoO6bqPd8FLtd/b+podompu/StivIViwDzTFvoFoHU0dzTJQbuFZts4Jvy0AxqmtlGWeIOKWMUsoko4wyRJoj4gyRZIgkp4wyspWGkjq0O3ewlDZ5bHL2By7nJzM8ZwtVaRCGKuFKYTrLSXOLNHdICpustFDJsbUYW4mw1QhbTbDVCENb49oJmpuiWimKkzHQZ1i/fgczjmiM1miBRW5pJJZJZptktkVqm4S2xVhzSRWbItPQViXaskBZgr7WEaGGONcon2qUqUaRaWSZSl5Ut6JUKW/MHRUhbsAaUBQUIdCVAkPJMcjQigS3sUTzIjSnQC98hCUQLhQOZA7kjkJhA65AczLUmwy3UgDLDBYJYrrCjVLaheAws8hfnPHwBx+Rz3O8Fz9Cny85aHf5ha99jQcPHhBFER988AHf/e53a7moYRjojkPW3cO8dw/rxtEGqDlhs+duMBjUpgpyOrr0aJcwVhQF8/m8TlwOBoNXhuRs6pYloEo573K55OrqilarxXQ65fLyElVVuXPnTrXGbrK3JycntZRYutGMx2NGo1ENl9fX11xeXtZmGdPplK2trTobLeUjMnPfaDRwHIfr62sUReHo6Kj2Rpf7tyl3lrNeNpOMMiErPecnk0k9i0ZusvHUtu3aVET+LgF7OBzWlQXJaEBtbyk14pLZNjlJ7ptkRHl/uZ/yWi9/37QClcy12Qu5aQ0pA4VNNx0J3nKfNv38kySpp+ZuHp9/qSZReJk9lydxs+NV1/XayH+xWJAkCYvFgvl8XuugN8X88sC8PpEpjmMuLi5qqYdsELhz506tEx8Oh/X0T/nGNzto5eY4Tg2nEnKlv2ie51xeXtaa7X6/z3Q6faXUs1luuby8ZLlc1lovqfOKoqi2SJJgnmUZ4/G4braQJ2rTW1NGVNPptPZMl4tuMzgwDKMeYuR5Xn3s5eLsdDq4rstgMKhf//z8vA5iZEd+EAS1fdRwOOTWrVsAXF1dUZYlu7u71XjkomDb+j0+HNymeXTBcdrg/9b+95n++h7/+f8g4xf/0g+4Pjrgan+LSDOJNQOtFFhFiicWqKIkSU0KRQcD/pdbFikm/DUF83+eYJYp7XRCu5gSFGt6qwFesaLQdNaaz6JsMMvaTKMOs6s287jFYt1ECLDzIdr8gvTFU5LP/jmcPUEbHNMIx9jJgvKmUqHfNPXkeY4HTCYTkpsO9c2GkJclK8DZBu8+7B6B9/JW+kek7hFYXYguKcITlOgMdX2KG3/K9uID1OiMoy6QTgh8n8m0klD5vk+v18MwDP6d5Pf43ONrltcBk+shg1Mo/9PvsXLB7VSa/ZmjMn1ji+HtHss7TRbvbHN+sEvWcSmaNpgq/mhF82xO+3jK7Z9d0Xl0Ret3P6NxtcKdxlhRNck1KiARFXjbd0DdhvK+wkm/z1X3gIm3QyR8jKzAWa9pijldY0rHnnLPGfGud7ah+9ZI5wbJXCMbCsrTlPA8Jx6DIlREYKHYCppS0kwSjHVG6hpEPY/1PZPC1FkqPsfmEZ86D3gavMlJ+4iL7V2m7Q4zo8lctBGlSqDO8QmxygQyQZaZhPOAVRlwqzjhq/EPuK9/zJZ7Rd7SmO+0GDW6TPwuSycgsmyeKLc5Zh8FUTVfxiGt1ZT94xNa52O2XlzTux7QTcY0jRkNbYUfJ2gr0KeV/IQZqDmUpsJoq8fzo3uc7x3w7J3bPG2/wXP3NsfeEdfBFotmQOYYaFmBKVJsLcYyYiwjQTcKXC3EUmMSzSJSHGwlwWeFK9ZoZUFZQJYZJKFJngjIUhSlIPR01u1e5f43LiinUMw0ioVBubQoliZFaFKuVMrIQC8UHBUaHvQC8ANQLYg6MAsqhpkuIwQmlCrkOhT6S/A2qDLfaoHvjNnuntPrDmk35nhuhO0kmFaKMCDTTSIcBApGlmLEWRV4xAmt1ZytfECvGNMpJrTFnGa+pJEuaUQLGumKVNUZGy1e+Lc4Du7wgfc+1+YOU73LUm9UQYqqkWuVO6KRC8wc9EKglwItL/GKHJHnlGVBlCWUukLZMyh2e8S2QWxqzG5Aefd/+zVEnFHGGeUNMIskp4hTyiiBtEAkOdz8LQ9jiighni5QC1GDNmmBmpUkqzXRbEkRpZCVqKWHobcx9A5CeGS5TV665KpPmJvkSgBWB6E3KY0mGE1KvYHQA4Tug8hR8xWuWeAaJYaaYjgZcangdRS8dozeV1C31rTNEsVVELaCcBRKR6WwVXJLJXc0SkcjtE0Wtk2pdmEFLAXKCsRSUCwEyokBkUYZa5SXKmWmIXKNolApS42yVBFCRVBJk5SbKUziRjKiUKCpBZqaY2oZph5hGwlNL8KxYgwjwTQSDDOnNCG3TDLDINFNUt0i1iwy3aAwdRSnapjEKygsQVGoiDisXH3iAi/J8eOUdpbRncdMvvshz7//Q4rrEe/tHeAIhbPTU8Iw5OLigrfffpsvfvGLvPnmm1XP2He+xXq9ruDONNnf22N7e7sGxE17xfV6TafT4atf/Sp37tyh2WzW/uV5nnPr1i3G43HdtzWZTOopn7LK7ThOfe3O87yeUir/DdXkUQl4slet2+3WCoMPP/wQ27bxfb/u3ZNOcNLucXPWitSsy4BjtVoRBAFpmtbDljRNY7FY1AMWTdPEtm2SJKnBd7PJUuqipVy20WjQ7XZrHbWU7O7u7jIej2vpyyYwywAlyzL6/X49WV2qB2R2XjbhShWAYRi1FaU8hlIFALzipvK6vlwmQaXCQ+6vHD4kTTxe36R0RcpPpHxGNgfL15OKiM33KwM4TdNqL3qZiJbT4aX0OE1T1ut1LZGez+evBB5/1PYnArrUG8kIbdNoXm7L5ZLBYIDrurVWWy7MzchGykQ29USbEYacerW1tcW9e/cQQjAcDmurIs/zatCezWavDE6SEah83c0TLy2jNjPVaZrS6XQoy7J2c5EnelPoL71VO50OhmEwHA5ZLBa1u4rMqMtsvXSokSdGRoJCiFcmp+V5Xgcqr8tzZJPqZDKpj49lWZW+Ko7xD/bAc+m/eYfheoXWCHC+8jkyywDPZdFqYrZbGO0WhmOhuw6xY/Mo8FBcF8U2aTYaTBs+v+/YlJYJZYkWxfxn0b+FGsUke9ugqhSayk+/9GUcO6JrXuCxxotzdD1GNxOMMkOfxOiLNQ0BLUPHVBIi1eaR2amGaxQai6jJfNnnLOpUmfC8BYrClpiwl13jpdArL3nw7oeI61N+/L//HRplgn1TIZhOp7VVZp7nhLrOeqOUJr1HZdXFb20TWy7CPcRo3UO4hxT2PoW1R+EcgHMAZQrhMYQn1W19CuMf3fx+AutzFPHy+dudDr1ej+XZkmazyadnKxzH4f/L3p/HWpZl553Y78znnjvfd98QL+bIzMiMzKzKysqayCJVlIriKJs0rW6pW1YL6lbbECxDbsEQ3LaMdgvtht3daNiQbMgSYNmyYRmyQaglmiJFtlVksYpVKtWUWRmVQ8zx4s13vvfce8btP85bO/a7FZlFijSMJnIDD2+6Z9pnD9/61rfWev7552m32zpI+MUXX6Rer/PC7V/h8XMXmPTbDD/zIunDJZNrO5S7bb7Z9jm5sQN2TvPJlObenN7DER/7zXt84dE3ad6fUDuICeY5SsGyhFUBaR3KbbA2oXwNDne7HG5d5qR1gaXVwikhnC9pFVN6bgW+L4YjXqh/28j3bVfSk7FDOrRQd1LixxmrI3ASKjlDy8d2ICxyOssEZVnM2m1mNyKSIGBlBRy5W9yv3+D9zgs87lzhyfYux5vbTKI2E6vDoqjTsGY07RlhucIpCsrMIV5GzBdt3DLnjeSbvJZ/i2vhXcL6knmvzrDTY9DqM446zMM6A6/BN/gkDgWWUgRZQmM5Y3u8z0vvV1li+o+O6I4HdMsB7XBKW8VEq7TK/32m/2YGSz/iyfYu7+6+yMOLl3nn+Ze4373OXusSh41tBq0ui2ZVEMwvUgI7IfRW+G6C72VYTknbGVOzY5Z2DdtSldxELfDLFJWXlJlNurApYws7Ab9Q5KHPqN9k1OzAbEF5EqOGCeUkp5ymlIsaedwkW/XI0wb2cobNBFvNwF5SWCvwfZTfpAxasNHGC33yrALhsxSexMCCM9DNWRUuwHdp1odc2Nqjv3lCuzUhqq8IaylukJ7JMXwSAhyV42cp7iqvwHeS0lzM6Ben9MsBXTWiU0xoZzNaqxmtZEY7mWEpxSDocq95lfuNa7xde4WD8AKn/gYzr0ls1yisShqDUtgluAU4mYWXWrgLi+YS3NjCWYC9srAzG7uwUZmFndsUSUk8XVEmBSqF1aAki3OOD04oM0U9bEFp0W70yDPF995+lzQrsWyPvLQoSqsqYmD5lFadMOrQ6G4zWaQoO6Q4C97ECSorxw3A9sF2sVwXZTnQdlEdB6xqc7Yla0ktx2nkuPUCt5ET1Quceo5TL3DqBXaUY0cF1E6xwtMqiDqwKTyHwquqcq4cj1Xp4CZtVsuSfJnjJApr5cICytipcp6PXYpDlzz1yBOPPHfJsup7UbgobKr8NwoFqNIGZWHbOa6d4zkZvp2eAewlYbQkcpZE7oK6N6Nhz3HtgrKwK9mJclk4IWmtwypsEXshS98n8T3SwGVZazGNGrhRjlUrqtoQucJdKuwYFsMQb1Fyyzmht1zRHa/wTo8Y37nH65/tUXvjLaJJjegrn8IqHa0Hlr0Y4Lvv7zF5WMliP/GFF5lMJkzO9NHHx8dcv35d5+OWnO4S4yWgU1Inm/u0AEvf95nNZrz33nsaaEphRZGTyl4trKvc33K5ZD6f02g0dMFB0YbP53Odr71er9NoNHQ1SmFlJcXx+++/T1mWdDod6vU6Ozs7HB4eMplMuHTpEnmes7+/z/7+PtPplCtXrhCGIXfv3mU2m7FcLun3++zs7FCWpdZuyz2JUdFoNHScn23bWm5isvCO49BqtQC0fHlpEF4vv/wy8/mcu3fvahxnZjPpdrvMZjOm06nO0iepGwXcSv8JlhQAHkWR3udNCYjcl2BIs36MmYlHjDAxFASHCnAXvCVGieA9wWlmFj8xeMQAEINIjhOcKfnaxfiRbD+iYhD9vci4AR3U+2HtQwG6BFWuW0dSxEcAZRiG1Ot13n77bZ0JRFwJZqWkMAzpdrv6RZuD3YziFcY3DENOTk40cJZywMJmy6CSY82KUNPplDAMdZCo6K1rtZpOmi8vXJhnMwm+fHddl+l0qgsryIubTCZ8+ctf1lVF5aWIRMXzPJx6RGKB36jjtJtceOEFgt0dlG2RhwG18WdwWk2Keg2rHsHZl2o2OGlEFGEA9YikHkFUg3pELfAZ5jnMY5zlCnc8pZzNceMYe7agnM0p5wvS5Qo1neGdDgmyjGQ0ZnF0Qtv1KGcL3njpJTajBsV0RpDlRK7HbDqtmOckYfrzf4L7/8bPsPm17/AXHwxJ/jsxi0tzUNC/s8XwhQGlX4AFalNRBgo/9oiyOs7C43G6w28vfoyTeJsoXfDy6B47+ZyXktsE4wO66YSeU9A7YzLEY7H3z/d4/PgxV1s1VqvqHWxsbLC5uUmapgwGAx7vPWGaVeCb6ApWo2K+R/WrzFrXKWuXKNwWbnYKi4cUq33s5WPs4TdR0/8XzB5Qzh+gkqGO6P+gVnlnLc0qxHGM53kMh0OdV/f+/ftcuHABz/O4efMmly5dwnEcvvzJP8O//Ms9lOtACc3bDs3ThM/9g3/C879+B5XYLN0ap5t9lrWQ0F+QtAOe1DZYXNll+lqHw42LDOo75I5Pw1rSL0/Z4Ygt95it8JR+OOB69DZO880z3bdNPKsxnTUZTru8d3SN06NPMhl2Wc7q+KuCXjliuzxiRx1xoTigqZYc2Rc4dfuMvTYJAQvqnLQ3eLJziSdbF9nf3uXJ9kUm7Q5jt820bOOR07Qn1IjPAi8tkjxgMWkSqzrX8vt8evl1XnXeYiM6pmxbjPsdTtqbDBs9JlGbZVDj+/bz3OUKFgqnKKilMe35hBeefJ/ekwHde6f0D0/oLY5pOkPatTnNPKW2LCpt66miOLU5DrY42Njlu9sf593dm9y58TyPN65w0N5m0N5g2mqS+R5enuFbKaG7qipZehmOU+A4KT17SGTHZJZH05pXKRXVCjvPKVOLbAbJApxYEWSKwnOYb7SZ9reqylijGDVMKcclxdQhX9TJkyZZ1qbMPFjF2ATgNrC8stJJ+y6qGaHaEUoFkCjKVZMybUFqQWZBzpkoFyiAlSLPShy3oNsbsn3hgN7GgHpzShTGBEGCE1QFghI7IMPDVwlhmuAkFfj2VhnRckG/GLChhnTKMZ2ikpw0l3NaqxntZEpQppx6He7Xr/OgeZV/Gb3IE+cCx9YmY6vD0q1R+A5OVFZxBwOf9CggOQlIBgGr0xqrQchqUGN1WqdY+mcPArZV4rkFgZfheSmBn+J5GZ6b4fspvpfheTm+n+G6KZal8LwU1ytwt2pYCvrbAYVysGyfEo+VXSMvPHYub5EXAVkRkmWVPCTNaqRp9X0FUF9Q78QE7SVBa4XXTvBbMV5zgtusNMx2BASVZyV3nbNAXI/U9kmtkMQKUJaDX67w8hVOnOIs0irV5CKnnEMxs8kOPfKlR74KyBOfsgjJcg/baVAon6xwyJVDxVaXZ0XlqBhtBQ45Djk+GT4pvlpRV3NCtSIo5tTyKWE+o66m1FRMw8lJZ8e8++a/4sbNW/idHYqwx8KpM2t0WIRN4nqdVSPipNEniy6Q1R1UZGNHBW6UYUVlBbjTCnCHiSJKCnppTDvLaS9XhPtD+llCfnRCun9ED5tsMtNBi+12m2azSRRFmlA7Ojri7r0n9PsX8R//mNb8Yj0t9GPKV0UOsLm5Sb1eP5dlrdPp6KBC8URLKkGpkClMqgAx2ds9z9PSi8PDQ7a3tzk6OqLZbPKlL30J13W1lEVYcdF5CyYS4G/btsY3tVpNA74kSc4lyhBQJnhFKokLm9rpdLRKodfrYVkWR0dHFEWhcVGtVmM0GmmsI3F7e3vV/inSDJH8ivf/2rVrnPgR49LDHQ6phaHOQjedTrUMuNvtam//bDbTVVJFDXBycsKtW7c0FpPkE5Zl0Wq1eOGFF/j617+uCxn1ej2uXLmiWWrRwEsTHCmSaMGB8rsZ8CkSXTOAU84hzLqMnfX0jWKciR5cjCTBkGYtAMuyNPA2MwoKiBdcOpvNtIZd+lywrcQFmLhSxo2Q1B/WPvS/YtnIDYjrZz6f6wdfLBZ8+9vf5lvf+hYnJycAuiytmQbHHJiSHtD8vzyIBHceHh5yfHysM8JEUcTW1haj0Ugzy2L5iEEglUAlYf7W1pa2cux/50/z6Kd/nP4//Kfwa1/SQRqSBseKatitJnazgdWsY9cj7FYTmg2KZp2iXod6DatRr0Bzo05Sr1HWathRjaheg0Ydq1HHbtSxGhF4HtFqhbVYYsUrFgqSJMXLMtRsQXMwJCwUajYnn05JnxyRjycEeUE2mVKMxljxEjWPYRFTTKYERcknXn6FwWCgLVgzP+h68EStVmPz6lXiOGa8t4e1ucmnXn+da6sCO53pQF3/bKES18yVt+5w6zv/O4qi4Pu+T3Qc0fipCG/qYz20CVs14ktzyOH0fzHCXbm8+OKLtNttsizjRRfsXo1aMeeLX/nbfKZXlQd+8803z0oxV0UWXnjhBa5du6alTA8ePODdu0+Yqx7R5ku0dz9GHlxgmDSJG32SrW3y17ahSM6Y74eoxWOc1R7h8m28/QP6tZhy/phlPGM4mpIVNo53lgvSDgAXO7yMip6jpGLUsIUtC37gZ9uvQ1DnxPLxwibK8lgmBdalGpkbMnNCnthtgl6Dg5M+//i3fVhm2KefZvY7XTI3oFx6FLlLrmwy9TcpPu1CAI6fctHb46XgHT7eeJMX6+9xPXjA9XCffniXVu1f4DfTM923xWoWMJs1GE/aHA9b3D3cIT6OKIcOtWVKW83p2RPaasINHvKKeofU8VgEdeZBg7gRMXPr7EcXeLPzKg83rvNkY5fHO5c56W8yC1uM6ZAVHk1rSt1eVHro7KziZdxgXraolUs+mX6LT6b/iuvh+0T1BfNunUGnz0mzz6jRYxY2OPXa/I71OVyqUu1+llJfzulOBjx//126j4d0757SG53QyU5oBhNa/oJWnhHEJfZYMVu0OVAXeNLY5Vtbf5z3W8/zYPsaBxsXOO5tMum2WUYhdlmel5u4Ka6Tg6No2lM8OyWxA0JrRVPNq5zeeYbKIIttkoVDvnCxsyWO6zNv+yx6fajZqERRjByKiUsx9ymWLsXKo8xcyu/bUFoomzPZSJVthYYFvoK5gvgsH6jXosjbkAAxMOLMCqRil23O8oZa4BT0Nk7ZvnBId3NIuz0hqi/wgxTbLyg9m8QOAEVYrgjSBCcpcPMCL0kJkxUb5ZBeOaJTTmgXU1rLGa3ljOZqRjud0SgWjN0m9+rXude6zrdrn2C/vstpf4OJ02Lp1sg8t3qeQmEvUrx4iRfH1NIF2/kpQTonUitqRUxgpdiuwvEUzmWFda3EdkssR2E5JbYLrm/hhS5pHrBchcSrGvGiznIRES8axPPo6e9xxDKuM4gbxLOIOK4Rr2os0xpWoAg7MV59gddY4jdTvCjFb4FTy1mWM5Q/QwUz7MAiCG28wKMWBqhaSBlF4PmwWpHPZ+SLBWoyR41XlKMU9bDKusPSoYg9ktiBIgIiLNuvyhy70Rn77qGcgJIzRkydAWysim0vSyhSrHyFlS1RyQwrPcEvFuz2IjbrFhuhosmce29+lZ2WTz4/JXIyNiKHuq9wRC/r+MxVyKwMSdwWC6fONGox77cYNbosoxpJIyRv+BR1FxoOD6KK5bejEisC0hJ7XuAuUrx5TGc+IJjNaYwXtBZzapMR3nSBM5pijaa4acZnPvMZtra2tPtfANB0OkUpxZtv3uZkf59FFGl8IJUsr127psGV7/sMBgMtkzUTJgjgkvObQbkSNyXNZDol41oQBBp8ybUEBEnQozCqsk+KpNXUF0u2NykAJPcmwNesai7HCNYQvboAV9FuCxAU+YUcI4BOriVJNLrdLnlR0Gh3uL6zw+lggN1sEUZ1bMdhtlwyGk/obJccDYbsPH+V7XaHt9/5PoPRGKu5geW6zDyPd52IrZ1tfqd3md/5C/8uSina/+Bv8cJv/COt/xZ5xmAw0EqB0WhEFEX0ej3dT2VZsr+/z3A41AUbNzY2CIJAxxceHx9rqWe9Xtd52kWrX6/XtSEyn8+15Gi5XLK3t6cVCiKpmc1m58acSIdNDbgUfRQptFnUSNh6Yc1FTm3KXkzduGkcyjObig3HcXQeeGHmZSwJCJfrSQIS8cBITvj17IjPapZSH0wh/qN/9I+I45g7d+6wubnJ66+/jm3bPHr0SCe0v3PnDr/8y7/MYDDQmmrbttnY2NAaHHF99Ho9nQ5HXoZYK3LDFy5coNFoaFeOSEOkM6UTTN2RaJdkEgNsbGxorfb2Szf57b/zH1fZB8qS8q13Kka6EVXMdaOOZduo+QI1j1GLBczjKnjw7EvNFtXfF8uzz1Vf5WxOOZ3rn614SViUXNvcIj4dUp69qCiK+PSnP81wOGRra4sHDx7oABIzKb4MJKkAagacJklCFEVcvHhRF3q6f/++NoAkF+l4PNbSD9u22d3dJYoiDg4OCIKAL37xi1y/fp3xeMxisagWIC/id4a/QJyHfDr6h2x3nno0hDUWVqMsS6JGhP+8z+TOhPlRTBA18YI6aWYxmsbU6m3ywuGd9+9Ti9pcvHyD0TTm7v0nqGCL4SqgDLZwGrsQbqKCDTKnSWZFFHhYeQzZAqdcYeUrVLaizFaoPK+Cj0pQeE/BtBNW3y3/zEUdVqlgpMJgkYBKoEwqaUu59nPxAX9XKTZZFZDlQVmsyFZzXKdE5Uvss4IcO5tdXrx5nbc2foL77lW+ePSr/OR7/5gpEeF2Sae/YrM1Yys6Zis8ph+e0qmNCesrONN9F0uHbOVSpA7qqEDdTigeQfYEmIPlBdSclJqvsN0q+02JTaa8qphHwyNxPd698iJ36zd4r/US9+vX2etd4qi/zbzZZOY2WFInUEtq5RJPZVilQuUWWe6zVBGp5bOTHHAr/h4vO29zsfkEr5Uw79UZtbqMml0mtTaLMKJwHHxSbEqssgLg/iLFGRWkTzziew3SBx6dYsKGf8rF9mNedN/nudl9utMRy1WN06LPe+4LvNe7yYOt6zzpX+Rwc5thv0vcjFC2jacquUngrgjcBM/JsJ2S0rZ1CXnHLmkyo64W+HkCGeSJQ7IMSJY1kiwgczzyWsUSKt+mTO0qo8nCpoxdisShzFxUblcqXMuqZCKeDUWJnebYWYaVJLirFdYyg0ShUpey8CnKgFJVebAVhvuyir8ES2FZOa6/pL91xNbOEZ3+hEZrVem9/QTLLyk8l9TyccmIihg/zbDTArco8MoM30roMKGnKvDdSme0V1PaSQW+W8mMZjpn4dS417zOncYNHkeXOA43Gfpdpl6T2IlYOTVSy8NRBWEWU8sWNMmJsgQ1GePGKcxzimlOErssVyEFHVZ5i2W+wWoVUCxVNV1SULlFnkCR2aA8stxhlQasshqrvEZS1sjCBkVYQ9UswmZKrZER1DO8eo4b5di1AoKsSndXq7xzRWBRBJCHDnnokfsudlHirVYUownWPCbMcuz5ikZZw0sc9t57DEuLdFayWtiUeY1S1VBWvfpyI5QTgRehvBo4flUVTZVnX2cvzrKhLLDKKrDRLlZ45Qo3W1AsBhAPKefHtOyYq92Ahh0zObjP+OghKh7hq5g0npIasU4CMp577jk2ti+ycpuMM5/UazNWPt6V61g7u+TdDlmrTtaskdd9ioYLkYUTZVXRm0hVDHdS4iwKnHmKO1tiDyeUx8fYJyd0VzGt5RJnPMOfLWhlJflsrlk8YTUljZ7UNknznKOTE7KiZGNri5/4E3+CoBbheB6O51MASZYxj2NwXL717W+TK2i029iOi+N7TGdz6u02UaNJo9XC9QPSPOfNt98mzQs+8cYb+GEItg22TVYqirPMLblS5ApKFEenA959/306vR6XrlxllaYcHB2TliXxcsXFy5dptNtEjQaj6YyTwYC8LFkmKY7n0ep0CaLq3gsgK0pOh0OUZVMAtuvi12rYrlsVS1JQKAWOg+161T3ZNsqyycsSNwjwgxDLdSmUIi8VqzSjtKrK2ZbjYbkOQVjD8jyKsiQrSpI8pwRwXGzXfXo9oFDoflCWjfoA+YNVVlI/qyyrLxQUBWWWYVtgK0WWrFBlia0UlEUV02FblFGDVasLlkX4zd/htf/yr2sgOp/PNaCWLHASK/jiiy/S7XZ1zOCDBw8Yj8dcunRJqwdEulyWpQ6oFJmveB8AvvnNb1Kr1bh69SqO43D//n3CMGRjYwPbtjUh3Gq1iKKIBw8eMBqNtI47CAIajQaDwUBLoCRJhud55+rVCG4SkG1W9gzDUOMbwV1m5jzBVWYcmymPEXxkSpTNa4iMSoJPJV34uoxGJNa/b4D+cz/3c8DTKky7u7vaVSKA7fbt27z55pvaShEQvbm5qYMZ5CH6/b4+d7vd1lWsJAiy1WrRarVIkoTHjx9rsX29XtefW8/iIpoj0wUhwReSB730XL79D/4LqAWowYj0L/418smUbDypAPlsjr1KWLdlPsy6MQMPzahg13W5cuUKm5ubPHnyhMViQZqmtNttrl27xunpKRcuXODOnTv4vs+lS5e0608G+YULF3j06BGnp6ea5c+yjDiO2draIooioiji6OhIB2oIS9But5lOp9rCl77a3NzULphXXnmFV155RTMY9Xqd78d/jC+d/hIlNk13TD84IS9tstIhL2yU5VHi6QpzhXIp8MmVS4U+AFVUOX7tHKwSx7UoVInlOmDblLaLst0qXVa+xMqX2PkCt4zxWdIOC2pWTMCC6eiY0eCQeD6GcoXnKCyVkSVzHCvHIqNIY9LV7Ax8pxpY22S0mjV8z2W1jImXiypxheOjcLEcD8cJ8IIatXoLhcsqzUnSkqKkAva2W+lVbQ8sDy+I8PyQJFO4XoDnRxTKBsslqDW4dv15Nncu8xvqU6DALTK+MPgtruf3KG46ZJlPkoUkRURS1MhUjTIrccZLssIjsUMWNFEFqKIqFpNbFUjLbY/U8sjxKFyLtOWTN12Kllfl0j4r5U5TQZ0zCUSJnYBVnAENG5RjU3o2dlZwYbnPc+n7vFR/h+3mAX43YdGpM2p3GEdnqQf9oJIUkFXyk7wgWCWEsxXecYr1WFG+a9EazdlUR2zWjrjQPGC32MdPS8Zlh8dc4X37Be7Vn+Nx/zL72xcYbPZYdOpkgY9T5gRWQuCsCN0Ez0lxnQJlW2S2R+IE5Jar5SZhEeNmOVZaUsYF5aIkS12WZcjcbZN0+qSlT1F4qCWUS5sycSlyh7JwUcoG24KixMkz3CzBLxeE5YzIGtN0RrS9AXVnDrnLctlhtuwxmW8xXfWI0wZpEVKUa+DbBmyF42aEjZj+9gmb28c0O1Oi2pIwXOEFKZanyF2XzHKJiKnlS9wsx0lL3CLHJce3Ehr2vAq0LCa04ymt5YTGSpjvOZ18RmF73G3e4E79OnvRFU6ji4yDTeZeh4XbYGG7LKwStcqwTuZwNMGfJPiThHCW409LimFJPrQZHiccnC4pnAbXbr6O8lrsny6Zpy653SS1IlZWQBKGlPUGqhlB5OCGyyq7Ri3HjqqUqCoEahaqZkMN7FqJXSuwIgVV7BluWhJmJVGeUUsTnGXG4UkXFhY3vAPcZQYri2JpsZxbLGOXVeJVBZSoUVoRq8IlUR7LwkLZflXR03Kq9QVxfVf6a1SBrfIqd7lKsMsEu1xh5Qt8K8FliVvOcdQC114RuDmOnbNajsmSGc12Ez8MKK0qS4ll2yR5wfFgQF4UZGWJFwT0t3ZodPtkZUBahqSlT+nUyIOQzHPJPQerHkDNgdDGjizsSGmNuh2V2KFCZaCWVpXOKQVSBVkJeYldAqXCym1U4VBmFUFvOQ4FFuUZsM3LEmwb2/XO1t8zY8O2q+qsjoOyrAoMYlUA1Larv9nPBod2WWKpChRaZQkCEpUCVT79v1LV97J8Oj1Q2EpRZhlJssIuS+q1Go7F2edU9VyqApbWGbi0lEIVOUkc41gWtcDHKkuS1RKrKCnzjMDzCH2PwPNIl0tW8YIiy1BFYZy70Oe1yhJVFlAU2FR/s3kKflVRQJFjKbBUiVsNKKyioChyPMuqdr2yPDPezoy6osAqCxzLwlaKqBZyaXeXdBkzm04ZHB2RrlakyYrNXg/fsSmynCJLWcUxtiqpBQHpakXouVhKMZ9O8F2XVr1OeZYZZjAY4Ps+r732Gg8ePNDSHmGw0zRlsVgQRRFKKXq9XuUpb3d583/wN0g2d7nxt/8jto4fa0C8Wq00kLYsS+MMIVqlGjtUqodWq4VSinfeeUfrr0ejkQa+0+mUGzduaNAqAP3999/Htm0ajQZbW1s6cYdt21y4cEGnVuz3+3S7XU5PTzk5OeHxWVCw5FQfj8f6XuI4JooigiDg4OBA69RNT4ngIVFzSDyjKZcR3GfmTJfjTMZbziOfEcBuXkOUHWaqRtHoy+fTNNXP8az2oRKX/f19bSUA2ioSS2OxWPDOO+8A50vdy8sWfbew3GZml/l8fq7qZhAE9Ho9rT8XzbmUepUsMNJR4kK6evUqSimdxUQqVnmep0Hp3XfegZ/40/Ajb2D9i6+i9g/JDP26ZZ25lA1AbrornmXDnM8I8jSljwSn7O3tcXp6Wi1qZ4GqEvApkeNpmnL37l3y3hdJej/J5fyfcbU705r5VqtFvV5nsVgwGAx0QMl8XgUnCsMuuqiyLJlMJpRlqS01sWClMJIfBAyGU+IEVrnPZBQTP5oy8h9TeiWg6HpHPNe+j2VDulxiWSW+76HKkjzPWK2W2LbFd4ufZ656QImTDSmdyt1r5QmkY+w0xsnmFOkEV60okilFMqs2UNvHdn2KElLLI7NcEj+iVm+i2KB0N1m2b5I3LcChcAIc16fEobBcLCc402baBqD2wHIpbY+xMOdQVTcqc0qVVaVGVUZBQUlBRgGqoMwTVJlCnujPozL9PVM5WVkVdinPin9Yqqra59dDaq0dprMFneCIsb/NK+k7fHHxm3ifzPDbGSfZiwx4FVfl3Pzdf0xn9ITp7mUuHH4PT6Xkvs/97lWmrQZFLeCk1We/t8OT3kWG2xukdZelG5CogLpa0HZGBFaCoxR56bDKakzSNsQWu94eH3Pf4uPO97jgH2LXcibNOsNml0Gjy7jWYRFGZK7LQy6wTx+HAr/I8PIUuyhwkpybDx7z6Xe/ge+muGGGG65wnRw1hYP8Ivfs53n08lXe81/iqLHDuNEhbkSkgYdlKXyqnN6hu8J3KrmJZUPLnhA6KxI7oGataKgZdRXj5gkkNsXSocxs8tJjVUTEWYNptsFxcZG88CgzG5XalLlTAW5KrBLsvMB5nFWl65MJUTElUiOa6pRGeUiU7VFLHlOuLCbLLUb5dUbZJaZcYW5vMbIvUNi1ivmWpUDQhaWw7IywNWN38xEb26e0N2bUG6sKfPspyrfIzwzlJjPCPNHGhFsWuEmOX6SE9pIOU9rJlNZiQms1q8B3sqCVzOhlE2wK7tRvcLf1HHeDqzyJtjlu9hg5beZunSys4UQBjnLwshAnqcEyQE1C8mlIOglJRiHxacjddw/JHRflV+kAS9cB34YQ7OsFzqtVNg2rVjGyR3VVsdeBwgqpUiz6VW5+N1OoLIZiUVGFhcIqLFQJFDakNmrlUCQWKrEpp04lB1o6qMShTGzIHMjPdPXF2Vd59oXFY66czVvjS96DCzgKPLBcBZ5CuQWWW2AHS2y/wK1ZeIFFkkyxPVAkFTgUUHkGHCkLyrygtFzSMiIpQizVw7MtlpaNKnKKNKPIFYkVUeYulC5l4VL6HoVtk78ABA5u5GBFDqPIZnIGuJ3oTFISgpOCsyxRixxrucJaJJSzBfbRHKZTysmMYjTHXqbYixW9qEEjquE5NlapsC0qhlSVuLZTgUbHxi5LVJFjUTGneZJgKUW2WlLmGY5t49s2qizIkwTHsgh9H1Xk+E51nnS1OgOhNkWW4rtuBWCLnGS5xHcdrLLEP9NxSzPrpJjAxcyXLX8DPpsNXgAAfy1JREFUNEiRnNsiaRX9uWALkRlIKkHJiCbnEWBkyhPM4+TeBCeY9yh7pRnkKeSWmW7PZFDN/V+8/SJfWU+TZ35WQOf+29/WEhcfcIqCUCmy8SkZTyu2k1XpdiX5wezMyyL4aDGZaM205C9/6623zgUbilbczEwiumr5e/+v/4VK1dDpMD8D49PpVPdjq9XSchvze1EUPHz4kHa7zcWLF1FKsb+/D6CvJZhkPB5jWRZ7e3s6Y4tk5ZP+XiwWPHr0iDiOuXXrFuPxmIODA1zX5fLly0wmE5RSzGYznd5R9P+Splsy60gApsivzGqg62kNpS8E/5k4T96nmTHGlLcIeJfv5vhYHwuSNrIoCp2wZP1LsuV8UPtQBn13d1ffvADfWq2mO+n4+FhnUxHG1qzMZFZQajabtNttLfqXJpOz1+tRFAWz2Uzn3+x0OqxWK51mx0yD6LquzuUpuq/ZbEatVqPZbNLv93FdlwcPHpzTL4mYX0rYyt/W2XIzsOCDusgE6YCOCpeBIy/Stm1eeOEFoijSg+Sdd96h0Wig/E0e3vqdClwWMZ3ZPyGsNcGqmN4sByyXQllkBQRhncUyxXZ8lklOVdXnLMOA7WE7/lmwlIOyHKwzBlh/xnra9xYltnXmYCvzs3jJEkfFFfi0Shxb4doK1wbXUVgULBdTUAWL8CaZVWkCg9l3sdNj7GKOTU6WxliqxHNhGc9wHfAcSFcLbKtAlTlpsqDMkyrjwNn1uu0GUeiR5ytW8ZzR8IQyTwh8h067jqUKFvMxeboClZNnS9IkhiKtgLXK8T2bKPRpNWpcvLiD77ncu3dPF0UQT4yMnX6/T5IkOhpfgqPXNWKmTtD3fZ1m67XXXuMnfuInePvtt5nOZkz6z5F87mf5gn3KLWsCbsI0KXA3NshPDxg8fIhvJQw6Gxz3tjlpb3LU2WQeNXApcK0cj5R2PqFZTslCj9z2UDZEdkzLmdIMJnT9IRv5kAvZIasg4Ki+ReZ4ZL4HNlXFS4oq9zcFzlkOcNsqK0kKStukWeEyKVuMki5Hi22O59scp5sMyg2mdotVWCMLXErbxiXXwDt0kqq8uF1SOjaZ7bG0woo9ypcEaYqdFpSJQ7bySTOftAiqnM5lQF54FIVLWdhQ2lhOiWWXVZBcQVWZNlNYmYK0xEoL7KLAsjOUtUJ5KZafowIFlkOZeZSJD4sa5dJDrTxInQo8lsYctzDAN9hBQdiJ2dgesNE/odMZUQ8XBOEKJ8jBrap0+mRVdc48wc4K7EzhqALXyvDcHN9NaBWzivVezWgmc+rJgkayoJ3M6KUjasWSe/Vr3Gk+x4PaFZ74uxy6WwzdbgW+PR8rsChSi2TikUx90rlPughI4oA0CcmSkLQMsEIbt6FwGuUZE1uegesSFShKT6FcBXmJlZRYWSXTcbIcJ02x0wwnzSnmS+YnA+wl9GobLEcrZqdzQrtB4HZIlg5p6hAnNqUdnWmvayjbp7R9Sss1JD0KS50pRKjyYNuqqIIcVUbNLWl4ishOCVlRs3LG8zrvHGxiZYof3/0+b3S+h18s8LIps+M9akFValxyS9dqNZ25wsyaJeTEjRs3+OVf/mWdsUsnBEgzxito7FwncVvEVh3V3iLp9km7XfJOm7LbJm/XKBsBZd3Frpe4tQxbS0osWJU6B3dxMoLTIZyc0lwuuOI69EqFN13gTRfYoyl2WgE+kQ4sl0u9HtXrdQ4ODjS5srm5yebmJvAUjJqudkCDYNmHZJ8xK3DL8bJ3ivzTrJYt+6F8TvYskz0U5lPAjTRzf5MvszaJyGfM+xFpjwalZ03kFOZ6K1JWYUPlPGbFSvPzplEg9yCZQCRIVEjC9ec0PdjrzyrXEa+9mU/b7GPpX9HTmzpm+W4Gq8r5xbBYTxNoFsR5loRCDABp8nfRuB8eHur7k4BY6RPR3Is8WAo2bm1t0ev1tBdeAm3DMKQsS8329vt9nSbw8PBQZ8mRjGv1er1SL5yNXSkyKXLn3d1dXSV0Z2eHT33qU0wmE959913CMNTKATPt43w+1/V3ptMply9fJkkSnQLTLNQk/WsmITHniYnvzPEmn1k35kwWfT3Y1zTspMnxkqPeDB6V+ECpZXP//n0+qH0ogy4SE9NyECnLfD7XqQXNgWfmFJcbNvXV8kDywNLhMqBnsxmO42gwnyQJWBZqY5vy5EB3huiTxK2zubnJ888/z9HREY1Go7Jc9/dZLBbnAiZlwTYzt5jtQ+yVH9pkgpqZaqCasFLuV/KCanbBoIkscoJ8n+Q0pswTGvWQjSjAomAxn9CoB+w0+wySQybDAU8ePwCVUxYJqkhpN+sEnk2zUePocI8iT6jX/KoqZeDS7TRoN+t4Lvz8z/00k/GI0WiE53k8ePiQwXBErkqUZZPkOc1WmwsXL4FtM4+XDMZjjk5OWBwdE9brvP76j/HE/xH85D6Rf5v5csl4MkE5DrFKUIDjB7h2ShBFeEHIcjolsyws18WybGzLxgsDHM/Ddj3ysCDc7pOVTUL3Aulpj3iVkFkw9Hws16NUitKysD0Hx4XIs3BcC8e3qEU+jWYN2wXHVahOk8K32M1i8iLB820cFxynxHHBdRWeZ2E7CscucV2F66jq/46qfrernz3jb55d6M/5riKx73ITF9duYtuHuPw9XLtgDFWJ9dIlVx556YByiQsfTy3ZLvfYKA55oXDJ1dkXLpalqDlLQmdJZC+pO3Ma9oyWNaNtj2laM5YqZFa0qD1KWKg6e8Fl4qzGhDbjvMNy3mWV1ZnHHovUZ5nWSIuI3PVJfZvM9VAB4CtK18amPNN5J4QbKzw7w7YLWkyolSuWRZUdI8yrokPWDLIkYpH4pKlPmnvkpU95Jnuy7ALbK7H8s0BBVWIVCpUCCdirkmAZ48eVbCZazomCBfXmkno7ptFdEGwucOo5ueuSFHVGBw0G+21Gpy3miw6rbKOSC+FRBeSxBr5L3HBF1JrR2zxlY2tAqzsnqlcFgxy/oPRtlG0REdNggZ+n2FmJlZcV+M6KqrCKVdBI5rQXE1qrCa3lhPpqQSNZ0kzndPMpjXLBXnSJO40b3A+u8G3/NY6jLQZej7nfJPEDCKDIHNKVT5Z5ZLlHVthkmUNq2+SuT555lFEAPQVBggqWqCAG9xRmM0jG/Pf/u79Ax4Km5dDCpVbY2ImFWjmolUU5sYlj+M/+y79LvXeV1O+QOHUSOyKxm6R2SGYFFLZHjsjPFKdnUgMFlWQkKXFUjmOlKGuBk8X4yYxAHdN0c9pOSsOKiYopdebYyYQaCU2/wC9jfCs/i4Gt9pEXXnhBp12TzXwSTHkz26bW6PCJ7T2yrNrQR6OUaZFTFM45o1qv07ZD5+ILZEGHxGkxyVweFB5v+Zvc/uPXiOsRZbeFatdR7RCaHnZU4IRpJSmpK6yaDasCZ54TzBP8+Qx/dkgwmWDfO8I6PuRavUUYr7AGY9zJHJKUe/fu6SIykkO6c/EiV159VXuD1Zk+uTgDwkI4SRaSGzducO3aNYBzYEbirzD6TQCsWSVRwK6APfG+invfBG0CNkzWWEgv+V2AtoAcOafsYyYYkc+Y2mMTMJrstZy7VqvpZzSv9SzQbQbtyTPKXi6pigVgy5gwWXTpJykGJPdkpuETwBhF0bn7F/wiuEXOK3Jc0esLGJfAQFPrLPct5xNVgUgfzP6X4FZ5HgG/JuMr70n6QvrBfA/SwjDUxqCc04xLEzwXRZGutSJBsjJGbdtmPp/T6XR0n25vb2vsd3R0pGuPiPdeCvJIf2xsbOhnFxmOpNQ2M9/I/7rdrlZCzGYz4jjW0hkxWrIsI0kSXVhJ+rNer2uJjqSXPDk50QTts4C5iQFNptz8rGl8mlIWMYRMGc26qkLGgmnomnEo66z7evtQBv2VV14hDEOm0ymNRuNckICw52IZyU0KSDUtUNd1dSlakbrIIFmtVvR6Pc1yTKdTHUQqOSMXf/PvUP78vwn33oF//7+NbVm4vo/j+QRRRNRo0On2yJUizXPqrTazRcx4Oq0CzMKQoFZjlWYkWUahFGlRoiwLy3GwHBdl22A7OkgDx6n0es5ZaWv5v3OWy9dxqmMs4zjHwQ0ConqDOE3BtrFsB79Wo7+1zWK5JGo0GU7GZEWJVwvAdijcPpm/iZcfEPiKtCgoFZRn9+f6Acq2CcIqKAXHZZWkLNP07B4scFyCMKQ80xjmZQlOlb/Xsu1KU+g42K5b6RIdl9KyKC1L6w/PN4VTZrhWjk+KR4ZdpjjFEpsMT6X4dgVcPCvHJcOzCq3tdMhxrQyHrPqZDM8usMlwqfSdnl3gWgWuXeBYBa6d49olnoBhu8Cx8qq0s12c/U3hOiWuUyK3XBRUlexyi7ywKAqLIq++l2XlNSgyiOOMPFNkWUmWKvIMilxRZFWu4DxTFJmiyKFIS9JVQbrKydOSLC0p0oIsKaGwcG0fRzl02xu88dobqMLi4b1HLKcx/58//ldJaFAohz91+l3Kx3dpxGM+fvUCk1qf/7X9eQpl01Mxf654k14xJ9m7w2wyZJAo/txPfp0f/bHfxLFLZss+3xt/Eo48GvkO8WKDf/5rb/Mr//RbzBOb7esdfvLnPst3Pv5nuNe/TorPJPRJPYcitCi8Sl/q2ym+lRBYCa6qAjrL0iErPNIiICt8nLzEzhQqsyhTt8qvnPsoLBwqOY9jF7h+AYFC1YCwrHTuiUIlDmqe40wSarOYaLKgNprSHA9pLIbU1YS6mtJ2YureWb1B2yG2m0xoMrA2OC77jJw+M3+T2G2T2jUK+6z63Dr4tktqzZioO2dj65Ruf0ijMadWWxIEKyyvpPTsClifFQnyigw7K7ELhU2B6xS4Xo7llNTiJZ14QjOZUU8XRKuYRrKknU7p5WPa+ZSjYIs7zee4H13lcXiJw2Cbod9l5jdJXR9lW5TYpHjkhUeeO5SpTbECawnWLMedJfiLJWES4yzmMJ0zefKExdGY4f6I+XAJuYfrRKRlhN26gIq2SL02qtbDiroQtrn03C0WGSxzSIoqyMzmTKlXYWyUqnS1tspwywynXOGVCV4RExQLgnJBy1kR5DPm++/xo6+9wFbL4/DBu3z5N/8p2+2AV198Xrva3333XU2sXL16lc3NTQ0SAJ12Vpg3sxCKMI83btzQ2UDG47FOr5bnOW5QY5J7THKfSe4zTByGpcei2WZRr7OIasShyyryyWoOZWTj1HM8yTMeKQjAThTWLMEaxzjTBe5oij8Z4w+HOCdH2KNpxXDPFmSHJ7x84zldmEYAAFRF4STtnOTcvn//Po8ePcL3fS5fvsyXvvQl3n77bZrNJj/90z9Nr9cD4MmTJwwGA0aj0dOiOYac4+bNm3zhC1/Qksjf+q3f4v79+2xtbekcyiJVMJlqAZnC4glJ9kFAF56ypgIwBKQKCRYEgWZZ5bj18wmJJt9FeiLHmay7aSQIsJb81yZTLNcSz7rpzRam20x/J0BLgKrJVIukQO5DsEm1RxTnck4LVhFZrtybCbhMRlSkE7PZTEtcJIBS5C7mHAC0UWUGTpoAW4CeAHQB2tLvcpwYEiILFu1yEAQ6D7e8I5GiLJdLrcUuikIn6BAJSlmWVQKN7W0sy2I4HGoDYHd3lydPnuB5HvP5nMuXL9NsNvW4tawqt/eDBw90kgmpByNKC8myIgUX4zjmYx/7GEVRcPv2bW38yPMkSaJj6eRdCbCW8TObzfTzyLuSlI5C7PZ6PT3WoUoVLglHBKea42BdKWGOJVOi9UFyLhmPZiYXaaZRYFlP013W63Utc3ZdlydPnvBB7UMZ9G63qztDJrVlWUwmE8bjsV5UZXHw/coN6bouJycn5ya3VCBdLpeVFvrM4hXLJI5jfa7VasVsNntqmf/JX6iA8fMvwz/5JmWRkxYFlCXLsmRhWwzOopfLPKfMMoosrTJ+AA6KSZ5DWaCKApXnqCKHokSpp8EilOXZ98II/qiCS/T/z37WxxSFDg5BldWumCao+bySEwAt1aY+BKZTapOQ0eNHXLxR47O/tINTZnz7//wvWZwsCH2LVj1gtZzhOgWWVWKTY5GCyrh6ZZda5OE6ipOTfZTKyLMlWDm+b9HtNnHPmOM0XeKHNq5r4XoQ1FyCwK0SUgQ2YeDhBS5eYGPZJWmRYLuc+7LsM8vyTLqdJyVJnJKnJUWmKkVJYUFhYSkbCpsiUyymMfNpTJ5U4DZPSpJlBqXFapGySnKKTEBwTp4UFTBOS/KkwMalUWuSLDPypODkaECWFGfXcchWOcv5qpKH55BluZ4cpiUtue6lgtx4PGYwGJxL3SUTzdSCyWQVpkcWdLmGZCSq1+vc+PSnadtVzMTueEaapvzcP/+/8d4LP87Lp+9gfftfcOfOHRZRxOCTn+TSpUv8u62M+/4Of3L1Pfpl5eE5WU2wkgXWbMadt17i4x/7NsNVhx87/hIr38PyoWktSS8FZH/FovgPbEplc1Qqvq9SPFXglJXxYJUFTm6jxg5l4UFuk2UBSd5hqixcJ8O1cyxV4pQljqWoOSWWr1C1EjZKaKwInRJii2Jh48wUziQjnGS0lzkbaU5/FXO5zDi58x2+/M/+EfbyiGsXt9nc3KTRaGC5IXO7xWkWcpg3GXu7LKNPkUQXycIeuVdH2We6Vg2+FdgWtpcTNuZ0mkdsbA7obI5ptmNqtfgs04lCeRCQ0mBOTS3xihw7r1h626rkPS45qrCwloraKqaRLqnnC5rpnHYypZeM6KcDuumIsdeuwHf9Ou9HL3LQ3Wbo9Zi5DVIvpHRsVAFWYuOnEKwU0aSkMc/pDpec3n6fw+8+ou112G5ssSp9Vm6bxO8yp84k84hVg9zbIbUjMjugsKsg2DLw4KoNlwsjN/+ZJVKmWHmKSmNI56hkjjU75RN92KjBVgTbdbjQgH4EnfDpVzuAP/dv/VvnCqLJ2M+yjKtXr/Lax16rUsu9ugPMqnS57hh7ccysCFmtLuk5IBvgcrmkdVYOXTag5XLJaDTSG/J8Pieot6C+idXYQvX6WI0tDrxNEmuDiRUw2fFY+A7L0CEJLYoauNFZNpcoh5qC0MJalfirkiBOac+n7CyWhJMJ20nJpYVPM60qT4ZxQjhf0m+1mc1m/OZv/qYudGcCQik+4jgOvuMyGAyYTCY6s1itVuOTn/ykBuXj8ZjpdMq7777La6+9RhzHvPvuu6RpytbWFnt7ezqN3P7+Pnme64C64XBImqakacrOzg6bm5t0Oh1u3ryJ4zjEcUy326XRaDCbzbh69Sq3bt0653I3N3/ZV+V5TM+0MKsCXgXcyWdM972wy6aEw2SpZZwIsDflIwI8BJwLsDINA8EOAl4EQJspCT3PO1caXdZZWZuFZRTAJONW+sJk0te94XL/JtAGzjGg0hfrHgS5FzHUpO+2tra0XMHUKUv/mfFo5vMAOk+4+Q7lfqT/TO/FeqCiFAASoC39JxVHbdvWebmFhZbx7Hmelokopbhx44YmQUUWLAy6BHAOBgOCIGBzc5M4jlksFlpGDOg0inmec/36dabTKScnJ7TbbTzPYzKZMBwOuXz5Mnmec+fOHV2ZVK51fHysvRgmPgyCQGfmEz27ZVnnqqUHQUC/3z8nwZJ1Tgou7ezs0Gw22dra0kZRlmV8//vf188q49aUrJhyoHUpsxwnfxeMYM5J83c5p3hexFj7MPm0Hhsf9s+dnR1dCQpgMBiQ5zlHR0c6gbtcoF6vs7W1Rbvd5uDgQHeoDNparUa322V/f18HfELlipF8ktLk/7KI8vf+c/jL/yF86Z9h/Q//dAWUz5rnefR6PV5//XW2t7dZLBbcvn2b8XisJ4ZkkzG1YmZHrneU+fOz9OnyGXMBle9eGFLvdMjOAhZc1+W5W7cA6J8tiuM7d/j5v/UaH+ttoZTi839VkS1LykyhCkhXBWVaVozuGWhNlhm+m6ByCNyQhjMiW+XE8xWrOKWclxSrGfGyAtD5qsBSNmWmSFY5oVcjCuqcHA2YTxZ4ToBn+wRehGt5DE6GUNhYysFW1XcKG8sKGUdv0FZPiI+/r6ud1et1nW/UcRyCIODKlStsb28znc75zne+ozWWMjjFMJOc9YvFQmvH4Omgl6wzsigdHs70Yi9Mg1IOO9vbeJ6niynIRBctuSySUnVNJryM3fXywOZklXcu6T2jKNI5+WVzi6KIS5eegpdqvNgkRzVeOP0KY6fB6id/kuR/8u9x68vfZjF8yP3giMb9mCuX2/yWvcme+3Ge7F6gvG5heyVOuyqB/b+N/xK2peh3RhzH26AsYqtJOXEoBi5l4VQsqVdQug7KTXDtFTWWeGWBmykoq3Rh8zIlrdvYGwHWhlNVMVxUAXzOzMKfl0RxSXOc0l2m9FcrdpI5/WJB215gxce8987bPHr0iJ2dHV5++WX85gZj1WDhdjjceYX8c3+FRbDDsHuVxGuTOTXKs4w9WJbOcoJt4QYpYWNGr/2ETn9IZ3NKszOnFizx/Aw8heMU1NSSurWgplY4RY6VVxkVbFtVundKVknIKglx05xGMaeXj+mlI7qrEf1kSD8Z0MuGxE7EvcZ17tWushde5LizxTjoMvMbLLyI1PZxyAnyDHeVU4xzsqOC1YlHMnQpFx2W4zbLtMGKgBU+mRWQ4pKrqoQMANdKHV8qBWZsCjyV47gpbrEiUAnNckaQHlBTMfZqwPzgDqvTBwTFnNXokNnpHtnsBLWa4NpPq96Z7tj/6u8+3Rg+rIneEZ4ygXme6wIkBwcHepN58OABd+/e1UFowmSJ2zizPMrWDsq7zOPoeVKvzcJvsGi0iRt1Vo06WbtO2QpRzRCrYePUUtwox4lKqCsILOxVib/KiZKM/iqjFi9pLBY0J3Ma+0uCeUy0TOgWUFtm2GdJAWQtEXBlFo7R+5HjMBgMaLfbfOITn+DrX/+6NhhMaYZZRVCyT7z44ovcunWLF198UetsT05OODk54Vvf+pbWkS8WC1arFW+99da5ALvvfve7bG5ukiQJBwcHQAUyJRtFeFYYZjqd8rWvfY1PfepTnJycMBgMuH37tjZ0Tk9Pz4EAc09al0+Y65SwoKZmWgCoSTzIOruubReAY7KMwuKabn55XtkL16UmJgNs/ixrqFJKV9SU+zGlF7KemrITE2ivEybCsgvQN9nnal22zhkCMh9Moka8+yZgE+Bo6uvXWVRh+U2dsux98lnpU/luMv3C3ptjU5pZKl5kIqa0ScYDoGU60+mUixcv8uTJE820AzouTsbTaDTi9PSUK1eu6AqngB7bsm8ul0vG47EOzOx0OhweHtJqtbh06RKu69Jut3Fdl+9+97u6r/K8qrB+9+5d+v2+zkoHnCs6adu2TqMox0r+fOkPz/Not9vA0wKa8/mcx48f6/06CAIODw/xfV+/p+PjYy2dEa/eaDTS78s0gGUsm+NcgLr8T96vjHlTymK+a9Polc+IN8yMP/kDFSq6cuUKq9VKu0tOT0+1C1NAtAS59Ho9DaqkcIFplcqNtdvtc8dLlVJxc8iCIpPZsiy8/8N/ivrf/6/OufLMzuj3+/T7fZbLJW+//bYurdrr9fSAmJxFQH9QgIDZfi+WzbOOMb/gfCDPyckJjUaD4+Njlssl3/p/7HPrT/XJ05J/+Ge/z8n7Valg0WKZi5qkENre3tZ9J3njB4OBBqZSThYq40qCPSaTyZnObI/hcKgz4JhsmgBgYQ80uH3j/8Sq/0WwoHnwVym2L5MmK7xGdJaPvMD2PQob7s1LpkGPVusqznZIPh7hus6ZtyHHDQOiesRyGZMHPvW2A/MZcbwg8D3qUcRqFVPkGXajhWsDShF0fOLFglanze7uDvFiQZausH2PVZJQWCGWW2AVFqssw3VsPD/AsS1sw00sFvfjx4/1JiETUwyI9fcuDJGkAB0MBnrTeOmll3j++ecJgkB7gf7JnU/wX88/S9lzoFPikOMtM773uddxvBzfSSuWOzvTIecByzzCshS2W2CnJaqkqqrorqg5S3ZaB0TFAm+6QuUleVySlDZFGJJGEUU7pOw4qKbFsnBZTH2sKTjTHHe8Ihwu6U1mhKcD6oMjLhVL+u6Klpvie2eaTcviiXOBBksClTEuG3y/rHOqujxe3uLQe4Ply5vk0QblMkItbSxLVcV5PLBeK7GCkqCzpNGdEfUO6HRHdFoT6v6CwElwnBzLUXhWTqRi6taCUK2qoM+iisdw7ALHKShyhzTxyVKXKF9U5eXzMa3VlOZqRieZ0MsmdIoJhe3xoHaFe2cBl98OPsGwtcnEazEPIrLAQa1s8qlHNvVJTgJW8xqraUQ8q7Gc1okXNcrUrdKxoVDKqgA2CtfOcJ0c308JwiolZNcaEaoldWKibIG/mJDuP2b44AGdELZaPiErNts1Ws3mORe9yYDWajUKt+B7yfe4d3KvMh6XS9zZtErpZj8NZFvXBv9em7iR5bvM+eVqxXffucfxQpH5HVZuk6D3SY6fe4O008e7fJFlq8mXWhF5M6RseFgNCydMcMIMu15i1cEKbYgzmKxwRnOc4RGcDLAfneANT9nE4k++/mlaWUEYr2imBfG4ytBw4cIFXNfV6954PNZFSuBpoZr2WSETk5GVDVAIF/GaCViTQmjNZpPf/u3f1pUXBdCILlTm/MbGBi+99BJKKYbDIVCBlQcPHmDbNn/sj/0x8jzny1/+Mo8ePdJ7nVkZ0PQIX7x4EYD5fK5JIjF+Go0G9+/f18z60dER7Xaber2u61kIwSNgwJS4CNgzgZ9IQuTZ4Gm+Z2mmblZAqgAU061vEivCwIvH3NRVmxrn9Wwhct8mAy59vw6gzc+aBIn5sykZECNADBIBfHLPcqzZh3LfZsCkCbrkGqZRYRoqpgbfBMjyWZMAFO26sONmn5lGgRBFtVpNS2XkvuApgSkVviXBgVJKk1zj8ViDXAHg7XabJ0+eaJ16kiQaZ3U6Hba2thiPxxwdHXF4eEie53Q6HZ0lrl6v02w2sW2b6XSqDUa5n06no/tB9j/btrl69Sp3795luVwynU61YSzyHukvCUoVOYrIhqSfxSiQ+MQ0TfF9nwsXLmgDXd57o9HQUq08z7VEem9vT2vpW60Wx8fHHB0dnZsf62NQ3ve6l8o0NuWz60auOZfkf/JMgm2n06k+V6vVOmdkP6v90Eqi4/FY56AUkOs4Vfl10QiVZakLFQkrKpNAgg/kxaZpSqvV0hH4kn5GQJQ5yIV5lwlnDlzpDMdxqNfrDIdDDVal88fjsQ7G2dra0iyrubCYIN1cDH6/zXTrSeof2QCE1XVdl8lkAsDdr5zwv3n5yzi2i+/5uoLq48ePAbTlJefp9/sopWg0Gty9e5fFYqHzkMq9y0bVaDRotVraaDo6OtKTQhZOsUrlOqbVa1qDSf0lcENQBfMbfwXyGBTMHBfbcVFAbDtIOowhFp7nk3+8JMsLcutMI4/N3LaJnQoETy2n0safaRtSBTPrLKWGZTO3HSy7KntdKkWpLE6xOLXss+wQZ/p/6wcHeH729fTFlowqpT2oEvXJs5y1Z7/L96XxGVAoKj0rARwHFnbdOfvdxoocDuoe/zh0UIFFefalPnZWqWIJZA5FbqMGDiTQ9FZcvPgEOym4HD3iUm+PeFHj+8VNxqsexSwknQdVvuTIhrYibThk7Yh5UEMtbMqJDVMLxmCNwXlSYo9y7JFFbRQTrjLqgYNtgSoLyiLHsmwcu0Oa1nhY3OSr4U0cr2QjGJF4AbFbI8WnVE8znVh+lQ3ErhdYUYnTyqhvxNR6x0TtOe3GhJYzIyyXeGWOY2VVwCwpUVmB74AEu1BYpdLg20JRrBxUYuHmKe1ySrsYE6Ux3jIjXCU0spiNYky3mKAsiye1Xe7WrvEwuMKbtdc4aW0y8duswpAytMlXLsm0RjILScZB9X0WsprWSKc++dTHzsGnwLdyAjJqVkqjWNLJjun4BT2/oOGtqDspkVMQssIrl7hlSp6npKsVi9GMqO/hdRVFlEAzwWrm0EyxOzn+hkW5guQ0Jz1ZkQwKsknCIssoBorpccxqlGiQJC5Xx6mq0jWbTa0BXiwWP1CmWjaKZ7lcqzUAJgmcxNXX8dn3b/R+hmWrQ9Ztk7WaZM0aRTOkbPrYDYUbplUu83qJVbcqhntZUE5XeNMl3uAQdzTBvnuKc3KEO5pgDcfU4oRgviSMV1WKy7NnyvNcB2ftXLjA5z73OS68/7gClq5LecZ6C4NmpiBrNpukaar/J14DkUBKhqwsyzTbK8BNjGxTT2pZVTawS5cuPZM4MoFuEAR861vfYrlcVhkWOjt87ckGR9/7Fa50M378x39ce5DNatqydkr6252dHS0vEAbSNKxE4mJZFvfv38dxHPr9vtb63r59m3v37nHz5s1z0gczwNB8bsdxNGFjuulNUC/PaEpaBBxKijy5RxMom3ILARZyfpNNFoberK4oe7kJjGWfNEGr7Juy95igWWSGQtiZQF9AtgBn8xlkzgheMaUwshfLfZoGgAm0pG/NPdHsU2kCIGVcST+bQZ9mRhHTCyGGpIwfMcBMQyGOYz3+Pc/TxXoE2NdqNb2WyO+AzicuBq8k/RAJ4nK5xHEcnT1IAKR4ueUeTWmoBDi3223G4zEXL17U42IwGGgZ13g85vHjx9rQFvZdtOyC7STddBiGGieKDGe5XGoALjndW62WjhORfkqSRAfEyrOKYSqGnIxR03A0vUfPGgsyzp+ur+e9WSbzLr+vk7+mR0m+S1ssFucY+me1Dw0SlaAZieqVydNut6nVapycnOjclKYFLxqmKIoYDodkWaYF8p7n6Qwnvu8znU51SVel1DlXnQmWJam8aMJkkkRRRKfT0VZaGIa0Wi09SMRSC4KAGzduUK/X+cpXvqJ1TWZbt9ylo5/1OWmmjtl01Umf7OzssLOzw97eHq7rsr+/TxAEOsBDJkIYhuzs7HBycqLlPbLZLZdLXn31VWazGfV6ne985zt6kpqBNOLCazabOmPN5uYmGxsbDAYD9vf3efTo0bn7g6cuMvP5ZMCmG5+neOM/h8PfxvrGXzvLOlOxchKtLbKTfr+vg8ZWqxVf/epXzw30VqulK6CWZal1Zu12W7vfoFrMms2mDv5I0ypjQqfTodVqVe43r45TZEz2HrBcrSodeqlQpcL1A5rNNkVZAnZVuMNy2HnhZeoXrjK1XUaFg2r2yOstinqbstnFaveg1aNsdFCNDjTbkK5gOobZGGcxw1st8JYLLjRq7DYb1PIEdxVTy1KCLGUx9fitvc+Cm7NwbBrROzS3Dnkc/ALuixn+tRQ3yHGiAtUAq1npxtXUwp6COy3xpznuOME+mZLtHZM9PiE7GtNRMd1LOzS3+vgbbWiElDWX7y6uMLDq2EHJZn1BolySsqrimKcORepQrlzKpQ2uwmkWWI2qKIrll7hRSq2zJIxW1MKYVjih4c+J3BjfSfDcikEOyoSImMiKq+qhRRWFaNuqquqZneUwX1UVOskUtWxFlK2o5UvaxZSNcsiOOqZXDLAtxanf5050g4fBVZ74Fzjx+kz8NsugAt/F0mU1DVlNQtKpTzL2Scce2TigmIaUYw8ndXDKEluBo9RZTu2qIEpZKG0EVhy9fIFSlfFXZZyxK9bcOvuckvxKFkoCLquVRx977jNnf3uWwbjeLKs0j8LiDAyVZzEuUMXLqLLK+e1YZ/m/LXDP8pe3FfWdGqpeQKOAeolVL6oMJbUCJyqxowIrKrACRRmDmlmoGZQzBZMSNS5RkwKmCjUtYaaw5+AtbcpUUtFVBqvr2Di2RZ5X1QqLosB1znLQo1BnxYHKIqcsC7IsIU8Ter0ezUYd17Vpt1rYtkWRZ/iei+e5WJTMZzOSZEW9HtGo11jGMWWRUxQ5lgWObeE6DkHg4boORZZh2+A6DkoVqLLEcSwC38exOdv0qvsq8oyyyMnzjNl0yunpCaiyqrhoW6izflZlQVkWPHr4gGS1pChyJtf/Kll4Ccqc69/4CbbaDrdu3WJzc1PvN/B0E1ZK6SIqruuyt7dHp9PR2lip7yFfks9aiBzRoQ8GAx49esTu7i7Xrl1jPp/rvUbAybOAgelpMeWEsleKVlzAggA/2WsE4MteLucyQYmZRccE3hIMKfpsuV8BQgKITZmHaLxNQCr7kYBbMR4EI4hmXQCX6cmXfUYkHY7jaEBmMp2mZEXOL9cU+aU8l+yp0ucCZE0Jg3xG7kNAsilveJaU08QKgD6/AH4hMMXwEM+K2adyn+veiSRJuHv3Lo8ePdLvIk1T6vU6r776Kp1Oh+l0yttvv81wONT3KWPEcRw6nQ7tdpujoyPtKRJphjDZkupaUiyuVis6nQ5ZlukgUmligMtY6Xa7DAYDjX92d3dpt9u6hoyAc0mrKONDMumkaapTau/v7+vAXQlSl3dQliUbGxvM53MePnx4Tuu/boyaQcLrEikx0Mx5ZwL9de8PoFNrSzNxjoxJM85hvX0ogz4ajbTYXi4sAQViIcrLNxeIWq1Gv99nOp1q/ZTksBRwP5vN6PV6OoWOSFFkEIvlKh0hoH5dRhJFEUmS6BcoE16ilaMootFocO3aNTY3NxmNRrra5rpt8q/Lnksz3WTwlKERRl1YDvmsKdeRIEap7imWtVjJtl0F1Yi1K4sPoPP+KqU4OjrS7FsURZyenupCRScnJ3pRkPdlMvXrzbIs7KPfwv7VzwBQ8PRzIqtpNBpYlqX151Bp/qMo0pIbs4KWuLpkkMq9ynHyDiRXfa1W027f4XDIfD5n8smfZvEf/B0oC2p/969TToaoegeaPWh2yTubTDqb2J1NikYX1epBo8PDVUywmuGvZhSDQ6zpAGt0gjU6xt57G2s6xJmPUOMTmAxQkxOsZKnfqWVZbGxucvPmTX7pl36JjdpGtXB7hV6oXbfk3/j4vyCOY27fvs3R0RGjh0sO/uzP4fQL7I0cL0t5+Z17hFmMny/Iy5w08CkbETTqrPouyx2HxS0owsvMwzcoE5d4ZbE3d2CsYGKjZg7FzCFd1FCZDW7JvhviOhm+nRG4MY0LKc3OmNr+XRpqwNZnfbwmrPKQRn0BNYXj5ITlioglNXuJp1Kskqq6nnOWESH2Wc1rzKcN9habrFYBDRa0mdC3hmxaA3btAy5wQK8YVoHZXoN7tRs8iK5wz7/Oib/J1G8RBzWK0KFcKNJBQXG6pLg7pTyaoA7vYB8NcU6GBMcDapZFZNu02212d3f1fG61WngND6v5VOcni6uM7eFwqD1W5pg2NYKiB+x0OnperLvXJS0roI1R2axkXFTpYDnzmDnM45jFIibLCsbjCYPhCO/Vn+POG/8j6tGM7aN/jOtlWJ0+xeXnSMMmKT5LFbCyQjLXowyds5SACXYtw66VWA0LO3QoZyldp04jt+mUDr3SoY/NpvJplQ7N3KG1sGlOHP6X/+O/jspKbMdh58IunueTpBm2U6U6LRWUpcJ1fdqdDo1LLfK8IF6u8PwA267yh0+nU955932SJMV2HCy7Oh7LRinAqgwdy3K0+XG5fpVWs40fBLQ7Dnlxpmd2PKBi3pxkwbJY4akcryyI0xl5VmA7DqWiqpBpWaRZQV7a5EVlZFWgz6sMsNLCLqrPO65HeVb0KM0ybWSlqsfAaoNVhTGp0kaViqJUVR8oxXLzRfK8xLId8vAy2D5g0dq6QTea0u12NRAQkkG0v2bShK2tLXZ2dlgulzp2o9Fo6GwuAhAFQIg0IwxDnn/+eXZ2dnAch2vXrrG3t8f9+/f1uDNjEdbXbZkHJtASjbMp4RMQLmyvSEEEgJrMnrDYsucLWJXPmESPmS1GgJC5j8NT+YDEmInUBtCgSq4h/SmGhsxJyYkvc1AAv0hlRfoijLV4NKS/pf+FYJT+kWeV+5dUmebPkv1F+s3UnsveJoaKGAuyzsg9mn0tzKqcT/pRZCkmgDTvd112IYGhYoTU63V979J3YRjqFKBmrnN5BjGWZM8V75aZAUbiK2q1mj6HGHtQBUXLmmiCU1OeJe88CAK9lp6enuqAaulXeebj42PdFwLw5V7EQJR1Wt6fYC757GKxOGc8mkG4si+YEjHTk2Oy4/J5U2lg/t3EV3Eca6NPnluOE2P5w9qHAvQLFy7QaDR09SiodHr1el1Hr0vqGwmUEcZ9MBhQFIWuAiX/Gw6H1Ot1Op0OaZoymUx0x0lec/msabVI55guIdEnnZ6e6v+LFb9cLinL8lyaoNVqxdbWFsfHx+zt7T0TlP5+2geBWngK6Iqiqqrluq4GoKYezYwkF6ZEFjmxkCVPqERsm0yDLAJm6VuTMQC0FSuRw/KZdeZlvQn7YLqEzQAecVNfv369KrqknmbyEVfX8fHxuSIRoleTRVWMPFmYZ7OZDgC5f/++ntSSBiqKItLP/SlwfVCK5M/+T7EevYMan2CNT1DjU6z9u1jzMY0yQY1PyQeH5MMjIsfSmRNEugVPNwpzgdXG1lqfeJ7HZz7zGTqdjl74pS+FxRCj4rnnnqMsSw4P3+L15T/jvU99HhwbcotxbZsgzfCWKfYyoZamtEpFIymozVOcRczqdMD7oxZftV4iXwS4KuVFdZ++lxCWObN5wM3oPkdxnc/9O7/KxsaQ8Xs7TB/1KGqK9IJica3BohlRI6blzIjUAo+84pFtRZE5JNOQ+bTB6bTPZN5jkUY07Rl9Z8C2e8QF55CL9j47HNIrRliqJPFD7odXeRRe5sDf4dvea3wp+GNM/Yg0DCgnC4qDCRxPaSUWG2VAbTqjOx9RHIwojsZ4pXXWP4c63R5Ua0yt0Sa2PQ0qGo0Gly5dOudqlyBlWR9kQ5ZNSTZFMyh8XWcradMkr7G5WZnzVOaDjH2JvRGQL+MZIElWJMuY5aLy/lCmqDzmofc8s6THLOlxWv45oqP38B6PWT33Ko3Pz8BScP8xwWRIK51Si4e08xntMqMfFGzVFbUyZvX9EyYPJ/ybP/Nv02KDFr2zrw3qNDkrQq7bf/Tky08LZdhXefnjH9fjVfq8et4VrhvjOEdaByqbc1EUPFo8Ypp8u9pklaMLncjx5juQPm7Mv8vzO89XLO7SPgfuBIicjk+rtXBeUJ6W9M/Alpkren0jdF2XRqOh109hTqU8uXxeUr9JBosn6okGw7L+mKBXtZ66vx8m3+Tr2c9zxXmTV5+rs1o9zWwiZdGLotCARNYHKegn5dFv3brFcDjk8PCQ3d1dWq2Wfg65d1NX63ke165dO+cebzQamvk1ZRbmXiAA05SPmPIWAQzj8ficllnGbrvd1pl4pM8FWMgeLRIjuY7rVjU+wjDUVRNN0C8FCwWYidRE9MzC8pt7kHgYTPAkAEs8FwJ0TMKwKAqNKcw9TgrCSFB0WZb6mmJkCeiTsS59aDLnJmkohJO5V8hzC+CU/cCyLA3O5domwSZ7nLwTuXfTQJF5IAy9XM/M6Q5PjZ/1NUmuK9KW999/X/e9GDfyziUFqOTjX2eNzZirer2uDSUZSzKXZIwKgaIDzc/iGcQbIPd/enpKURSEYUgURXq8izRXxpD0jZAn4/GY3d1dBoMB0+lUjz0ZZ/V6XZOUshfINU3C0vRsrMtVTAJIxo3MeXNPkLFq4kB5z4JxTJLoDxQkKgE2oi+SwENJUH/p0iWUUozHY9577z0Gg4FeUMRyMCeZdIqwxHJusXjEmjYH9zp4lMXMdV3q9fq59IxyHTNwRRbR3/3d39UsxvHx8TPdEX+YTV6AAM4wDHWhArPJi5ZFyTxerGhJ7SSLowB7+XxZloxGI50mzBwAAvalbK4s6qaL8lmGhkw2GbTPejbLqnJ7NhoNer0ex8fHHBwc6KAi0/gQRlwWBZNtAs5t2nINkdHIs0rqzej//X9k+vEfx1pM2PpP/gyLR+8/ZRrOFgc/CKh1OnieV0lq0pQ5cHh4yObmJs1mUwfVmLpNWXjNIBHpR6WUzvIgFvv+/r5e+MWDkOc5URTR7/cBmE6nXBo/YTaeM2lG/Htfe4fn9k54lLT5T09/kgU13rDf4fOtN1kRkjkRc9VnNO+Txi6+XVBaJRvMmLrbHCufk2UEM/jq8BXILN7+v1znP/mf/XWyiwGrwGEw6jN4uMHgexuM5j3G8waJG9J6bsb2pUMiJ+WG9z4vWe+xWxyxUZzSLkY4viINPfbDXR5FlzmO+rzvXeerfJpp0GJVq+EuEvxJSrQoqY0ywllGY1HQHp6yfHTM4uERvrK0qx/QRSy8MyNcFtw4jtnf38f3fZ0RQObpnTt3yPNcb8rPPfecBi1SFtzc/GTjMhdQpZQek6YbWOaXpODTQdHTKcPh8JzxJWM9yzI9JmXhFde16coVhk0CqMSdG53+18TXfxbbKvnx9/9jGNypAsBe+3kGP/bfQv3abzP97/01PdZM5kzGZ70f0rvWonutyb//M32mDHnCXaYMmDKgpDwH2Fv02P1ii9mTJYv9hDRLufhGn/SzB7hHDXrvXsfiqe5WQIZstCZ7eXx8TKfT0c8ETzclmTsmYypu8lardQ68ybllvktGKKi8aFCxgRL8JfNewLTZ5F5NqYBUBZb10fSyChgXg8XMwWzuCa7r0iu+yy/43z97xsqQ2dnZ4dq1a3p8iXEv65ykeW02mxq4i242CAKuXr16LqPKOmMnEg4hM0ajEd/61rf0nBFmWEClPLMp4TCBj+yvAmYl0HCxWJwzXIXxNCU0sv/Ifip9vVqt9D3KGBCgKO8hiqJzUhNznxHDS8CtuZeZshAhg0xyzpxj5hgQwCvjy8wVLu9TmNayLLXndzabnfMeyNg1vRQmEBaPtmAWWTdMQCp9b2rXTSBcr9f1fZtgVuQPpuEk39dJLVNuI03OY8o05G9CbknhICH6hGE2P/Piiy/qTC3Xrl2jVqtplYP0o4xHIVBqtZr27ss4kHsysZkETsp4i6JI76+yBpjEZKvVYrFYsLu7ey7wtl6va1JTjNrd3V06nY4OLhWp7/HxMQ8fPtTegvU11SR4BO+YwaDSzD3lgzCReV4TX8q4lHFuxmN8WPtQgC5ZV27duqWrPw2HQ/1SZrMZW1tbP6DBETfQuvvAvPHpdKqDAQCdpeTw8PAc/W8+tOkukTRF64wyPC1B7Ps+rVaLyWSC4zjcv39fBx6suyx+P+33eqz0keu62pCAp7ldZdEzgxlMhs8E0vJ5SREo5xePgvS/DGL5vPSRmUvUjOR/1mCTa5tAf/25PM/Tpe6HwyEPHz7EtquIbzOAQzZcAS0C0MVwkMVa3HNm/8omLZubjBf/zrfp/IUXq74yqgrK/UpfCHCWe4YKLEvAraRcMtlSc1LJBiEL45UrV/jiF7+og1Z+93d/lzfffFMHubz00kt87nOf02ydZVUBateuXWO70eI//I1vP3XF+j5/++GPsFAhePDN4kW+Pbp5dg+VvtmmxLULfKugay1xLYeaVbBhTTkZRnBsgaV4Y+c9dm+8w29/7QtszWoob4u7f1yBrwjylAv5Pv3Axlvk1DNFo7TYyvYI7FO+E32ML3k/Tmw1iP2A2ioniksaS5vmShHspQTHUy6dTLBPn1Bb5Pg4bG1tEUURYFGWLnkOWRaStS/gvXFFx5tA5bkRiZsYzPI3KUYWBAHXr1/XjIfv+1y7dg3JQz0cDvXaI4u7jGEzp7UJGGWeyL2Y4EeCnWq1mr4HcxMdDAbaYyRsrfwuzGCapjork9yDGAJyn6bG8KI7pvuVf5skSVicBYVlWUbyX/w90v/5f8ZisTi3hq6P57IsiQcJ8eCEvW+e8Gn+5Pl5iWLFgilDJgyYnX1//ud3qF/wqV8IcAKbhfUeOIpsc4Y1u0xt1D1nsJuBltKEuRNmDp5mcBDWUNYiAen1ep0vfOELOne6AALxVolnRI5fLpfakBPWuNlsMp/PNeATUHJ4eEin09EaT5mzIgeUzBOSck0SEzx8+FDL7ARACqAT8CZeANP9LKDWzM8sTbPv6ml8jpQnF0ZQxpWMxXUvqlzLZDUlxkgME9kXBUQIwyispHm+dXZ93bMhQM5kAk0DxdQzy7ECdqWIkjyXHCvnlHXTTKcse7npTZe9bF1uIsaz6S2QtflZ2muTwRVDXfpN5qAYFQJwxcgUr6/IlASwCZiSvVKuK/urnFe+m8fJXiQMu/SLsLrSJ2ZWGNP7ZO5X8n4E2Mq9yByT55TPynVML4D0n6yrAlSFFDQNtV6vx6uvvopt22xuburxI5pzx3H0HJZ3LN4NKUok1zUNJXmPYjSZmE68eELQCvA3M8nU63Xdn1LnRCQtpqfCsizt+YMqbexgMDgXQ7kOouV9mYSh/G0doK83c059ECaUsSE56c19ZJ2wXW8fCtAFZGxtbfH+++9rSYBcRBZVqQRqPpQMcNNKWH8A05pot9uaoRKtnpnFwDw+CAJ6vZ7WPMk11hn3drt9rnqbsFxm3vX1F2L+bd3V8ay2/v91y0msUkBrq2TwCPiThWrd2yD9IYBiOp3qCW5aqsLqidxIJqAAGdHbm4PRbOYCaH6ZG9+65WlZln6uR48e6ZK8ZkoruU/Tcl1nwExDYr1fpV/ETW2+G/O+1g0JWXzgqVZe/i5pn2q1mtboy4QxGQ9hcsQ93mw2+amf+imuXr2Kbdu8/fbbfO1rX9PW+ng8ZjgcUqvV+MxnPqPniG3bOpBGFrMoitjf32e1fxsufB4KB+vhV7j+/b/FT3/hc9y6sUvDLWjUfK39lGeWzfpr5WV+fXGVl/zfIDz453AA9a1NLr90i+xajO2GqBJ2Tko+/fWYw9v32OpunFVw9Ji7Pf7+T99AWRatUcFP/NoxrdQitJ+CM5F9xLFPkjag1aCoPwWswloJqyFjUca2bOJSUdJM+ZbnOb1ej36/T7PZPMemyHuURVkC6t599119rCz+JhsnLKsJZESTKO51+S5u6CRJGI1G3L17V8emjEYjhsOhNjYlpubChQvamBagKqBVvIGyicl8H41GTKeVdvn4+FgDUAE7nufpbAbiYTPnrzkfTHbxWWuShUWNBjUabHNF//3/+X//F8TAqWWxfXWT/l/MSTYqGYAd+xrUyTXE0F8nXfr9Pru7u+cArbCPpp5ajr9586Z+t8Jql2Wpi3wJ0BMPm8hqJMNXu93GcRy63a7W1tq2zWKx4Nd+7df49Kc/rTOdCBMugKVz5j2TvnNdV4MMs3KfrBUCpAR8CJAT6cH+/j7L5ZIoivQYk/dhgmG5nmVVHkCRhpgAT4DkOrCSeSefkXOLxlfmgmlsyruApxpweR8S+2OymTLPms2mTqBgxnCYUgfT8BBgDk8ZTslQZqYylGcUJt40dKSP5V7WQajZt89a06UsvYxVMcDNsSH9Ks9pAmlZr1zXZT6fn/PkrnsyzJ/N9yDXNb0H0u/mnmQad3IeGWemt8aUaJnGkjTBC2bwqrwPIcKEjDRBr2kcyD1IppkgCOh2uzx+/FiPW3nOLMt0nRuTMDSZejmXnFsMJdd1tQEqx0RRRBiG5zxXAkzFiJWxJhlk5vO5zlAnmE2UCOsSLpn7prdGrv3kyRNu3759Lg7pgwhJkwiRuSCfN/tQ/mcas+vnXB+3cL66rOnd+mFE74cCdNE827at9c2mW0Q2PtkIZVOXF2FawEEQnLOYTSArVazEtSzATza/9Y6UFFzT6VQPTpGQyDnlHLLgybnNaz8LnEv7sI1QPv9B4NxswmALqGm1WnpQyf+F7ZVFxLRAhUF2HEdnATAXDdE8ywQ2F4rFYqGDME0r33SxPusZzc3mWdYmoCfX8fExcRxjWZZOuyn/g/MuSzmP6XoTi1+MDGEiZbEy9WHmZmGy3rJJCKOwfi1T51UUhZb7yEQWhlNYCrHeZbx6nsfLL7/MJz7xCQ0QJIWUyarEccz777/Pxz/+ce1dkI3FHDdZlvGVr3yF+Nf+JrzwCzB8Hx59lYeOw9fju3zsL/0lgrD9A88t9+84Dq9v3WF19//K9978nt6UHz9+zGAw5MesH+OnfqNF3Ha59rggX+Z0G61zwJG5wy/+esz7zpzRf/V1vrx3SKPR4NatW7Tbbbrdrg7AiaLonBsY0KydjLfFYqE1hFEU6biJ6XSqN355N6bHR9gVMy+/9L8EJcmYFPf8fD7XzIk5V+R9y5iQsSObovSnAHkJJptMJhweHmqvnYwJAZQiLRsOh2xtbdE8y2su64nMM/EqydiUHNcC5KXgz87OjmazZMEXOcN0Ov2BdLEybj5ojflhTUCJUgo7ddn8nZdZ7g4IZg2YuhT2U4mBbHTPmvcS86PZ/DjWgXeWVcndLly4wPb2Nru7u1oKIDmAzfc+nU5ZLpf0+339ruSzcRzrwkGNRkMzgtLnd+7c4dGjR3S7XV555ZVzzK4YjEVR6IxSph71R37kRzg4OODx48faiysyCjl2NBrp7Cuivz46OtJzXeakuT5Jk2cRkCTvcD0HvRwv15Z9cp2IsO0qv/X+/r42OOSZgiCg0+mglKLb7Z5b482xLu+wLKsMXyKxEGAp79Q0NJ71s+mtlTlp7oPrLLm5VpRleQ4Iy/uQZ5I9UcaHCQ6fdV2TBBTwI3uNSXCZe4x8TtZrMcLMvUaazE1TWiT3aWaRMZ9T7mGdKDTlO2IMyzXN97NusIgBLGuvnFsMIznGzM5jplqWujXyblzXpdfr6XVK+lmu12q1+NEf/VF2dnaYzWa6aqk5VgU/CPkqa4voq83xL+9Cxp2sxbIemGNL3qMcaxoxpmdBxr28K/MdyzsUSeSNGzewLIuvfvWr58an2cx+XMc9pnG7PtbN49bbDyN15fymFPuD2g+tJOo4jga38oCy0QoQk0FsWRbXr1/n8PCQ4XB4DlwIpW/qK2WASqEGAXVyrLBSphZN3IeS01zuQ64jg7jVapFlGe12m+PjYz2QnsXW/rCO/Nf5nLnBifUoFrzcQ6PR4OLFi+cqeMkkE6uy0+notEGi8ZIFSBZgMXCEXRDmT9gBOG/9SXuW9Wf+z3wW83lkM5xOpywWi3MeAVkgZFGVvKTmNeQZZFzI2DJTaMnvol2VhUkWRZN5k4EuY8ScSLKgmBNQLOp2u02v19PgQTZ2WUTkPq9du8bnP/95/Zn5fE6z2eQTn/iEnqySrkzSQMoiImwWPHWFT6dT3nvvPbJ4gv3df3AOfD98+JDT01N9HmFQTAvccRwODg500RNZvFerFQ8ePGB7e5tPNj9JeZpgnS0yUhRBFmXLsijuHPHoS1/SjOJsVpV573a7fPazn2V7e1szyKY2UhZdea4nT57w1ltvcXh4qOf5jRs3uHXrFq1WS7N08r7kvZvgXBZDARCtVgvLsvRzP3z48BzINhdpMcxMgG6yG3me68A4YekADQjlXZtj1DQSZb4mScJisdCZPMQjIuMnDEMmk8k53WxZlmxvb+uUs61WiytXrui5KuyoBJx6nndubVtfS/51mgAj3UdJSfCgV22wZaY9CyZbJv1sAilZe2Ucmmy5pEWV8t+AThMnCQRkDorWVtYQkxEcDoeaPX/w4AGO42i9sG3bnJ6e8vf//t/n9PRUp6x99dVXNXCWdUeAiUhjTGPXdV1u3LjBfD7n9u3bnJ6eYlkWBwcHHBwc4DiOrkZclqXOHtXr9QA0GSXXNL2AMr/WmbMoirSnxMzfLvdrsqwShCfrtUjmTDmIGESj0YhGo8HGxsa5tL0mSydtHTjDU4PffD+mBNKcT6YxYjKqJkEnz2uux+tNwKfs1dJMQ6XVekoomOu6OcfhqbFvxjTI9dclHiJ56vV6+L6vgaLZ7/IeZG0SiaqQYLL/SEpneSdiqMuYk7kuUp48z3VWM+lHiZOQ85jkkpmBxfQMmXuB7/s6Q5xIu2Sum3u7ZVk6t7+sY71eT+cyl7myubnJCy+8oD1FMmZlHZQgVtPTKWuWmfXHHFsyBwR/CYFh1j6Q/Ujel5lZxiR55T2HYXguXk8IGGmSurtWq7G7u6vJmPXxb+JQcwzK7+Y4k//JeF4ndE0C5Yfhy2cZBB/UPhSgR1HEbDbj4OBAu8PMC5ipg8RCE8ZYHiQMw3NuJAF3simKzk42S3lpjuMwn8/pdDo4jqMDO+XlCIMGT7MxmJO72WwSRRGHh4dafyb3bn7/vbb1F/J7+ax5LRMYCSCRgTqfz9na2tKb83g8Zjwe68VDWHAJAJVj4am7X55dNic4zzR8EOOzfs8yKOXzZjMHp+hFZYORY80Bvr4Am9cyB7ssTGKgmGBQ3rMAVfm7CchMFmp9sgnoNhkp13W5du2aNh729vb0mBILXe6/1+vxi7/4i1y5cuUHJriARMlgkOe5XijFGJNN3DS8pMLa+liURUpAo6kjBPSi5jhVcQkxzuQz8pziaZHjJLvF+ua6t7fH8fGx3tzyPNflmDudDv1+/9xGvy6xcN0q9dbt27d55513SJJEe7Km0ylFUfDGG2/ocSfMlawHwtCLt0I2VanaKky5bExFUWUOkCBz0R+bnhPz/qQ/zI1YDBopkGPGuciYN8enbGhFUWj5RVEUbGxsnAtAkz4ymXwBo2maaklVv9/XOnyZs8LwiUwsDENtlK+vJeu//17a7u7uubX39PT0HMsnGlx4qj8X9l/ej3jJdnZ2dEpbGUe1Wo0XX3yR3d3dc6ynMMJifMj6JwSMgN9er6eBtLkRy/gVWZJt2wyHQ0ajkU4mIFnB5P/CwsnclgBQs7R6kiQ6yGxra4t/9a/+FXfv3tWA3LZtTk5OfiBn8eXLl8nzXCdDEI+C7IGWZWnPixjXMm+bzSabm5scHx/jOI5OQWwaeCJ92t7e1vucUopLly5x+/ZtRqORXu9lfZG4BUkVKnNU3p0JdMQDYXpUZT0w9dkyn2Qtlncic1eOMfOny7uVc5hzSea/aQSb8guR9EiFVfmcEDtHR0dsbm6e80SuSxlkPdzc3NTgX66ZpilPnjzhwYMHpGnKK6+8or2/ApyLomB3d1c/AzwtJCOSEMepsoyNRiOePHmi43A2Nqp0u6enpzr9oJANg8GABw8e4Ps+L7zwAi+88AKHh4ecnJxwcnLCfD7n6tWr5+JapKDPYDDQc+XmzZvnPDONRoPXX3+dNE05ODgA0HFgsu9JDnGRiJryk2azycsvv8ydO3d0kR+JsxHlhJAacl3JyGemxZQCQ6YXTPYGeT9SAdj0xJhGlayh5ngxPRtCQJn7PDz1Vsl1xFAUstgk9cRoNddNuR/ToF1f/819wWzPWn9/L2vy7xd3/tBKoqKNFMAoHSKaaGFQZBIeHR1pa0YpRbPZ1OcyO0EWEtksZVAB5wCsLFztdlsPNNMAEFZ+3aKfTCY6EEwmoBgA65bRs9ofBJA/q4lBI4BB3JPirhQAL4FR5t8E0In1uO4akcVcFmzzPmSwmQvPB7lgngVyn/UZqZYnCww8dRWZ+mTHcc5pHeEHmRe5lrmQy2Yn4EhS5cliYQKX9X43369MsFqtpvOtyvFSHlkY2yiKmE6nTCYTzYL2+31+8Rd/kZs3b+pJL8BKNLRyTUAHswr7IKyH3J+wB+KOlCbgWLSz5mJmyoEEAAojsbGxod+rzKOiKDS7awa9Sd8L2JTzSHlneQYBFuPxWKeJEzAhLnsBFZ7naXmISNFkgx+NRrz33nvs7Oxw6dIl3U8mU2jb9jkPXFFUKUlF671YLBiNRufc2+uFTdY3fnMci1Ekhh88za9vZt/4MIPVdKXK3waDgfZumWuVCc4F4Mr14jim0Wiwu7urmTS5JxkvMi6FYX3W/XzQ7x/WXnjhBQ3Ozf5Z3+hMCUej0dBrtjlPb926xWKx0ASLAL+NjQ09bs33IMa1jGFZE4TQEQmLGMWSOjGO43O6bFkftre3+eIXv6jlcB/72Mc02C7Lp1UixXiSJs8qXjlh/XZ2dvjc5z7HlStXNACQ65lEhxj1eZ7r9UHGoTyzBPGVZcnjx491EKt4qFzX1eSLmaXG3FfFkBCQJynvlFJ86Utf4uDg4Nz9FUWV5vGtt97SHu08z3n//fe5fv36OcNE1j5ZU9bXFVkTpB9knss4ML0DMnbN+xagbfaHKaGQ6wsIFON7NBpx9epV7t+/rxlbkbwsl0uOj4+xLItut0u329X6aqWq1Hzf+973KMuqdPrDhw+5fPkyN27cAND4ZWNjg4ODA46Pj/nud7/LlStXcN2qmNTOzo6+noDBLMt4+PAhnufRbrd1mmkxIBzH0X1lWZbOjrK/v0+aphweHjKfz0nTlMFggO/7vP7669i2rY0tISUuXryoiwLNZjMNjsUAEmNd3nsYhrryrBhwaZqyvb2t36dkpxGj8t69e7z77rtsbGywu7sLVPvBpz71KW3kdbtdLly4AKA/I+9SxpvjOOdkfMA5w85s4gGS95llmfYOyhok66qc32TUZbzJvUofyLoq5Jg5x0VeLWudSXjIPZneGPmbPMs6s22C83VcJff4+1mLf7/tQwG6BCVK54tuSymlNdNbW1t0u13iOD4XLDAej/UmZKbREpZBgIS5Ucj/5aVdvHhRs2jdbldvevKCzc1TOs9kDczCPGL5ievKBHG/l7a+kcsANV1o5vnM7+ZxYuGZDFYURfR6Pc2oSC74W7duMZ1OOT4+1m5iAS7rbT6f62DNdbCyzro/q5kLtzlYn/VdFqfLly9z7969c/IhQAf1ZVn2A8yt2R/r9ykTVKxlGQtimJmWrcn4r08w8z6FmTOLIJnGXVFUufqPjo70u4FK/vIzP/MzvPLKK/oYk0E3A8tM7aPrujqt07Vr17TeU96djEN5PtOF7fu+BizyvFo7bFfFeoQlEDmL67r0+30ajQaPHz8+Z6BIMKS52crmIotgo9HQAX/SGo2GNohNz5MAJjMdWxzHNJtNrly5osGY5MEXVlieVe7J1C/KeZbLJQ8ePKDX6/GJT3xCG+a3b9/W83Z9/JreE/N/Mk5EXiFeGFlQ13PhftB8WAeH8lkZ28JaCjAzDQPpc3nG9TR5cj4BBVEUsVgsmEwm56oQmnPlX3cjODg40HNL1j4xuJRSOh+1Gd9i9oMpVzONEVnzxWtqsmPrAaQmgy4gzAyGFaCrlNKMmzST8AnDkM9//vPnNs79/f1zjJfJtsk4M/cBeApWwzDk+vXrPPfcc/rzRVFoo64sqxgFSf0rRiOgx9E6cSLvPs9zLS0DtPQySRIGgwGLxeIcsHFdV6/f0+lUz8sgCLhy5QqXL1/m+PhY94v0kbC3g8GAfr/P8fEx7733HkmS8MILL+j3Zt6veCik34W8kv/L2J3P59oDcuXKFWq1mk5ZJ4a/2acmqWCy6oeHh1y8eJHj42P6/T6WZfHmm2+yu7vL0dGRDloUj/Lly5fpdru8++67WlOcJAnb29t6jIjHrlarsb+/D1RrwsHBATdu3NBrqW0/TWEohoSAYDMo0SSLJHhb5q6cZzgccufOHV566SXu3LnD48eP+dEf/VHCMNQVsq9cuaJlFqbX+7333uP+/fvcu3dPz39hy0XmIs95//59bbwIidFoNM4VPrp///65TFnj8ViPN8EJQr7s7++zWq04PDzUiQ/EWJZ9BdB5xE3SSd6pYLXhcMhqtdJ7m1JKE4jNZlO/+/l8rt+BeY8bGxt6rMjx8u7kPDJvRe5lSmfTNNVBvmYQrex7skbJODF1/vJ+19uHyU1kjsiasc6uS1v/+fciYflh7UMBujBowswK4ygTU1wo8rO8VEmPMxqNtO5z3UKRzUkyscgCagYhjcdjyrKk3++zs7PD4eHhuQA/scrMZqbwk4hhU15iSg5kEX0WO2W+TLmW6ExrtZre1OS7+QJlg1jXlQF6wZcJvFgsdOaITqdzruiDMMgy+EzAJn2Wpin37t3TP5uDwhxEJthYf07zyzQ25BzrfSOgJI5jtre32dvb088mTJx8Vpj9ZzVTemMuAOvGkDybyfyYk9pkUEW7XZalBk4mwBdWdW9vT59HmAp5dtd1+cIXvsCnP/3pc2nhhNWSeWBa+HLfvu/zzjvv8Bu/8Ru8+OKLfOYzn+HKlSvncrhK4LXpspRjZUGR5zTfm9m3tVqNTqdDr9fj6tWrOl2kGA8CkEwjQq4lC9h8PufBgwdYlqX1+I8fP9byktdee02DJZHRmHNP+s7MfCHM8jrAEjbQBFHS52K0tFqtc+yx53maATPZSgGB5pg0x4rIZ4RgMNccE0T9sPYsQ1JaURT6/OKFMYGhHCN9Le9GgJ9sNAJUXdfl0qVL5+pAfJjx8Ptpu7u7zOdzzSIJASBrhdQyuHv3rma2JZBMjDAxvEwWfrFYcHJyoueZzOM8z9nc3EQpdW7eSdGyZrOpA0EF/Ej/iKEg1xEDWoCL67o8efJEe6rEkyX/u3jxIkVRaONV7svMhiRMe6vVot1uaw/rOlCAp/p9MzWcBGaaRI/0icw3pdQ5ckEAUVEUXLp0ia2trXMMtrwTmafmvmKCeDP5grwrudZwOMT3fb23mLIVuS8B/ea9mmy4qXUGODk50YUFZYxLbmrpK7OZoEvOK4ULt7a2+N73vseNGzd0oL0Y+3t7e7z++uvM53PefPNNvU5JWuT9/X2KotAMr5npRvpF3pf0u23bumCinGtzc5M8z7lw4YIGfyJNFKmUCe7u3bvHZz/7WTzPYzwe853vfEd7KAaDAZubm5ocWSwWhGHIpUuXdDyDbdtawiWyUM/zuHDhgo4V29ra0qlIpc9lzV0ulwRBUBVvO5PJmfur1GQQIlQIMXn3cRzz1ltv8Y1vfEOvPaItF2mduZ7KeDG9LfA0TbI5biROQNZz8Yiu4yr5Lrn75TqCn2TMSFC5HCtzWow8UWvIHiTjet1jZkqsHOdpSk1Z99fZ83WsZ87n9Z+fhYfkHsXDIAlR/jDahwL0X//1X/9DuchH7aP2UTvf/sbf+Bt/oON/6Zd+6Q98D3/+z//5P/A5/n/ZPvOZz/CX//Jf/v/3bfw3vq0HdQlhIn+TjV80vmIwyeYpGR/a7fYP6O3DMNSVMcV7UxSF1tk7jkO/39ckj2zQEmsg8jNA62aF3ZeNXoxakW6JoeF5njYGxQshdQ+azaZO1bYOpG27ypMuoEeOMZ9LDEeRckkfiOEp/Wd602TjN0GLMLPiPTMNExMQCEgRD4sE/Zuema2tLQ1a4Hw6WfFKmPcufS6svGkomn1hEjPy/iTd3r1794AKXJ2enuq4DTnWbNLHcn6TJX7jjTf0/UgwehzHnJycYNtVnuvnn3+eX/mVX2EwGPDo0SNtrAr7LUy6gCG5pvRvp9PRxeckBubhw4fnQJOMRdu2dVD7K6+8oqVLAvpkfEmq1MePHzMejzk+PtZelE6no0mO4+NjbYAOBgMNkCUWTsZ3WZbs7OzoBBxCYIrX8d1332U2m2m5ijDVQoBIBikhOCXGT4gd8XYA2kP1jW98gydPqgq63/3ud7l69arOcCRgVogE08skY8WyLO2xkLkk3l4Zi2aslFxbwLRIIy3L0vJCAbbmOJRYExmnYmTJs8rnTDLNbCbhZZ5T1rFngXNznK6D72cB9PW2DvBFRvqHwZ7DDwHoH7WP2kfto/ZR+292Mz1VwLmCYCbTZXo9hNUV75EZZyTHCpiRzVjAnfxPQNS6e3g9cNtk5uR+5BjLsnQ2GLn3l156iel0ShAEWi5lMsrCwgkQkPuRa5ll0E2ALJv4s1gyARvw1Nsr1zU15KYnUthJUwMunjSzHsQ6aydAwsxKItdez1hmSjVNMCMAyKxebQKUZzGFEuAq7/Tw8FB7ySSmSz4vMTvCyss4kfga27Z1fNLGxgbdbpeDgwPt4azVaueY0Mlkwu3bt3n06NE5w8KU28h51+WUwvCL16DRaGgw/+jRIx2E6bquzlIlY05ivsz3IR4L163SEo5GI3q9HrPZTINyGVeSicWUAorB0W63deXd8XhMt9tlY2NDGxnNZpNGo6EzF4l8V8aMWY39vffeo9/vE8cxtm0TRRHXr1/XUkDz3s3x4TgOm5ubPH78mDiOOTo6Oic5XB/r61JYmYdiOJr6cFMJ8SxPrwBWAcqAnp/yTuVc6waijH1516YSwfROigddrmMCY5njMtbkmA/zoD7r7+vezA/63VwP/rDaRwD9o/ZR+6h91P4It/39fS1hEqAiG6LJyF68eFEDRAH1poRMNh7RyoouVpg0E5yagF6kPL1eT5/TDI5f3/AFHMnGPB6P+dVf/VU+/elP8/LLL9Nqtej1ehqorGtMbbuqgmhKu0xAK9LB9YJQcnye5zqgX4CcsKLm5+S+5doirRJQLNmIBJAKyz0ajTRbC0+zbclxZsVI0ULbtk2329UBo2ZsiQCi5XKpkzR0u11ms5mOEzD7QFhIYXTlf3L/ZmDe5uYmZVkFP5pVTiXOTNhVMYrMAHjp4zRNefTokdaQC2AV1rcoCh49esTbb7+tJU9iJJgF0QANUAXgQVUSXiRc0leSR99xHF0ARzL7SDYm3/e5ePEi8DS2S8ZCkiQ6LkipKsWxyBCjKNJeFdGom4alsPeSoQ7QhoPEkkkMC8Dx8bGWecmYkGxR4qGR3yVbjQStmjU8JLuVAHwxBH72Z3+Wk5MT7ty5o40CM/XzeopE02tjSlBl7EjfC5gGtIEh/SygVaTBJjAW2aJ4l2QtkuBP+TJlvWbGI9PrZcokTRJA5DCOU1VBFUPGlMma3qQPkhQ+6+/m36Rv4KkXwSQf/qDtI4D+UfuofdQ+an/Em4AzM5bDzF9supOFeTJZYlO7L5uabJYCCky3s8g0hLEWTa8pATGZUAGIEj9iAoC33nqL73znO+zu7vLiiy/iOI7O5iGgEc5XRJb6BvIsJsMlbOBoNDqXqlCCCAUsSQCh9NN6sJjZT3JOM/2nPIc8tzD6nU5H953ES8n7EOY/TVPN9Arb+uqrr/Kd73xH5+YWgCr3Pp/Pz+WcN7OdrXtJ1iU/ZiyNyYQK0BPjQd736ekpgAapwqDL+MrznKOjIwAdwyBgXCQAURTRarV0/QgBeBLvIOeTuLf5fK5TzYphacq05LnMeCapUB7Hsa6BIHn12+02lmXpdIpyLjlegn+VUhr8hmGoi/34vq9T0cqYM3N0m5VX5X2IZ8XsO+lf+axZWEsqbUqsihhB29vbGqTL2JHxZj6D7/t0u12uXr3KcDjUBbgk7kXApBlDYjLiZsIGaXKMWdNF+ki8Q2JkdbvdcwA/iiIePXqkx4xIvyTWScD/enyOGDsi5zGLNYkhIuNbvC0yj9rttn4vZvC4fD1L/mXq5wV0m78LESHv1uy7Pyx5C3wE0D9qH7WP2kftj3S7dOmSZjoFCD9Lc2q6ik3ALE02QgFpwkQLaDBlKXKcKasQsCib77r8RCQWpvRkuVzy9a9/nbIsuX37NtevX+fixYtaViNAWphA03UuwGIdqMuzisTBzBIBT4G+MMVmVgvT8DAlPGYT40P02qY3QfrC9B4IyBf9sIAeYQAFPHa7XX7pl35JA28BG6YMQQwH83nlXHKv60yjyFHkWusAQ5hW6euyLPnSl77E0dFRVRTtk588Z9ABHB4e8hu/8RscHBxw+fJlfvZnf1afQ7TX0p9mMSfLstjb29MSj7fffptr165x4cIFncpTQLM5JkWvLUG5psRC7sk0aOTaZkYr8/2Zc8D0QJiG12Aw4PDwkOvXr+s86TIWRJpjMtByDlN/bXphTLmVqcGWe5L5Kakfy7LUqa7N/8uxMkfSNGV3d1fr8QXoSx+YUhV55vVMSHJP0szgY2HsTTC7zp7L3Gw0Gly/fl2/c6WUTrwhY9H0wsh49DzvnKfCjAVZJwfkfwL6Nzc32dvb42tf+5rOAGg+k2mMms9iNjm/uV5K4TYxSM3+N6VtJpturrW/l/YRQP+ofdQ+ah+1P+JNpCayscrmCZwDrWZwpAQXmqyrgCvZ+EyAKBuzybKbm7QwY7KpCtgQJk+Av3xW2NZ2u83+/r4O0JPaGqJxFg2wAAtppoTE1LZK8RIB5/CDLKSAo16vd04mI5uvgC75MsGpuNLFVS/MaxAEutCSHNNut2k0GtpYkHspyyp1pWQhEgAgWWrMXP6+79Nut3U2Gym4Jv0s928aDNIEnEiWNjOvtDyjWbBHAO3v/M7v6MrWn/jEJ3AcR+unhS2WuIFWq8XNmzfPZSAzM02JFEbqfzx58oTpdEqn0+Gzn/0sYRhy8+ZNLS2R4FlhxsUDkCSJ/oy8L3ia2c0M5BUgaEplzP6Q/wvIFWAr41uCnMV4kkqv5lwyDVGTjZZzmwaUjFcB1/J8ck6TQQ/DULPvYqyYchBpeV7lUJdMOCJtkXVA5qYpr5F+E0NMglPl3KYcTP4vc1+yPsnfhEWXe5dKzBJIK7/3ej3q9bq+5nqTdwfomjmmTE2eRcagvB+zTy9cuEC32z2X7lvmlPy+LmeR5xMDYV3HbhY0lHPImBIjWY6X929mP/u9yGA+AugftY/aR+2j9ke4mZuGgGzZHIQBMjcqYYcF/AiQks17NptpbbCcR1ze63pQeMq2mQyVVNuUzc9MIScyCfl++fJl3nvvPZ3VY39/XxfJko3ZPF7YNwGTovcVUA5oI0D04cLQSR/lea6Bs4AqARBmBhHzmUwglWWZrqvged65KslSNdpk08TwEQAtxoDcr+Tyl/+bZeNNBt0s+iTHCMCXQkYmYyugUTLxyDMIELWsKuuPyUofHR1xcHBwrp/lOnEcMxwOOTw8PMeoikxIAh8ls4nIU0R6MR6PuX37NlEUnZP0vPrqqzQaDR1ka+r1BQzVajV9nwLKZUwLiJLjxashoMnMTCN9Kc9uAjeREnU6HaDKGx6G4bnxLOeQa8g9mHPJBPMmi216tyzL+gGttzDjMtblfzLHpE9Nw0OArNyngNR1cC6G4Xp6Q1OPLs9nSkTM2BTT2BH5loxxWWPef/99vvGNb+j+6vf7egyan3NdV+vVl8ullv7I/BMDyGTPBXSb3jmZz2bFX/O+TTZ+3cMha4iZClY+K30k/xeZm3xOritGtqyhcl0zuPeD2kcA/aP2UfuofdT+CDfZdMxKlwIQ1rXIZiGpbrermVUBKcKQLZdLLckw5TLrshDT/SxMpLkJFkWhNcdSU2M2m2l2UACdsKRvv/0229vb5+pxBEFwDtSaeb5NAwI4xzCarKH8Ln0jWlcJCpRzmGyn9Jl5rMmKCSsvgGxvb+9c+kmzXwV8SkCcMG8CMMIwPOeOF+bwWakvBdiZfS2g0XGq3Niihzbv+Vn6c9FLS+abKIrY29vT1XQ3NzeBitl88uQJX/7ylzk5OeHSpUt0Oh2m06kG+xI7AE9ZUdObIp+RPtvZ2cG2bY6Pj3UhKPFyDIdDHXQs9ytVoD3P054PGd8C5ARArldHNZlt0+iR85vvWsZlmqaMx2Odw9xkb02mXu7BBO3CKMu8NPtknYU37wfQlYkty9JGoAk8Ac1Or1YrJpMJT548YTgc6ow8R0dH1Ot1beDKuiDeI0krKpp2U3ttSpVkfprsuzDEMgekVsZisWCxWPCVr3yFo6MjPZ+k0q68A3O+KqW0sWX2gaxFMqdlPpp51M34FAHn5tw1x6W8K3lOU0ojniPznkyjdH0tkbVN5q+cU969aYz9MKnLRwD9o/ZR+6h91P4IN2GxRE8rG4X8XTYncavLJif6UDPwjv9ve2fSI1dWbeEVTUZ3o8vGWVllW6CyBMioYMCEIRIwZFhjJOb8JBBj/kTNGTBAKpVVpgCBu1I20XeZ6QgGqW/nusfpem/0ZOU7W7JsZ0bce+5p7ll77bX3kQKwAnqQXEgqbUjOxroEhO9KCjYYJl9SiQHd29sLpmm328XhRCT7SSpVF6nVagGI1+t1JJMhBXCm39srqQTuuZZvqs4Yp3p1vu8bNn8I6Q8GgzgMx+/t8oTlchkMr7N4LlVxXb9LdGhP6jQ5QworTD8BFAD13E9SMN84LYwNx7UjEXr9+rUmk4n+/Oc/69mzZ/rVr36lX/7yl6rX63r16pU+/fTTAJVEO5CEoEtmfJEHUScdKcBsNgsGnmfw2tjU43cG20GVA3OSlnEEvHwg68L1+V460sHc2dlZSKb4mc9D5oZXWuEazCckO5XKTd4GUSMfZ5dTEQVyp4sTOnHyiD71ej39/e9/1/Pnz9VsNvX48eM40fXo6EgHBwfRDpfceNSFNeoGgCWKQdSG7zvw3W5vDmaUbqINRFgWi0WJmU+lM/zMmXukP4Bfd3R9/Tno9XeO51Lwc8bYI0re73etLa7va8917d4PDs75LHOK/IDvsgzQs2XLlu0eG1pgQDaSDkCws0aEkFPtpOu5+dtDtIACGNfdbhfl1hwsEgamDQBTTgoFhLPxohcHnDx9+lSffPJJPItr3tmoXaoCIAc4waSxKdNuwDiJX0gW6B8/stwdExhCIgue/MafyWSi9Xqt/f39EpChvS47gN3++OOPS+CCPnZHCSadzzmLCJOLowJAxUHg2T0R0B0Y10wTqkd+9Mknn6hWq+n4+FifffaZ/vrXv+rLL7/UN998o6Io9OMf/1j7+/ule3LADqCKJEcHxrT96OhIlcpNdRWcBEmlutmUeYSF5Ih5+oW/HSwBvBk7Z6x5PjTsMLskZCIbwhncbDY6Pz/X+fm5/va3v+nnP/95nADuWuPz8/M4jMjLm5LY7GvDTxD38fYcj/l8XnIY2u12HIbEiZlXV1d6/fp1OD/dblefffaZzs7ONBqN4t4ua/F1nfYf84XPEdFi7QJskYMwn6Rb+c54PNZyuSzdJwXCvmYc3PI38xJzAO8g+67kTJcJUd7TiQuu59I8Z+u9Pa4x9+o/7pz734yft5++85yZuywD9GzZsmW7x4bOmoN9YOk4lIYNF8DMKZZSmeV1jfVqtSol4zm7u91ugw308LeHwD1BlUocgCln9iXp+PhYRVGo3W7r4cOHpcRS15LyDJ5UdnV1FWwtDgPtIUnO65vTfgAP102dGIzwvWvP/YRGWLKiKPT27dvSKaiABNrmf7vcCNDkbDYAJ9UgA3i3223IWDwagJPEuLt+3v/tQAVg3Gq1tLd3c+T9ZrOJet+TyUT//Oc/9fDhQ/3617/Wz372My0WC3399dfqdDp69uyZfvGLX5QYa8CagyASGJ8+fRqs8uPHj2OOIGWCSfdj7qvVmyTYbrdbYurpD06i7Xa7JZDouRc4T/TRo0ePYpxxTi4vL9VsNvXq1Sv96U9/0sXFhX74wx/qpz/9qYqiCAeHca3VauE8uJ7b5RneBuYNSbSeWFupVGJdUu9dugGYOF7ITsgR+f73vx9ynxcvXmiz2eirr77SkydPNJvNVK1WI/rFOHjUxasNEXnA0eXd4jkK19fXcXgTa2e9Xuvs7EyLxULT6TT6BoDr/eIOKO3x9ebRnLQaFePJHKYPPdLE9x3QuxPk4BxSIJX2sB5Y37Dm3mb6jHcu71afB5AP32UZoGfLli3bPTY2V0AMQCdlaGF4PERNkmUaRgaswRx7kiQbGJIZB6swTmy6JLB52NevB5B88uRJbKKwpmyMzpSy4XkVFYAazCcOCgcsObDiGi67oA8A1w5unYGmfUhsYMiot02bp9NpqWIN4Jva5s7uA2I9dwBdrLN20g2ogEUlkdBBHOasI/dD3sM8gBnlOoC1arWqf/zjHwGo//Of/2gymegHP/iBPvroI223W7148UIvX77U5eWlfvOb3+iLL77QN998o08//fTOCjI8w97eXhxew+d+9KMf6eTkpFRdhiRTEvfoQzTzjLXXSefZ1ut1CczRb4AlZz1xAPjD/STpyy+/1Hg8jrEpiiL63deLS2O8KotLzbg+7UqTK3lG/k8EAeeDPA6+x/j1+31dXV1pOBxG1Orp06eq1Wp69OhRVERxJwlAu9lsSs4djqCfzsuhXPQt10H65O+Soij04sULNRoNtdttXVxclMCxO4fOqvt7gXcL/QQLzVgznoBi1rYnavJ5PrPZbKLWfLvd1mAwCEkODnxafcgleDhM9IGXpuW7q9VK7XY73nMut+N777PKzld4tmzZsmW7V/bHP/4xNro0mUwqn4zJ//m8A+F040wTTh0opXpQTyxzYAlYxlKdL1Ia5C/9fr9UKcG17f4d7k043wGPh+ABIGmIOu0fl4Dwh75Mf+9smkuDuD4g2/W/DtYcuDr4lxTgEz2tOwkO4gDc9A9gjHbi2HDSqEdDvKJJCkw3m42+/vpr/etf/1KtVtPJyUmANObXYDCIEpGPHz/W8+fP9eDBA3388cfvVDahf7z+usuEfJzpP77jtcQBx7SZ6/AsabIo4+fOSZqP4G3w70rSs2fPdHFxEQDrJz/5SfyOvvPv+VjetY6YE/X6zYmX9AfjyjPjvAIa/XrO+CJtkhSRI5KfWaeUKSVawfU9ouTstPeFPxfvAAAz88RLW56dnemrr77S1dWVnj9/rjdv3sRn6/WbswU8ydbfQTjS3mfORvtacY26pJLjggPr63w2m0XJyuFwGASBj6M7p1QQIiKGc09bIRB8jFkT5MQgd2LN/O53v9P7LAP0bNmyZbvH9oc//OGdhEQHE9ItGAPASXqH1Uo/70l40t3HYrselGsAAFKtqAMMD3OnYNU/707BXfrRVqv1DjjlT9oH6TP4JutAEf3y+8yv65v0/9ZSBwIQ5M+ZXturSux2uyhd6f3Mtf366fj5mDhA5t/ORnob3Fwjnd4fMEo/wVwipfA+5rm8vcxf7p06VhhSHO6VPqePrUt6/HqpBnm3u82rcMfsrjnO3PRn5/n9ns5S813kY+7Q+vP5/PL5kEp33KlmDqV/u6zG57hfn2t5P/G7NCeC5+Mds1gsJN2WP0ydVHcuaBPvHXd0cWb5DnPkLlDujg2WRpq4p88xfwdyfdqAE+Nzz/sinX9pNIC14w489/r888/1PssSl2zZsmW7x3ZXYpYbDHOqRXaA7gaIJmTPRphuWFKZfWZjTE90dCDEputAzMFwClLY5FyywOfQFKf94G1LQUcaYk9/7pKfu8ChRw0cHPF/Bw8+Ds6E80zeV9z7rvZ7+3yMHLT4PbzvUhCZAmLvN1hZl/Wk5nMGkH4XgN7tdqVSkJ4A604J30ujFymQ8j5zJyq9RhqloC1pRY4UpPM5Tyh0AJeOSeqQAcadtWfOkpi9292WJwSIMoYpY+xr2udYyuL7GDuwRnLjfeDOrqSoCMNzOrPs847nSXXY9Xo9qrV4HfG0731+pG3253G23HXk3naej/dH+o5x7TtjiHneAPOTOYq0xfNj7nJ0/d3h5t9NGfrvsgzQs2XLlu0e21/+8pcS0+WMlRvAh405PTmQn1M14uLioqSRToG6gyzMNZ3pZg076211Vo3N9C4pgkt3AOdoYanhzbM5I+12l+OSAp7r62stFot3ogUOuFJ9vzOF/Nxrl6P7xeHhWe+KSNBfDqRSkO0aetcC81n6levdxUgzhg68drtd9KV/3wGTj5OzmH4tP9AKeQOfccfM7+EyHq7vUieu75EdElHvAkzepnQ+pPcHgCJ/gAkFtPEZf15yDCitCcubOjAp0EMyAzj358V8jtF2lyW5E+vJ2NLtCa60x6uuwOTf5ezyM+9rdwAdnHu7nCH3ylFp8qs7GukJqmkEgL7zdebJ0Tyv51c4sHZNvX/O3yHeB862+xx0lj9dp+7Ecn/vP+Z/BujZsmXL9v/Ynj9/XqrF7BuWb7xsJoPBIAC69C4odDaQzd7ZTalcQxtGS7rVmzow8ND6druNA1zSgz04NIlr1uv1kLB42Jqfw9r5YSvUbIbFQlpB+By2D9DIJjyfz7XdbrVYLKIvOZnRgVm1Wo3TJynfSH+kEQH6EECNHACrVm/ragNaaA9gz5Pm6H9+B4NNwiyAip+TzLvb3ST9om8GmLRardJhVF4qr16vq9frBesLgJFU0vGmibT8DoePsep0OqFbppKNM7hXV1eRXEe7qY6C1hwNOgfweAKyV8khYdpZ+xTYSjdglrmC03d1dRW6fa8SwlpZr9caDocaDoc6OzuLvoMh9ypKLjFxmQv65OVyWepXZ9+ZAzy/RwB4nhT4kzjKQWAuudhub0/IpQ2sJ3dePILA53h2QDJzoygKvXz5MrTlOAzMH9rtkSZ3EFPnweeRv6/cIfW64sxjntWThl1m4sm2zFm3ZrMZc30ymbwj3+J95s4p6xqn051w5hj9/tvf/lbvswzQs2XLlu0e28nJSZRSq9dvDpoBsBRFUar3XavV4vAVqmUsl0ttNptS2bXtdlsKkW82m/jdYrEoHWfugAcGslarBWhxEMshNs54OQBwRpAqDL6JA0gof8i9SRajrWyUAEEYLjZWKmDQLxw5DvB1QEa5SphNaqYDsFqtVhxLDhBO2+S1yj3hrlqtRh17BxLVajWq0wAA/ZAcwLY7KVz78vKylGR4fX2tbrer0WhUOpwG4A4gcvDTaDSidj1zwZ2j6XQaQAwDoAGocUD29vbihNHZbFaq+sN9XHaB43N2dhYJlVI5GZPqHOl8JSrikRdnse8qE0gbrq9vjnQH9He73Xhukggl6fT0VA8ePFCr1YrqHZPJRIvFIk5EHY/HajabJfab+1HNxpl6rN/vR0UbxpA1kPYD7QEUX1xcxHvAHV0cDoC4n8bJPFgsFuHA1mo3h4RR3YdxccnObndzuBRnAEhl3Xaax9Dr9WI+eUQn1b7jtKUM/2q1KiWD08/ukJKLIpUTjVljzA8H2sybzWaj4+Pj6PtGoxF/qtWqLi4uouyojxfzlT6g7VRbSpn31DJAz5YtW7Z7bJ9//nmAQUCdpAAWbGQwml5dwQGgdKvtZnOB9dxutyqKQpPJpFSKDGDA/dBwr1arqKeeakgBtmmpOTZQrttut2PTbrfbUR2h3+/H8evO0ONgwDpKKrF6VGio1WpRopDN+vr6Ok65XCwW4VxICmdjNpvFyaWHh4cl5wBgyv8Bgx5uh5F1FtTbBnDvdDoBcjCXcaRHzvMzqqzwdxrtcFCKs9JsNqOmPdUu5vO5NpuNms1mABSXLUmKeuEATMAj4Ng110RVXOLiUqdUOoPj5HMYh4R78JlGoxGVS+hjnJ/Ly8uoFQ/wBExxiqkztS5H8kRXdwww7jcajXR6elqKgDBnXJMuKSIovV5Po9FIq9WqNIbX19eaTCYBDPndZDJRu90uJaZ64iRjOxqNYl17FIp/12q1cMicQcchcbZ/Pp+XZCdFUcQYAKJbrVY4tty3KAptNhutVqsA7K7Npg8oj0jkhPfSer0Oh415QUTLGWtOO2bN0n8cUoRTjkPE+iBCxFh7dBHGnzWKM359fa3ZbKbVahXfYT75GnMnkX7C+X6fZYCeLVu2bPfYDg4OJL1bvxuwCxCpVm9r9AIaYTEBYmxyDnJds3lwcBBsMEAeVp1NnPrBsJUw3UhLAFK1Wi2Ax2Kx0HK5DKDQ7XZ1eHio3e6msgYVS2q1Wvw/1bAC5jm4ycsbOujzfkHC4yy2SzqGw6EqlZua0PP5PGoqU2sZthcwAVhptVol9hYn6PLyMk5ZBfBwKA2gnNMmiWrQV1L58B3AJGDdwZD3iQMJ1+jyORwdwDbjC7CmjwAgMM4unQHYSbcnnQIAU9BCO3a7XQBBIhp8/+rqSt1uN2rTMxf39vZUFIUuLy8DmKObB3wyfkgfYEX5PPIV/rh2utVqRQ4ChkPkumiuU6nclPIbj8dqNBrq9XpaLBbhBHQ6HfX7/XAk/FTb6XQaJ5syPhzYxDxDylMUhUajUYw/64HojtfNZ73Dxr99+zZALuw5Ti9OTKfTCdAKqGWcGHPA/N7eni4uLrS/vx9MOs+0v7+vt29vDrdy2R3vFBwZIgj0m59QvNls4jAm+gSigbmM7p/TaLkX0UF3Tni/tNvt0unIvEN2u13JKeYd5BEBl99AWBBNcseXzy6Xy5hX32UZoGfLli3bPbbVahXA2o8DB5TW6/XQAAOYXLOdMpRs4LDngBGYQDTFrpHmZEPpVoe+WCxik4LZAnCkyZm9Xk+PHj0K0ANQBtTxGTZAGFjAmZ90SBTAQ+i0DWbYEwVdy9vv9+O+fB6AfXJyEqwt1wQM0H/omAGMbOaVSiWAOdIHQAGgivYAaKnF7CwoG74DBSQ2DowZB/rKSzICPjxiQRv4PzpvlyK5tMJzAwB16/U65gngvN1uq91uR+TCpRe73U7D4TDkFUgYXPrR6/UkKWRYzAUcsPV6rQcPHsShOi6n4sRcIis+n72sngM82gyoh4F3OQlgrd/vh2O2t7en4XAYQJY57jXKmes86/n5uVqtVjjNXFu6rVfOPFsulzo+Pi45Oq6pp+9Z0zicOH/NZjNO3N3tduE8eM39+XweTjb3RY7Ec6HvPz4+LumsYZeZn4PBQPV6PZh01iR9Sp8Mh8N4VkA66wmnEYkOz+eSOPIUcCoZC9exs7a63W4cKsTncBC63W44zdPpVK1Wq+QUsxbG43HkoND3RIVwaulzX6/vswzQs2XLlu2eGxscIdyiKAIcEEomuRDAwcbsjBAACamFA2Y2PU9GbDQaGgwGpf9LCqaNBC9ALdcC4LPRedIhoHu9Xgc4GAwGoa0HLBDmBlQ5OEJaA6sKaIblBnBOp9MApNLtyZDV6s1BL7DmgGrAHoB2Pp+H4+CgOdXlI42RypIewAvODoAdBt2rY/BzgD/gnXEkTwBQiSTAdeb0M/PFdfg4Oc1mM7TMnkwLKH379m2MBfe/vLxUURQhYfDoiqQS4OP3SJ2IorgsR5Km02l8vtfrlZ4bkF4UhWazWTheSHQ8WZjvSDdAH4cFcAVz2m63tVwug5kdDofqdDo6PT2NNcUccDYZFhVH2Z/DIxMe5Wk2m+p0OiWnAvaYtlerVU2n09DbD4fD6HskRrDCMMW9Xi/mCOPPXPbIVlrJiYo0sPU41zxDo9HQdDqNNco6h8HH0cehazQaAXI9r2K3uz3N1KN8DuA3m00QCp50Tj97BIP3jp98zL/H43E4W4BqHDuiHLybPGI0GAziYCVPcCWXw/NkWOto5B2wt9vt6LP3WQbo2bJly3aPLU1G41hyT7yTbkuFIc1wVpbESsCiJ20BWAF4AAvXSXM9klJh7VxHDdvW7XYDgLIpAswB5UVRqN1uh0PgOljYToApoAnmFrAC+AAIwvTCqs/n89BeI4dBp4yMAJaWMD1gEIAg3bLs9B0gzQH0brdTt9sNfS1jU6/XNZ1OS5IJJBg8G6AfG4/HcS+YYRLxAHO0JwXiLpfBGQFobLfbeHba7TXt0XUDtj2HAVBLhRKuu1gsAngB1jzx0EvuNRqNANyeLIizALBjfGFzV6tVMMa1Wk1HR0fRrmazWUrcrFQqIc0YjUaq1+s6ODgIbbpru/l9v9+P+vC0nzmDAwbYdKnJfD7XaDQKpxKHw6uhMMeQS8Dye7QAqcfZ2Zm22204xOjTaS+JrkTSGGMcc9YAjHKn0wkHoNfrRRQGx5c5h3PBHPV8Csaeds5ms1iPi8Ui2sm89LyDwWAQjjNRP9YUYH+9Xqvf75ckUzhXFxcX8f6YTqfBgks3jgOyHUA286fVaqnb7Wo8Hsf9eRcQGfJ3lmvvKe3KHPSIBgQFfUyU7LssA/Rs2bJlu8cGaIExZ9MECJAExmddFwyTC/PkOmoPzcMosYmjbfUqF/y7Wq1GwiEbtmtnO51OlKObz+cB+gGAMNJeSQHN+3Q6DX0ygBLGEUDokhYkHjyb676Hw6F6vV4wx5iH9jFAkDPdXp5NKpdVZIP2tsDqs5kDMBk3AIxLUFymQlUenCUPs3MtT0z0RLjlchlgcLPZaDqdBnCkT5bLZTCfaKFxeKSbCiwwp+7MeDtSvbpr8VerVUiCaCt6cp+b3W435kW3243j1nEK0U6vViuNx+NoCyDs6uoqpDWj0Sja3ev1Qi7hyYKTySQAIix0o9HQZDLRbDaLNUWfo4sHOJJUjJSHfuh0OtGf5Feg72ZtMO8Z+263q9PT03Cu3Jnhdw6Uud56vdbR0VGMG2tWUjzrfD7Xy5cv1e/3dXh4qOvraz148ECLxSLeB0SqiIgQKfEkWRwH1sJmsylFqiqViqbTabDXlDDF0Wq1WhqPx1qtVjo4ONByuYzP88zL5TKcGKQzZ2dnMbeQRTE2OPNepYU5Qt9BZEg3MhtyDZAm8Xkv4cr7gPHFMSSxulK5KVtLGzwChHb+uywD9GzZsmW7x+a6bNdWA4wA3TDlADWvWiApwBuaUAf6MEYALC8rBghkY4W1hVVjA4fdIvlxMBgE21kURakcIlIbWHGS6trtdmyIOAoAToA2bcNpAdTCftJGNlQkGoCwNNES6YOkEkvmkg1n0WHM6QdPAKTPkTB4kmkqh3EdLtIFmGkAGnIgf16A9Wq1KmmhcR6QZSD38LJ+jC2OAiAfWZKkAHM8I30DQPVKIfQtUgzAE85HmgswGo2ibwHbOKD0lfczTKyPF0CROcfnKAnInO52uyGNGo/HIWFhPNH20z6AKm05OztTp9MJOQmRHeQ7rAHm5v7+vmazWTw7IBi5mTtIgGSXyDSbTQ2HQ/X7/QCXXr0FJ4B5Op/PNRgMAvgOh0O9fv061gyOC84rNeTR7SOrmkwmarVaIWlCOsQ7pVaraTweq1arqd/va29vT5PJJObP4eFhrD2qIXW73XDa+B6O5nK51P7+vvb391WpVHR+fh7z8/r6Wm/evAknu9ls6vT0VEVR6Pz8XJVKRa1WSxcXFzo6OtJut9OrV690eHiow8PDyMWgTGij0dCbN29KkafFYqF///vfOjk5iSifV41h/rP+Dg4OIpfi22+/jTnQbrffOfsgtcrOIX22bNmyZbtX9sUXX8RGQHUEL6MGCEUGISnCzp5QCXDy5DxAAqwdgEtSaL6lchicELSXW4MFcy2udJs0R5IZABhGm5KLMO6wk3zXtfWEnNEG8xmcFE/YdJbc+8ev67IVdLEw9jgsAF9P0nNJEP0K2ISRRJ9PX3gIH6aP77v+Hw2xX5vPkLQKoOP3aI69pCOMNOCSz3q0BVBN+73aCw4Z9wKUUyOf/gZoU0OaZ6NKCU4CCYvuIKAVRip1eXmp/f39Uk15gC5VPwCtgHlAM2NCGT/p9qAmZEbezzzn6elpAEHaTyRnt9uFbptnqNfrOj8/j+RpSSGVQUOOg+d5AUgvcNYo68ec7Pf7kdjKXBmPx5GwS/+wBgHOONuw6QD9y8vLiD4Aqin72Gg09OrVK3300UcxN7gXY+u5C7Sd9447VoB63iOnp6cxbp1OJ67rkqHRaBTtp6oOSaf017fffqtKpaKHDx8G88244mj1ej1dX19HDsH5+bmePHkSkjqiI3t7e1FFivfebDZTr9eL5FkcGd6RnI8wHo81GAz0ve99T+12W2/evAnmnLX3+9///r3v7gzQs2XLli1btmzZsmX7gKz6P38kW7Zs2bJly5YtW7Zs/1eWAXq2bNmyZcuWLVu2bB+QZYCeLVu2bNmyZcuWLdsHZBmgZ8uWLVu2bNmyZcv2AVkG6NmyZcuWLVu2bNmyfUCWAXq2bNmyZcuWLVu2bB+QZYCeLVu2bNmyZcuWLdsHZP8FU/AKzv0Tjz8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Draw\n", + "if model_type == 'opt':\n", + " print(mconf.max())\n", + " mconf = (mconf - min(20.0, mconf.min())) / (max(30.0, mconf.max()) - min(20.0, mconf.min()))\n", + "\n", + "color = cm.jet(mconf)\n", + "text = [\n", + " 'LoFTR',\n", + " 'Matches: {}'.format(len(mkpts0)),\n", + "]\n", + "fig = make_matching_figure(img0_raw, img1_raw, mkpts0, mkpts1, color, text=text)" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "5b8911f875a754a9ad2a8804064d078bf6a1985972bb0389b9d67771213c8e20" + }, + "kernelspec": { + "display_name": "Python 3.8.8 64-bit ('svcnn': conda)", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.19" + }, + "orig_nbformat": 2 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/third_party/EfficientLoFTR/requirements.txt b/third_party/EfficientLoFTR/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..ab86d90f1cf68a8d50060cba9b4582d6b4883a1d --- /dev/null +++ b/third_party/EfficientLoFTR/requirements.txt @@ -0,0 +1,17 @@ +opencv_python==4.4.0.46 +albumentations==0.5.1 --no-binary=imgaug,albumentations +ray>=1.0.1 +einops==0.3.0 +kornia==0.4.1 +loguru==0.5.3 +yacs>=0.1.8 +tqdm +autopep8 +pylint +ipython +jupyterlab +matplotlib +h5py==3.1.0 +pytorch-lightning==1.3.5 +torchmetrics==0.6.0 # version problem: https://github.com/NVIDIA/DeepLearningExamples/issues/1113#issuecomment-1102969461 +joblib>=1.0.1 \ No newline at end of file diff --git a/third_party/EfficientLoFTR/scripts/reproduce_test/indoor_full_auc.sh b/third_party/EfficientLoFTR/scripts/reproduce_test/indoor_full_auc.sh new file mode 100644 index 0000000000000000000000000000000000000000..b2f2e9bf327b99f11bb7a85e0b9d0474edc3d532 --- /dev/null +++ b/third_party/EfficientLoFTR/scripts/reproduce_test/indoor_full_auc.sh @@ -0,0 +1,35 @@ +#!/bin/bash -l +SCRIPTPATH=$(dirname $(readlink -f "$0")) +PROJECT_DIR="${SCRIPTPATH}/../../" + +export PYTHONPATH=$PROJECT_DIR:$PYTHONPATH +cd $PROJECT_DIR + +main_cfg_path="configs/loftr/eloftr_full.py" + +profiler_name="inference" +n_nodes=1 # mannually keep this the same with --nodes +n_gpus_per_node=-1 +torch_num_workers=4 +batch_size=1 # per gpu + +ckpt_path="weights/eloftr_outdoor.ckpt" + +dump_dir="dump/eloftr_full_scannet" +data_cfg_path="configs/data/scannet_test_1500.py" +python ./test.py \ + ${data_cfg_path} \ + ${main_cfg_path} \ + --ckpt_path=${ckpt_path} \ + --dump_dir=${dump_dir} \ + --gpus=${n_gpus_per_node} --num_nodes=${n_nodes} --accelerator="ddp" \ + --batch_size=${batch_size} --num_workers=${torch_num_workers}\ + --profiler_name=${profiler_name} \ + --benchmark \ + --scannetX '640' \ + --scannetY '480' \ + --rmbd 0 \ + --thr 0.1 \ + --deter \ + --ransac_times 5 +# Following the RoMa protocol, we repeat RANSAC 5 times to enhance robustness; however, this increases script runtime. \ No newline at end of file diff --git a/third_party/EfficientLoFTR/scripts/reproduce_test/indoor_full_time.sh b/third_party/EfficientLoFTR/scripts/reproduce_test/indoor_full_time.sh new file mode 100644 index 0000000000000000000000000000000000000000..d1dfe2cfb131c778b622946aadc1904da637124e --- /dev/null +++ b/third_party/EfficientLoFTR/scripts/reproduce_test/indoor_full_time.sh @@ -0,0 +1,33 @@ +#!/bin/bash -l +SCRIPTPATH=$(dirname $(readlink -f "$0")) +PROJECT_DIR="${SCRIPTPATH}/../../" + +export PYTHONPATH=$PROJECT_DIR:$PYTHONPATH +cd $PROJECT_DIR + +main_cfg_path="configs/loftr/eloftr_full.py" + +profiler_name="inference" +n_nodes=1 # mannually keep this the same with --nodes +n_gpus_per_node=-1 +torch_num_workers=4 +batch_size=1 # per gpu + +ckpt_path="weights/eloftr_outdoor.ckpt" + +dump_dir="dump/eloftr_full_scannet" +data_cfg_path="configs/data/scannet_test_1500.py" +python ./test.py \ + ${data_cfg_path} \ + ${main_cfg_path} \ + --ckpt_path=${ckpt_path} \ + --dump_dir=${dump_dir} \ + --gpus=${n_gpus_per_node} --num_nodes=${n_nodes} --accelerator="ddp" \ + --batch_size=${batch_size} --num_workers=${torch_num_workers}\ + --profiler_name=${profiler_name} \ + --benchmark \ + --scannetX '640' \ + --scannetY '480' \ + --rmbd 0 \ + --thr 0.1 \ + --ransac_times 1 diff --git a/third_party/EfficientLoFTR/scripts/reproduce_test/indoor_opt_auc.sh b/third_party/EfficientLoFTR/scripts/reproduce_test/indoor_opt_auc.sh new file mode 100644 index 0000000000000000000000000000000000000000..f9b6ae8afb928a6e8f4eb7dfa585d9b7806353e0 --- /dev/null +++ b/third_party/EfficientLoFTR/scripts/reproduce_test/indoor_opt_auc.sh @@ -0,0 +1,35 @@ +#!/bin/bash -l +SCRIPTPATH=$(dirname $(readlink -f "$0")) +PROJECT_DIR="${SCRIPTPATH}/../../" + +export PYTHONPATH=$PROJECT_DIR:$PYTHONPATH +cd $PROJECT_DIR + +main_cfg_path="configs/loftr/eloftr_optimized.py" + +profiler_name="inference" +n_nodes=1 # mannually keep this the same with --nodes +n_gpus_per_node=-1 +torch_num_workers=4 +batch_size=1 # per gpu + +ckpt_path="weights/eloftr_outdoor.ckpt" + +dump_dir="dump/eloftr_full_scannet" +data_cfg_path="configs/data/scannet_test_1500.py" +python ./test.py \ + ${data_cfg_path} \ + ${main_cfg_path} \ + --ckpt_path=${ckpt_path} \ + --dump_dir=${dump_dir} \ + --gpus=${n_gpus_per_node} --num_nodes=${n_nodes} --accelerator="ddp" \ + --batch_size=${batch_size} --num_workers=${torch_num_workers}\ + --profiler_name=${profiler_name} \ + --benchmark \ + --scannetX '640' \ + --scannetY '480' \ + --rmbd 1 \ + --thr 20 \ + --deter \ + --ransac_times 5 +# Following the RoMa protocol, we repeat RANSAC 5 times to enhance robustness; however, this increases script runtime. \ No newline at end of file diff --git a/third_party/EfficientLoFTR/scripts/reproduce_test/indoor_opt_time.sh b/third_party/EfficientLoFTR/scripts/reproduce_test/indoor_opt_time.sh new file mode 100644 index 0000000000000000000000000000000000000000..dec08661bcee163dcb250c6896b2719cedcea940 --- /dev/null +++ b/third_party/EfficientLoFTR/scripts/reproduce_test/indoor_opt_time.sh @@ -0,0 +1,33 @@ +#!/bin/bash -l +SCRIPTPATH=$(dirname $(readlink -f "$0")) +PROJECT_DIR="${SCRIPTPATH}/../../" + +export PYTHONPATH=$PROJECT_DIR:$PYTHONPATH +cd $PROJECT_DIR + +main_cfg_path="configs/loftr/eloftr_optimized.py" + +profiler_name="inference" +n_nodes=1 # mannually keep this the same with --nodes +n_gpus_per_node=-1 +torch_num_workers=4 +batch_size=1 # per gpu + +ckpt_path="weights/eloftr_outdoor.ckpt" + +dump_dir="dump/eloftr_full_scannet" +data_cfg_path="configs/data/scannet_test_1500.py" +python ./test.py \ + ${data_cfg_path} \ + ${main_cfg_path} \ + --ckpt_path=${ckpt_path} \ + --dump_dir=${dump_dir} \ + --gpus=${n_gpus_per_node} --num_nodes=${n_nodes} --accelerator="ddp" \ + --batch_size=${batch_size} --num_workers=${torch_num_workers}\ + --profiler_name=${profiler_name} \ + --benchmark \ + --scannetX '640' \ + --scannetY '480' \ + --rmbd 1 \ + --thr 20 \ + --ransac_times 1 \ No newline at end of file diff --git a/third_party/EfficientLoFTR/scripts/reproduce_test/outdoor_full_auc.sh b/third_party/EfficientLoFTR/scripts/reproduce_test/outdoor_full_auc.sh new file mode 100644 index 0000000000000000000000000000000000000000..08ed0fc7eccd33441d700d56f27bb573d4baca0e --- /dev/null +++ b/third_party/EfficientLoFTR/scripts/reproduce_test/outdoor_full_auc.sh @@ -0,0 +1,35 @@ +#!/bin/bash -l +SCRIPTPATH=$(dirname $(readlink -f "$0")) +PROJECT_DIR="${SCRIPTPATH}/../../" + +export PYTHONPATH=$PROJECT_DIR:$PYTHONPATH +cd $PROJECT_DIR + +main_cfg_path="configs/loftr/eloftr_full.py" + +profiler_name="inference" +n_nodes=1 # mannually keep this the same with --nodes +n_gpus_per_node=-1 +torch_num_workers=4 +batch_size=1 # per gpu + +ckpt_path="weights/eloftr_outdoor.ckpt" + +dump_dir="dump/eloftr_full_megadepth" +data_cfg_path="configs/data/megadepth_test_1500.py" +size="1152" +python ./test.py \ + ${data_cfg_path} \ + ${main_cfg_path} \ + --ckpt_path=${ckpt_path} \ + --dump_dir=${dump_dir} \ + --gpus=${n_gpus_per_node} --num_nodes=${n_nodes} --accelerator="ddp" \ + --batch_size=${batch_size} --num_workers=${torch_num_workers}\ + --profiler_name=${profiler_name} \ + --benchmark \ + --megasize $size \ + --npe \ + --thr 0.1 \ + --deter \ + --ransac_times 5 +# Following the RoMa protocol, we repeat RANSAC 5 times to enhance robustness; however, this increases script runtime. \ No newline at end of file diff --git a/third_party/EfficientLoFTR/scripts/reproduce_test/outdoor_opt_auc.sh b/third_party/EfficientLoFTR/scripts/reproduce_test/outdoor_opt_auc.sh new file mode 100644 index 0000000000000000000000000000000000000000..4e1af5987b16785effc390424eb37f38a55f842f --- /dev/null +++ b/third_party/EfficientLoFTR/scripts/reproduce_test/outdoor_opt_auc.sh @@ -0,0 +1,35 @@ +#!/bin/bash -l +SCRIPTPATH=$(dirname $(readlink -f "$0")) +PROJECT_DIR="${SCRIPTPATH}/../../" + +export PYTHONPATH=$PROJECT_DIR:$PYTHONPATH +cd $PROJECT_DIR + +main_cfg_path="configs/loftr/eloftr_optimized.py" + +profiler_name="inference" +n_nodes=1 # mannually keep this the same with --nodes +n_gpus_per_node=-1 +torch_num_workers=4 +batch_size=1 # per gpu + +ckpt_path="weights/eloftr_outdoor.ckpt" + +dump_dir="dump/eloftr_full_megadepth" +data_cfg_path="configs/data/megadepth_test_1500.py" +size="1152" +python ./test.py \ + ${data_cfg_path} \ + ${main_cfg_path} \ + --ckpt_path=${ckpt_path} \ + --dump_dir=${dump_dir} \ + --gpus=${n_gpus_per_node} --num_nodes=${n_nodes} --accelerator="ddp" \ + --batch_size=${batch_size} --num_workers=${torch_num_workers}\ + --profiler_name=${profiler_name} \ + --benchmark \ + --megasize $size \ + --npe \ + --thr 20 \ + --deter \ + --ransac_times 5 +# Following the RoMa protocol, we repeat RANSAC 5 times to enhance robustness; however, this increases script runtime. \ No newline at end of file diff --git a/third_party/EfficientLoFTR/scripts/varied_size/indoor_full_auc_varied_size.sh b/third_party/EfficientLoFTR/scripts/varied_size/indoor_full_auc_varied_size.sh new file mode 100644 index 0000000000000000000000000000000000000000..f6daa38224c5319549fe4ffe074f0c466d499eef --- /dev/null +++ b/third_party/EfficientLoFTR/scripts/varied_size/indoor_full_auc_varied_size.sh @@ -0,0 +1,44 @@ +#!/bin/bash -l +SCRIPTPATH=$(dirname $(readlink -f "$0")) +PROJECT_DIR="${SCRIPTPATH}/../../" + +export PYTHONPATH=$PROJECT_DIR:$PYTHONPATH +cd $PROJECT_DIR + +main_cfg_path="configs/loftr/eloftr_full.py" + +profiler_name="inference" +n_nodes=1 # mannually keep this the same with --nodes +n_gpus_per_node=-1 +torch_num_workers=4 +batch_size=1 # per gpu + +ckpt_path="weights/eloftr_outdoor.ckpt" + +dump_dir="dump/eloftr_full_scannet" +data_cfg_path="configs/data/scannet_test_1500.py" + +declare -a scannetXY_arr=("640,480" "512,384" "384,288") + +for scannetXY in "${scannetXY_arr[@]}"; do + SCANNETX="${scannetXY%,*}" + SCANNETY="${scannetXY#*,}" + + python ./test.py \ + ${data_cfg_path} \ + ${main_cfg_path} \ + --ckpt_path=${ckpt_path} \ + --dump_dir=${dump_dir} \ + --gpus=${n_gpus_per_node} --num_nodes=${n_nodes} --accelerator="ddp" \ + --batch_size=${batch_size} --num_workers=${torch_num_workers}\ + --profiler_name=${profiler_name} \ + --benchmark \ + --scannetX $SCANNETX \ + --scannetY $SCANNETY \ + --npe \ + --rmbd 0 \ + --deter \ + --ransac_times 5 \ + --fp32 # fp32 just for fair comparison + # Following the RoMa protocol, we repeat RANSAC 5 times to enhance robustness; however, this increases script runtime. +done \ No newline at end of file diff --git a/third_party/EfficientLoFTR/scripts/varied_size/indoor_full_time_varied_size.sh b/third_party/EfficientLoFTR/scripts/varied_size/indoor_full_time_varied_size.sh new file mode 100644 index 0000000000000000000000000000000000000000..3a37e0cde504ac4643437870dfa58107e9454ed9 --- /dev/null +++ b/third_party/EfficientLoFTR/scripts/varied_size/indoor_full_time_varied_size.sh @@ -0,0 +1,42 @@ +#!/bin/bash -l +SCRIPTPATH=$(dirname $(readlink -f "$0")) +PROJECT_DIR="${SCRIPTPATH}/../../" + +export PYTHONPATH=$PROJECT_DIR:$PYTHONPATH +cd $PROJECT_DIR + +main_cfg_path="configs/loftr/eloftr_full.py" + +profiler_name="inference" +n_nodes=1 # mannually keep this the same with --nodes +n_gpus_per_node=-1 +torch_num_workers=4 +batch_size=1 # per gpu + +ckpt_path="weights/eloftr_outdoor.ckpt" + +dump_dir="dump/eloftr_full_scannet" +data_cfg_path="configs/data/scannet_test_1500.py" + +declare -a scannetXY_arr=("640,480" "512,384" "384,288") + +for scannetXY in "${scannetXY_arr[@]}"; do + SCANNETX="${scannetXY%,*}" + SCANNETY="${scannetXY#*,}" + + python ./test.py \ + ${data_cfg_path} \ + ${main_cfg_path} \ + --ckpt_path=${ckpt_path} \ + --dump_dir=${dump_dir} \ + --gpus=${n_gpus_per_node} --num_nodes=${n_nodes} --accelerator="ddp" \ + --batch_size=${batch_size} --num_workers=${torch_num_workers}\ + --profiler_name=${profiler_name} \ + --benchmark \ + --scannetX $SCANNETX \ + --scannetY $SCANNETY \ + --npe \ + --rmbd 0 \ + --ransac_times 1 \ + --fp32 # fp32 just for fair comparison +done \ No newline at end of file diff --git a/third_party/EfficientLoFTR/scripts/varied_size/indoor_opt_auc_varied_size.sh b/third_party/EfficientLoFTR/scripts/varied_size/indoor_opt_auc_varied_size.sh new file mode 100644 index 0000000000000000000000000000000000000000..fb1dfeb98a7bd22a6ec61baddc04833c77b76e22 --- /dev/null +++ b/third_party/EfficientLoFTR/scripts/varied_size/indoor_opt_auc_varied_size.sh @@ -0,0 +1,47 @@ +#!/bin/bash -l +SCRIPTPATH=$(dirname $(readlink -f "$0")) +PROJECT_DIR="${SCRIPTPATH}/../../" + +export PYTHONPATH=$PROJECT_DIR:$PYTHONPATH +cd $PROJECT_DIR + +main_cfg_path="configs/loftr/eloftr_optimized.py" + +profiler_name="inference" +n_nodes=1 # mannually keep this the same with --nodes +n_gpus_per_node=-1 +torch_num_workers=4 +batch_size=1 # per gpu +comment='reproduce_eloft_full_scannet' +METHOD='loftr' + +ckpt_path="weights/eloftr_outdoor.ckpt" + +dump_dir="dump/eloftr_full_scannet" +data_cfg_path="configs/data/scannet_test_1500.py" + +declare -a scannetXY_arr=("640,480" "512,384" "384,288") + +for scannetXY in "${scannetXY_arr[@]}"; do + SCANNETX="${scannetXY%,*}" + SCANNETY="${scannetXY#*,}" + + python ./test.py \ + ${data_cfg_path} \ + ${main_cfg_path} \ + --ckpt_path=${ckpt_path} \ + --dump_dir=${dump_dir} \ + --gpus=${n_gpus_per_node} --num_nodes=${n_nodes} --accelerator="ddp" \ + --batch_size=${batch_size} --num_workers=${torch_num_workers}\ + --profiler_name=${profiler_name} \ + --benchmark \ + --scannetX $SCANNETX \ + --scannetY $SCANNETY \ + --npe \ + --rmbd 1 \ + --deter \ + --ransac_times 5 \ + --half \ + --flash + # Following the RoMa protocol, we repeat RANSAC 5 times to enhance robustness; however, this increases script runtime. +done \ No newline at end of file diff --git a/third_party/EfficientLoFTR/scripts/varied_size/indoor_opt_time_varied_size.sh b/third_party/EfficientLoFTR/scripts/varied_size/indoor_opt_time_varied_size.sh new file mode 100644 index 0000000000000000000000000000000000000000..8807e65f30e83cca7a46a6c960221fe82d8384f0 --- /dev/null +++ b/third_party/EfficientLoFTR/scripts/varied_size/indoor_opt_time_varied_size.sh @@ -0,0 +1,45 @@ +#!/bin/bash -l +SCRIPTPATH=$(dirname $(readlink -f "$0")) +PROJECT_DIR="${SCRIPTPATH}/../../" + +export PYTHONPATH=$PROJECT_DIR:$PYTHONPATH +cd $PROJECT_DIR + +main_cfg_path="configs/loftr/eloftr_optimized.py" + +profiler_name="inference" +n_nodes=1 # mannually keep this the same with --nodes +n_gpus_per_node=-1 +torch_num_workers=4 +batch_size=1 # per gpu +comment='reproduce_eloft_full_scannet' +METHOD='loftr' + +ckpt_path="weights/eloftr_outdoor.ckpt" + +dump_dir="dump/eloftr_full_scannet" +data_cfg_path="configs/data/scannet_test_1500.py" + +declare -a scannetXY_arr=("640,480" "512,384" "384,288") + +for scannetXY in "${scannetXY_arr[@]}"; do + SCANNETX="${scannetXY%,*}" + SCANNETY="${scannetXY#*,}" + python ./test.py \ + ${data_cfg_path} \ + ${main_cfg_path} \ + --ckpt_path=${ckpt_path} \ + --dump_dir=${dump_dir} \ + --gpus=${n_gpus_per_node} --num_nodes=${n_nodes} --accelerator="ddp" \ + --batch_size=${batch_size} --num_workers=${torch_num_workers}\ + --profiler_name=${profiler_name} \ + --benchmark \ + --scannetX $SCANNETX \ + --scannetY $SCANNETY \ + --npe \ + --rmbd 1 \ + --ransac_times 1 \ + --half \ + --flash + +done \ No newline at end of file diff --git a/third_party/EfficientLoFTR/src/__init__.py b/third_party/EfficientLoFTR/src/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/third_party/EfficientLoFTR/src/config/default.py b/third_party/EfficientLoFTR/src/config/default.py new file mode 100644 index 0000000000000000000000000000000000000000..03d98095be47b6870cf1475bcfe239de44ee98f9 --- /dev/null +++ b/third_party/EfficientLoFTR/src/config/default.py @@ -0,0 +1,182 @@ +from yacs.config import CfgNode as CN +_CN = CN() + +############## ↓ LoFTR Pipeline ↓ ############## +_CN.LOFTR = CN() +_CN.LOFTR.BACKBONE_TYPE = 'RepVGG' +_CN.LOFTR.ALIGN_CORNER = False +_CN.LOFTR.RESOLUTION = (8, 1) +_CN.LOFTR.FINE_WINDOW_SIZE = 8 # window_size in fine_level, must be even +_CN.LOFTR.MP = False +_CN.LOFTR.REPLACE_NAN = False +_CN.LOFTR.EVAL_TIMES = 1 +_CN.LOFTR.HALF = False + +# 1. LoFTR-backbone (local feature CNN) config +_CN.LOFTR.BACKBONE = CN() +_CN.LOFTR.BACKBONE.BLOCK_DIMS = [64, 128, 256] # s1, s2, s3 + +# 2. LoFTR-coarse module config +_CN.LOFTR.COARSE = CN() +_CN.LOFTR.COARSE.D_MODEL = 256 +_CN.LOFTR.COARSE.D_FFN = 256 +_CN.LOFTR.COARSE.NHEAD = 8 +_CN.LOFTR.COARSE.LAYER_NAMES = ['self', 'cross'] * 4 +_CN.LOFTR.COARSE.AGG_SIZE0 = 4 +_CN.LOFTR.COARSE.AGG_SIZE1 = 4 +_CN.LOFTR.COARSE.NO_FLASH = False +_CN.LOFTR.COARSE.ROPE = True +_CN.LOFTR.COARSE.NPE = None # [832, 832, long_side, long_side] Suggest setting based on the long side of the input image, especially when the long_side > 832 + +# 3. Coarse-Matching config +_CN.LOFTR.MATCH_COARSE = CN() +_CN.LOFTR.MATCH_COARSE.THR = 0.2 # recommend 0.2 for full model and 25 for optimized model +_CN.LOFTR.MATCH_COARSE.BORDER_RM = 2 +_CN.LOFTR.MATCH_COARSE.DSMAX_TEMPERATURE = 0.1 +_CN.LOFTR.MATCH_COARSE.TRAIN_COARSE_PERCENT = 0.2 # training tricks: save GPU memory +_CN.LOFTR.MATCH_COARSE.TRAIN_PAD_NUM_GT_MIN = 200 # training tricks: avoid DDP deadlock +_CN.LOFTR.MATCH_COARSE.SPARSE_SPVS = True +_CN.LOFTR.MATCH_COARSE.SKIP_SOFTMAX = False +_CN.LOFTR.MATCH_COARSE.FP16MATMUL = False + +# 4. Fine-Matching config +_CN.LOFTR.MATCH_FINE = CN() +_CN.LOFTR.MATCH_FINE.SPARSE_SPVS = True +_CN.LOFTR.MATCH_FINE.LOCAL_REGRESS_TEMPERATURE = 1.0 +_CN.LOFTR.MATCH_FINE.LOCAL_REGRESS_SLICEDIM = 8 + +# 5. LoFTR Losses +# -- # coarse-level +_CN.LOFTR.LOSS = CN() +_CN.LOFTR.LOSS.COARSE_TYPE = 'focal' # ['focal', 'cross_entropy'] +_CN.LOFTR.LOSS.COARSE_WEIGHT = 1.0 +_CN.LOFTR.LOSS.COARSE_SIGMOID_WEIGHT = 1.0 +_CN.LOFTR.LOSS.LOCAL_WEIGHT = 0.5 +_CN.LOFTR.LOSS.COARSE_OVERLAP_WEIGHT = False +_CN.LOFTR.LOSS.FINE_OVERLAP_WEIGHT = False +_CN.LOFTR.LOSS.FINE_OVERLAP_WEIGHT2 = False +# -- - -- # focal loss (coarse) +_CN.LOFTR.LOSS.FOCAL_ALPHA = 0.25 +_CN.LOFTR.LOSS.FOCAL_GAMMA = 2.0 +_CN.LOFTR.LOSS.POS_WEIGHT = 1.0 +_CN.LOFTR.LOSS.NEG_WEIGHT = 1.0 + +# -- # fine-level +_CN.LOFTR.LOSS.FINE_TYPE = 'l2_with_std' # ['l2_with_std', 'l2'] +_CN.LOFTR.LOSS.FINE_WEIGHT = 1.0 +_CN.LOFTR.LOSS.FINE_CORRECT_THR = 1.0 # for filtering valid fine-level gts (some gt matches might fall out of the fine-level window) + + +############## Dataset ############## +_CN.DATASET = CN() +# 1. data config +# training and validating +_CN.DATASET.TRAINVAL_DATA_SOURCE = None # options: ['ScanNet', 'MegaDepth'] +_CN.DATASET.TRAIN_DATA_ROOT = None +_CN.DATASET.TRAIN_POSE_ROOT = None # (optional directory for poses) +_CN.DATASET.TRAIN_NPZ_ROOT = None +_CN.DATASET.TRAIN_LIST_PATH = None +_CN.DATASET.TRAIN_INTRINSIC_PATH = None +_CN.DATASET.VAL_DATA_ROOT = None +_CN.DATASET.VAL_POSE_ROOT = None # (optional directory for poses) +_CN.DATASET.VAL_NPZ_ROOT = None +_CN.DATASET.VAL_LIST_PATH = None # None if val data from all scenes are bundled into a single npz file +_CN.DATASET.VAL_INTRINSIC_PATH = None +_CN.DATASET.FP16 = False +# testing +_CN.DATASET.TEST_DATA_SOURCE = None +_CN.DATASET.TEST_DATA_ROOT = None +_CN.DATASET.TEST_POSE_ROOT = None # (optional directory for poses) +_CN.DATASET.TEST_NPZ_ROOT = None +_CN.DATASET.TEST_LIST_PATH = None # None if test data from all scenes are bundled into a single npz file +_CN.DATASET.TEST_INTRINSIC_PATH = None + +# 2. dataset config +# general options +_CN.DATASET.MIN_OVERLAP_SCORE_TRAIN = 0.4 # discard data with overlap_score < min_overlap_score +_CN.DATASET.MIN_OVERLAP_SCORE_TEST = 0.0 +_CN.DATASET.AUGMENTATION_TYPE = None # options: [None, 'dark', 'mobile'] + +# scanNet options +_CN.DATASET.SCAN_IMG_RESIZEX = 640 # resize the longer side, zero-pad bottom-right to square. +_CN.DATASET.SCAN_IMG_RESIZEY = 480 # resize the shorter side, zero-pad bottom-right to square. + +# MegaDepth options +_CN.DATASET.MGDPT_IMG_RESIZE = 640 # resize the longer side, zero-pad bottom-right to square. +_CN.DATASET.MGDPT_IMG_PAD = True # pad img to square with size = MGDPT_IMG_RESIZE +_CN.DATASET.MGDPT_DEPTH_PAD = True # pad depthmap to square with size = 2000 +_CN.DATASET.MGDPT_DF = 8 + +_CN.DATASET.NPE_NAME = None + +############## Trainer ############## +_CN.TRAINER = CN() +_CN.TRAINER.WORLD_SIZE = 1 +_CN.TRAINER.CANONICAL_BS = 64 +_CN.TRAINER.CANONICAL_LR = 6e-3 +_CN.TRAINER.SCALING = None # this will be calculated automatically +_CN.TRAINER.FIND_LR = False # use learning rate finder from pytorch-lightning + +# optimizer +_CN.TRAINER.OPTIMIZER = "adamw" # [adam, adamw] +_CN.TRAINER.TRUE_LR = None # this will be calculated automatically at runtime +_CN.TRAINER.ADAM_DECAY = 0. # ADAM: for adam +_CN.TRAINER.ADAMW_DECAY = 0.1 + +# step-based warm-up +_CN.TRAINER.WARMUP_TYPE = 'linear' # [linear, constant] +_CN.TRAINER.WARMUP_RATIO = 0. +_CN.TRAINER.WARMUP_STEP = 4800 + +# learning rate scheduler +_CN.TRAINER.SCHEDULER = 'MultiStepLR' # [MultiStepLR, CosineAnnealing, ExponentialLR] +_CN.TRAINER.SCHEDULER_INTERVAL = 'epoch' # [epoch, step] +_CN.TRAINER.MSLR_MILESTONES = [3, 6, 9, 12] # MSLR: MultiStepLR +_CN.TRAINER.MSLR_GAMMA = 0.5 +_CN.TRAINER.COSA_TMAX = 30 # COSA: CosineAnnealing +_CN.TRAINER.ELR_GAMMA = 0.999992 # ELR: ExponentialLR, this value for 'step' interval + +# plotting related +_CN.TRAINER.ENABLE_PLOTTING = True +_CN.TRAINER.N_VAL_PAIRS_TO_PLOT = 32 # number of val/test paris for plotting +_CN.TRAINER.PLOT_MODE = 'evaluation' # ['evaluation', 'confidence'] +_CN.TRAINER.PLOT_MATCHES_ALPHA = 'dynamic' + +# geometric metrics and pose solver +_CN.TRAINER.EPI_ERR_THR = 5e-4 # recommendation: 5e-4 for ScanNet, 1e-4 for MegaDepth (from SuperGlue) +_CN.TRAINER.POSE_GEO_MODEL = 'E' # ['E', 'F', 'H'] +_CN.TRAINER.POSE_ESTIMATION_METHOD = 'RANSAC' # [RANSAC, LO-RANSAC] +_CN.TRAINER.RANSAC_PIXEL_THR = 0.5 +_CN.TRAINER.RANSAC_CONF = 0.99999 +_CN.TRAINER.RANSAC_MAX_ITERS = 10000 +_CN.TRAINER.USE_MAGSACPP = False + +# data sampler for train_dataloader +_CN.TRAINER.DATA_SAMPLER = 'scene_balance' # options: ['scene_balance', 'random', 'normal'] +# 'scene_balance' config +_CN.TRAINER.N_SAMPLES_PER_SUBSET = 200 +_CN.TRAINER.SB_SUBSET_SAMPLE_REPLACEMENT = True # whether sample each scene with replacement or not +_CN.TRAINER.SB_SUBSET_SHUFFLE = True # after sampling from scenes, whether shuffle within the epoch or not +_CN.TRAINER.SB_REPEAT = 1 # repeat N times for training the sampled data +# 'random' config +_CN.TRAINER.RDM_REPLACEMENT = True +_CN.TRAINER.RDM_NUM_SAMPLES = None + +# gradient clipping +_CN.TRAINER.GRADIENT_CLIPPING = 0.5 + +# reproducibility +# This seed affects the data sampling. With the same seed, the data sampling is promised +# to be the same. When resume training from a checkpoint, it's better to use a different +# seed, otherwise the sampled data will be exactly the same as before resuming, which will +# cause less unique data items sampled during the entire training. +# Use of different seed values might affect the final training result, since not all data items +# are used during training on ScanNet. (60M pairs of images sampled during traing from 230M pairs in total.) +_CN.TRAINER.SEED = 66 + + +def get_cfg_defaults(): + """Get a yacs CfgNode object with default values for my_project.""" + # Return a clone so that the defaults will not be altered + # This is for the "local variable" use pattern + return _CN.clone() diff --git a/third_party/EfficientLoFTR/src/datasets/megadepth.py b/third_party/EfficientLoFTR/src/datasets/megadepth.py new file mode 100644 index 0000000000000000000000000000000000000000..5f070b2b6da7ef779d41090773d4c45592e95514 --- /dev/null +++ b/third_party/EfficientLoFTR/src/datasets/megadepth.py @@ -0,0 +1,133 @@ +import os.path as osp +import numpy as np +import torch +import torch.nn.functional as F +from torch.utils.data import Dataset +from loguru import logger + +from src.utils.dataset import read_megadepth_gray, read_megadepth_depth + + +class MegaDepthDataset(Dataset): + def __init__(self, + root_dir, + npz_path, + mode='train', + min_overlap_score=0.4, + img_resize=None, + df=None, + img_padding=False, + depth_padding=False, + augment_fn=None, + fp16=False, + **kwargs): + """ + Manage one scene(npz_path) of MegaDepth dataset. + + Args: + root_dir (str): megadepth root directory that has `phoenix`. + npz_path (str): {scene_id}.npz path. This contains image pair information of a scene. + mode (str): options are ['train', 'val', 'test'] + min_overlap_score (float): how much a pair should have in common. In range of [0, 1]. Set to 0 when testing. + img_resize (int, optional): the longer edge of resized images. None for no resize. 640 is recommended. + This is useful during training with batches and testing with memory intensive algorithms. + df (int, optional): image size division factor. NOTE: this will change the final image size after img_resize. + img_padding (bool): If set to 'True', zero-pad the image to squared size. This is useful during training. + depth_padding (bool): If set to 'True', zero-pad depthmap to (2000, 2000). This is useful during training. + augment_fn (callable, optional): augments images with pre-defined visual effects. + """ + super().__init__() + self.root_dir = root_dir + self.mode = mode + self.scene_id = npz_path.split('.')[0] + + # prepare scene_info and pair_info + if mode == 'test' and min_overlap_score != 0: + logger.warning("You are using `min_overlap_score`!=0 in test mode. Set to 0.") + min_overlap_score = 0 + self.scene_info = np.load(npz_path, allow_pickle=True) + self.pair_infos = self.scene_info['pair_infos'].copy() + + del self.scene_info['pair_infos'] + self.pair_infos = [pair_info for pair_info in self.pair_infos if pair_info[1] > min_overlap_score] + + # parameters for image resizing, padding and depthmap padding + if mode == 'train': + assert img_resize is not None and img_padding and depth_padding + self.img_resize = img_resize + self.df = df + self.img_padding = img_padding + self.depth_max_size = 2000 if depth_padding else None # the upperbound of depthmaps size in megadepth. + + # for training LoFTR + self.augment_fn = augment_fn if mode == 'train' else None + self.coarse_scale = getattr(kwargs, 'coarse_scale', 0.125) + + self.fp16 = fp16 + + def __len__(self): + return len(self.pair_infos) + + def __getitem__(self, idx): + (idx0, idx1), overlap_score, central_matches = self.pair_infos[idx] + + # read grayscale image and mask. (1, h, w) and (h, w) + img_name0 = osp.join(self.root_dir, self.scene_info['image_paths'][idx0]) + img_name1 = osp.join(self.root_dir, self.scene_info['image_paths'][idx1]) + + # TODO: Support augmentation & handle seeds for each worker correctly. + image0, mask0, scale0 = read_megadepth_gray( + img_name0, self.img_resize, self.df, self.img_padding, None) + # np.random.choice([self.augment_fn, None], p=[0.5, 0.5])) + image1, mask1, scale1 = read_megadepth_gray( + img_name1, self.img_resize, self.df, self.img_padding, None) + # np.random.choice([self.augment_fn, None], p=[0.5, 0.5])) + + # read depth. shape: (h, w) + if self.mode in ['train', 'val']: + depth0 = read_megadepth_depth( + osp.join(self.root_dir, self.scene_info['depth_paths'][idx0]), pad_to=self.depth_max_size) + depth1 = read_megadepth_depth( + osp.join(self.root_dir, self.scene_info['depth_paths'][idx1]), pad_to=self.depth_max_size) + else: + depth0 = depth1 = torch.tensor([]) + + # read intrinsics of original size + K_0 = torch.tensor(self.scene_info['intrinsics'][idx0].copy(), dtype=torch.float).reshape(3, 3) + K_1 = torch.tensor(self.scene_info['intrinsics'][idx1].copy(), dtype=torch.float).reshape(3, 3) + + # read and compute relative poses + T0 = self.scene_info['poses'][idx0] + T1 = self.scene_info['poses'][idx1] + T_0to1 = torch.tensor(np.matmul(T1, np.linalg.inv(T0)), dtype=torch.float)[:4, :4] # (4, 4) + T_1to0 = T_0to1.inverse() + + if self.fp16: + image0, image1, depth0, depth1, scale0, scale1 = map(lambda x: x.half(), + [image0, image1, depth0, depth1, scale0, scale1]) + data = { + 'image0': image0, # (1, h, w) + 'depth0': depth0, # (h, w) + 'image1': image1, + 'depth1': depth1, + 'T_0to1': T_0to1, # (4, 4) + 'T_1to0': T_1to0, + 'K0': K_0, # (3, 3) + 'K1': K_1, + 'scale0': scale0, # [scale_w, scale_h] + 'scale1': scale1, + 'dataset_name': 'MegaDepth', + 'scene_id': self.scene_id, + 'pair_id': idx, + 'pair_names': (self.scene_info['image_paths'][idx0], self.scene_info['image_paths'][idx1]), + } + # for LoFTR training + if mask0 is not None: # img_padding is True + if self.coarse_scale: + [ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(), + scale_factor=self.coarse_scale, + mode='nearest', + recompute_scale_factor=False)[0].bool() + data.update({'mask0': ts_mask_0, 'mask1': ts_mask_1}) + + return data diff --git a/third_party/EfficientLoFTR/src/datasets/sampler.py b/third_party/EfficientLoFTR/src/datasets/sampler.py new file mode 100644 index 0000000000000000000000000000000000000000..81b6f435645632a013476f9a665a0861ab7fcb61 --- /dev/null +++ b/third_party/EfficientLoFTR/src/datasets/sampler.py @@ -0,0 +1,77 @@ +import torch +from torch.utils.data import Sampler, ConcatDataset + + +class RandomConcatSampler(Sampler): + """ Random sampler for ConcatDataset. At each epoch, `n_samples_per_subset` samples will be draw from each subset + in the ConcatDataset. If `subset_replacement` is ``True``, sampling within each subset will be done with replacement. + However, it is impossible to sample data without replacement between epochs, unless bulding a stateful sampler lived along the entire training phase. + + For current implementation, the randomness of sampling is ensured no matter the sampler is recreated across epochs or not and call `torch.manual_seed()` or not. + Args: + shuffle (bool): shuffle the random sampled indices across all sub-datsets. + repeat (int): repeatedly use the sampled indices multiple times for training. + [arXiv:1902.05509, arXiv:1901.09335] + NOTE: Don't re-initialize the sampler between epochs (will lead to repeated samples) + NOTE: This sampler behaves differently with DistributedSampler. + It assume the dataset is splitted across ranks instead of replicated. + TODO: Add a `set_epoch()` method to fullfill sampling without replacement across epochs. + ref: https://github.com/PyTorchLightning/pytorch-lightning/blob/e9846dd758cfb1500eb9dba2d86f6912eb487587/pytorch_lightning/trainer/training_loop.py#L373 + """ + def __init__(self, + data_source: ConcatDataset, + n_samples_per_subset: int, + subset_replacement: bool=True, + shuffle: bool=True, + repeat: int=1, + seed: int=None): + if not isinstance(data_source, ConcatDataset): + raise TypeError("data_source should be torch.utils.data.ConcatDataset") + + self.data_source = data_source + self.n_subset = len(self.data_source.datasets) + self.n_samples_per_subset = n_samples_per_subset + self.n_samples = self.n_subset * self.n_samples_per_subset * repeat + self.subset_replacement = subset_replacement + self.repeat = repeat + self.shuffle = shuffle + self.generator = torch.manual_seed(seed) + assert self.repeat >= 1 + + def __len__(self): + return self.n_samples + + def __iter__(self): + indices = [] + # sample from each sub-dataset + for d_idx in range(self.n_subset): + low = 0 if d_idx==0 else self.data_source.cumulative_sizes[d_idx-1] + high = self.data_source.cumulative_sizes[d_idx] + if self.subset_replacement: + rand_tensor = torch.randint(low, high, (self.n_samples_per_subset, ), + generator=self.generator, dtype=torch.int64) + else: # sample without replacement + len_subset = len(self.data_source.datasets[d_idx]) + rand_tensor = torch.randperm(len_subset, generator=self.generator) + low + if len_subset >= self.n_samples_per_subset: + rand_tensor = rand_tensor[:self.n_samples_per_subset] + else: # padding with replacement + rand_tensor_replacement = torch.randint(low, high, (self.n_samples_per_subset - len_subset, ), + generator=self.generator, dtype=torch.int64) + rand_tensor = torch.cat([rand_tensor, rand_tensor_replacement]) + indices.append(rand_tensor) + indices = torch.cat(indices) + if self.shuffle: # shuffle the sampled dataset (from multiple subsets) + rand_tensor = torch.randperm(len(indices), generator=self.generator) + indices = indices[rand_tensor] + + # repeat the sampled indices (can be used for RepeatAugmentation or pure RepeatSampling) + if self.repeat > 1: + repeat_indices = [indices.clone() for _ in range(self.repeat - 1)] + if self.shuffle: + _choice = lambda x: x[torch.randperm(len(x), generator=self.generator)] + repeat_indices = map(_choice, repeat_indices) + indices = torch.cat([indices, *repeat_indices], 0) + + assert indices.shape[0] == self.n_samples + return iter(indices.tolist()) diff --git a/third_party/EfficientLoFTR/src/datasets/scannet.py b/third_party/EfficientLoFTR/src/datasets/scannet.py new file mode 100644 index 0000000000000000000000000000000000000000..41743aaa0b0f6827c116ab6166ae71964515d196 --- /dev/null +++ b/third_party/EfficientLoFTR/src/datasets/scannet.py @@ -0,0 +1,129 @@ +from os import path as osp +from typing import Dict +from unicodedata import name + +import numpy as np +import torch +import torch.utils as utils +from numpy.linalg import inv +from src.utils.dataset import ( + read_scannet_gray, + read_scannet_depth, + read_scannet_pose, + read_scannet_intrinsic +) + + +class ScanNetDataset(utils.data.Dataset): + def __init__(self, + root_dir, + npz_path, + intrinsic_path, + mode='train', + min_overlap_score=0.4, + augment_fn=None, + pose_dir=None, + img_resize=None, + fp16=False, + **kwargs): + """Manage one scene of ScanNet Dataset. + Args: + root_dir (str): ScanNet root directory that contains scene folders. + npz_path (str): {scene_id}.npz path. This contains image pair information of a scene. + intrinsic_path (str): path to depth-camera intrinsic file. + mode (str): options are ['train', 'val', 'test']. + augment_fn (callable, optional): augments images with pre-defined visual effects. + pose_dir (str): ScanNet root directory that contains all poses. + (we use a separate (optional) pose_dir since we store images and poses separately.) + """ + super().__init__() + self.root_dir = root_dir + self.pose_dir = pose_dir if pose_dir is not None else root_dir + self.mode = mode + + # prepare data_names, intrinsics and extrinsics(T) + with np.load(npz_path) as data: + self.data_names = data['name'] + if 'score' in data.keys() and mode not in ['val' or 'test']: + kept_mask = data['score'] > min_overlap_score + self.data_names = self.data_names[kept_mask] + self.intrinsics = dict(np.load(intrinsic_path)) + + # for training LoFTR + self.augment_fn = augment_fn if mode == 'train' else None + + self.fp16 = fp16 + self.img_resize = img_resize + + def __len__(self): + return len(self.data_names) + + def _read_abs_pose(self, scene_name, name): + pth = osp.join(self.pose_dir, + scene_name, + 'pose', f'{name}.txt') + return read_scannet_pose(pth) + + def _compute_rel_pose(self, scene_name, name0, name1): + pose0 = self._read_abs_pose(scene_name, name0) + pose1 = self._read_abs_pose(scene_name, name1) + + return np.matmul(pose1, inv(pose0)) # (4, 4) + + def __getitem__(self, idx): + data_name = self.data_names[idx] + scene_name, scene_sub_name, stem_name_0, stem_name_1 = data_name + scene_name = f'scene{scene_name:04d}_{scene_sub_name:02d}' + + # read the grayscale image which will be resized to (1, 480, 640) + img_name0 = osp.join(self.root_dir, scene_name, 'color', f'{stem_name_0}.jpg') + img_name1 = osp.join(self.root_dir, scene_name, 'color', f'{stem_name_1}.jpg') + + # TODO: Support augmentation & handle seeds for each worker correctly. + image0 = read_scannet_gray(img_name0, resize=self.img_resize, augment_fn=None) + # augment_fn=np.random.choice([self.augment_fn, None], p=[0.5, 0.5])) + image1 = read_scannet_gray(img_name1, resize=self.img_resize, augment_fn=None) + # augment_fn=np.random.choice([self.augment_fn, None], p=[0.5, 0.5])) + + # read the depthmap which is stored as (480, 640) + if self.mode in ['train', 'val']: + depth0 = read_scannet_depth(osp.join(self.root_dir, scene_name, 'depth', f'{stem_name_0}.png')) + depth1 = read_scannet_depth(osp.join(self.root_dir, scene_name, 'depth', f'{stem_name_1}.png')) + else: + depth0 = depth1 = torch.tensor([]) + + # read the intrinsic of depthmap + K_0 = K_1 = torch.tensor(self.intrinsics[scene_name].copy(), dtype=torch.float).reshape(3, 3) + + # read and compute relative poses + T_0to1 = torch.tensor(self._compute_rel_pose(scene_name, stem_name_0, stem_name_1), + dtype=torch.float32) + T_1to0 = T_0to1.inverse() + + h_new, w_new = self.img_resize[1], self.img_resize[0] + scale0 = torch.tensor([640/w_new, 480/h_new], dtype=torch.float) + scale1 = torch.tensor([640/w_new, 480/h_new], dtype=torch.float) + + if self.fp16: + image0, image1, depth0, depth1, scale0, scale1 = map(lambda x: x.half(), + [image0, image1, depth0, depth1, scale0, scale1]) + + data = { + 'image0': image0, # (1, h, w) + 'depth0': depth0, # (h, w) + 'image1': image1, + 'depth1': depth1, + 'T_0to1': T_0to1, # (4, 4) + 'T_1to0': T_1to0, + 'K0': K_0, # (3, 3) + 'K1': K_1, + 'scale0': scale0, # [scale_w, scale_h] + 'scale1': scale1, + 'dataset_name': 'ScanNet', + 'scene_id': scene_name, + 'pair_id': idx, + 'pair_names': (osp.join(scene_name, 'color', f'{stem_name_0}.jpg'), + osp.join(scene_name, 'color', f'{stem_name_1}.jpg')) + } + + return data \ No newline at end of file diff --git a/third_party/EfficientLoFTR/src/lightning/data.py b/third_party/EfficientLoFTR/src/lightning/data.py new file mode 100644 index 0000000000000000000000000000000000000000..28730fc6bf30fcd99a35b6708e26b7a9a1eca9df --- /dev/null +++ b/third_party/EfficientLoFTR/src/lightning/data.py @@ -0,0 +1,357 @@ +import os +import math +from collections import abc +from loguru import logger +from torch.utils.data.dataset import Dataset +from tqdm import tqdm +from os import path as osp +from pathlib import Path +from joblib import Parallel, delayed + +import pytorch_lightning as pl +from torch import distributed as dist +from torch.utils.data import ( + Dataset, + DataLoader, + ConcatDataset, + DistributedSampler, + RandomSampler, + dataloader +) + +from src.utils.augment import build_augmentor +from src.utils.dataloader import get_local_split +from src.utils.misc import tqdm_joblib +from src.utils import comm +from src.datasets.megadepth import MegaDepthDataset +from src.datasets.scannet import ScanNetDataset +from src.datasets.sampler import RandomConcatSampler + + +class MultiSceneDataModule(pl.LightningDataModule): + """ + For distributed training, each training process is assgined + only a part of the training scenes to reduce memory overhead. + """ + def __init__(self, args, config): + super().__init__() + + # 1. data config + # Train and Val should from the same data source + self.trainval_data_source = config.DATASET.TRAINVAL_DATA_SOURCE + self.test_data_source = config.DATASET.TEST_DATA_SOURCE + # training and validating + self.train_data_root = config.DATASET.TRAIN_DATA_ROOT + self.train_pose_root = config.DATASET.TRAIN_POSE_ROOT # (optional) + self.train_npz_root = config.DATASET.TRAIN_NPZ_ROOT + self.train_list_path = config.DATASET.TRAIN_LIST_PATH + self.train_intrinsic_path = config.DATASET.TRAIN_INTRINSIC_PATH + self.val_data_root = config.DATASET.VAL_DATA_ROOT + self.val_pose_root = config.DATASET.VAL_POSE_ROOT # (optional) + self.val_npz_root = config.DATASET.VAL_NPZ_ROOT + self.val_list_path = config.DATASET.VAL_LIST_PATH + self.val_intrinsic_path = config.DATASET.VAL_INTRINSIC_PATH + # testing + self.test_data_root = config.DATASET.TEST_DATA_ROOT + self.test_pose_root = config.DATASET.TEST_POSE_ROOT # (optional) + self.test_npz_root = config.DATASET.TEST_NPZ_ROOT + self.test_list_path = config.DATASET.TEST_LIST_PATH + self.test_intrinsic_path = config.DATASET.TEST_INTRINSIC_PATH + + # 2. dataset config + # general options + self.min_overlap_score_test = config.DATASET.MIN_OVERLAP_SCORE_TEST # 0.4, omit data with overlap_score < min_overlap_score + self.min_overlap_score_train = config.DATASET.MIN_OVERLAP_SCORE_TRAIN + self.augment_fn = build_augmentor(config.DATASET.AUGMENTATION_TYPE) # None, options: [None, 'dark', 'mobile'] + + # ScanNet options + self.scan_img_resizeX = config.DATASET.SCAN_IMG_RESIZEX # 640 + self.scan_img_resizeY = config.DATASET.SCAN_IMG_RESIZEY # 480 + + + # MegaDepth options + self.mgdpt_img_resize = config.DATASET.MGDPT_IMG_RESIZE # 832 + self.mgdpt_img_pad = config.DATASET.MGDPT_IMG_PAD # True + self.mgdpt_depth_pad = config.DATASET.MGDPT_DEPTH_PAD # True + self.mgdpt_df = config.DATASET.MGDPT_DF # 8 + self.coarse_scale = 1 / config.LOFTR.RESOLUTION[0] # 0.125. for training loftr. + + self.fp16 = config.DATASET.FP16 + + # 3.loader parameters + self.train_loader_params = { + 'batch_size': args.batch_size, + 'num_workers': args.num_workers, + 'pin_memory': getattr(args, 'pin_memory', True) + } + self.val_loader_params = { + 'batch_size': 1, + 'shuffle': False, + 'num_workers': args.num_workers, + 'pin_memory': getattr(args, 'pin_memory', True) + } + self.test_loader_params = { + 'batch_size': 1, + 'shuffle': False, + 'num_workers': args.num_workers, + 'pin_memory': True + } + + # 4. sampler + self.data_sampler = config.TRAINER.DATA_SAMPLER + self.n_samples_per_subset = config.TRAINER.N_SAMPLES_PER_SUBSET + self.subset_replacement = config.TRAINER.SB_SUBSET_SAMPLE_REPLACEMENT + self.shuffle = config.TRAINER.SB_SUBSET_SHUFFLE + self.repeat = config.TRAINER.SB_REPEAT + + # (optional) RandomSampler for debugging + + # misc configurations + self.parallel_load_data = getattr(args, 'parallel_load_data', False) + self.seed = config.TRAINER.SEED # 66 + + def setup(self, stage=None): + """ + Setup train / val / test dataset. This method will be called by PL automatically. + Args: + stage (str): 'fit' in training phase, and 'test' in testing phase. + """ + + assert stage in ['fit', 'validate', 'test'], "stage must be either fit or test" + + try: + self.world_size = dist.get_world_size() + self.rank = dist.get_rank() + logger.info(f"[rank:{self.rank}] world_size: {self.world_size}") + except AssertionError as ae: + self.world_size = 1 + self.rank = 0 + # logger.warning(" (set wolrd_size=1 and rank=0)") + logger.warning(str(ae) + " (set wolrd_size=1 and rank=0)") + + if stage == 'fit': + self.train_dataset = self._setup_dataset( + self.train_data_root, + self.train_npz_root, + self.train_list_path, + self.train_intrinsic_path, + mode='train', + min_overlap_score=self.min_overlap_score_train, + pose_dir=self.train_pose_root) + # setup multiple (optional) validation subsets + if isinstance(self.val_list_path, (list, tuple)): + self.val_dataset = [] + if not isinstance(self.val_npz_root, (list, tuple)): + self.val_npz_root = [self.val_npz_root for _ in range(len(self.val_list_path))] + for npz_list, npz_root in zip(self.val_list_path, self.val_npz_root): + self.val_dataset.append(self._setup_dataset( + self.val_data_root, + npz_root, + npz_list, + self.val_intrinsic_path, + mode='val', + min_overlap_score=self.min_overlap_score_test, + pose_dir=self.val_pose_root)) + else: + self.val_dataset = self._setup_dataset( + self.val_data_root, + self.val_npz_root, + self.val_list_path, + self.val_intrinsic_path, + mode='val', + min_overlap_score=self.min_overlap_score_test, + pose_dir=self.val_pose_root) + logger.info(f'[rank:{self.rank}] Train & Val Dataset loaded!') + elif stage == 'validate': + if isinstance(self.val_list_path, (list, tuple)): + self.val_dataset = [] + if not isinstance(self.val_npz_root, (list, tuple)): + self.val_npz_root = [self.val_npz_root for _ in range(len(self.val_list_path))] + for npz_list, npz_root in zip(self.val_list_path, self.val_npz_root): + self.val_dataset.append(self._setup_dataset( + self.val_data_root, + npz_root, + npz_list, + self.val_intrinsic_path, + mode='val', + min_overlap_score=self.min_overlap_score_test, + pose_dir=self.val_pose_root)) + else: + self.val_dataset = self._setup_dataset( + self.val_data_root, + self.val_npz_root, + self.val_list_path, + self.val_intrinsic_path, + mode='val', + min_overlap_score=self.min_overlap_score_test, + pose_dir=self.val_pose_root) + logger.info(f'[rank:{self.rank}] Val Dataset loaded!') + else: # stage == 'test + self.test_dataset = self._setup_dataset( + self.test_data_root, + self.test_npz_root, + self.test_list_path, + self.test_intrinsic_path, + mode='test', + min_overlap_score=self.min_overlap_score_test, + pose_dir=self.test_pose_root) + logger.info(f'[rank:{self.rank}]: Test Dataset loaded!') + + def _setup_dataset(self, + data_root, + split_npz_root, + scene_list_path, + intri_path, + mode='train', + min_overlap_score=0., + pose_dir=None): + """ Setup train / val / test set""" + with open(scene_list_path, 'r') as f: + npz_names = [name.split()[0] for name in f.readlines()] + + if mode == 'train': + local_npz_names = get_local_split(npz_names, self.world_size, self.rank, self.seed) + else: + local_npz_names = npz_names + logger.info(f'[rank {self.rank}]: {len(local_npz_names)} scene(s) assigned.') + + dataset_builder = self._build_concat_dataset_parallel \ + if self.parallel_load_data \ + else self._build_concat_dataset + return dataset_builder(data_root, local_npz_names, split_npz_root, intri_path, + mode=mode, min_overlap_score=min_overlap_score, pose_dir=pose_dir) + + def _build_concat_dataset( + self, + data_root, + npz_names, + npz_dir, + intrinsic_path, + mode, + min_overlap_score=0., + pose_dir=None + ): + datasets = [] + augment_fn = self.augment_fn if mode == 'train' else None + data_source = self.trainval_data_source if mode in ['train', 'val'] else self.test_data_source + if str(data_source).lower() == 'megadepth': + npz_names = [f'{n}.npz' for n in npz_names] + for npz_name in tqdm(npz_names, + desc=f'[rank:{self.rank}] loading {mode} datasets', + disable=int(self.rank) != 0): + # `ScanNetDataset`/`MegaDepthDataset` load all data from npz_path when initialized, which might take time. + npz_path = osp.join(npz_dir, npz_name) + if data_source == 'ScanNet': + datasets.append( + ScanNetDataset(data_root, + npz_path, + intrinsic_path, + mode=mode, + min_overlap_score=min_overlap_score, + augment_fn=augment_fn, + pose_dir=pose_dir, + img_resize=(self.scan_img_resizeX, self.scan_img_resizeY), + fp16 = self.fp16, + )) + elif data_source == 'MegaDepth': + datasets.append( + MegaDepthDataset(data_root, + npz_path, + mode=mode, + min_overlap_score=min_overlap_score, + img_resize=self.mgdpt_img_resize, + df=self.mgdpt_df, + img_padding=self.mgdpt_img_pad, + depth_padding=self.mgdpt_depth_pad, + augment_fn=augment_fn, + coarse_scale=self.coarse_scale, + fp16 = self.fp16, + )) + else: + raise NotImplementedError() + return ConcatDataset(datasets) + + def _build_concat_dataset_parallel( + self, + data_root, + npz_names, + npz_dir, + intrinsic_path, + mode, + min_overlap_score=0., + pose_dir=None, + ): + augment_fn = self.augment_fn if mode == 'train' else None + data_source = self.trainval_data_source if mode in ['train', 'val'] else self.test_data_source + if str(data_source).lower() == 'megadepth': + npz_names = [f'{n}.npz' for n in npz_names] + with tqdm_joblib(tqdm(desc=f'[rank:{self.rank}] loading {mode} datasets', + total=len(npz_names), disable=int(self.rank) != 0)): + if data_source == 'ScanNet': + datasets = Parallel(n_jobs=math.floor(len(os.sched_getaffinity(0)) * 0.9 / comm.get_local_size()))( + delayed(lambda x: _build_dataset( + ScanNetDataset, + data_root, + osp.join(npz_dir, x), + intrinsic_path, + mode=mode, + min_overlap_score=min_overlap_score, + augment_fn=augment_fn, + pose_dir=pose_dir))(name) + for name in npz_names) + elif data_source == 'MegaDepth': + # TODO: _pickle.PicklingError: Could not pickle the task to send it to the workers. + raise NotImplementedError() + datasets = Parallel(n_jobs=math.floor(len(os.sched_getaffinity(0)) * 0.9 / comm.get_local_size()))( + delayed(lambda x: _build_dataset( + MegaDepthDataset, + data_root, + osp.join(npz_dir, x), + mode=mode, + min_overlap_score=min_overlap_score, + img_resize=self.mgdpt_img_resize, + df=self.mgdpt_df, + img_padding=self.mgdpt_img_pad, + depth_padding=self.mgdpt_depth_pad, + augment_fn=augment_fn, + coarse_scale=self.coarse_scale))(name) + for name in npz_names) + else: + raise ValueError(f'Unknown dataset: {data_source}') + return ConcatDataset(datasets) + + def train_dataloader(self): + """ Build training dataloader for ScanNet / MegaDepth. """ + assert self.data_sampler in ['scene_balance'] + logger.info(f'[rank:{self.rank}/{self.world_size}]: Train Sampler and DataLoader re-init (should not re-init between epochs!).') + if self.data_sampler == 'scene_balance': + sampler = RandomConcatSampler(self.train_dataset, + self.n_samples_per_subset, + self.subset_replacement, + self.shuffle, self.repeat, self.seed) + else: + sampler = None + dataloader = DataLoader(self.train_dataset, sampler=sampler, **self.train_loader_params) + return dataloader + + def val_dataloader(self): + """ Build validation dataloader for ScanNet / MegaDepth. """ + logger.info(f'[rank:{self.rank}/{self.world_size}]: Val Sampler and DataLoader re-init.') + if not isinstance(self.val_dataset, abc.Sequence): + sampler = DistributedSampler(self.val_dataset, shuffle=False) + return DataLoader(self.val_dataset, sampler=sampler, **self.val_loader_params) + else: + dataloaders = [] + for dataset in self.val_dataset: + sampler = DistributedSampler(dataset, shuffle=False) + dataloaders.append(DataLoader(dataset, sampler=sampler, **self.val_loader_params)) + return dataloaders + + def test_dataloader(self, *args, **kwargs): + logger.info(f'[rank:{self.rank}/{self.world_size}]: Test Sampler and DataLoader re-init.') + sampler = DistributedSampler(self.test_dataset, shuffle=False) + return DataLoader(self.test_dataset, sampler=sampler, **self.test_loader_params) + + +def _build_dataset(dataset: Dataset, *args, **kwargs): + return dataset(*args, **kwargs) diff --git a/third_party/EfficientLoFTR/src/lightning/lightning_loftr.py b/third_party/EfficientLoFTR/src/lightning/lightning_loftr.py new file mode 100644 index 0000000000000000000000000000000000000000..38f6f4ae25cc99279c496a9ac7760296b1b03bb0 --- /dev/null +++ b/third_party/EfficientLoFTR/src/lightning/lightning_loftr.py @@ -0,0 +1,268 @@ + +from collections import defaultdict +import pprint +from loguru import logger +from pathlib import Path + +import torch +import numpy as np +import pytorch_lightning as pl +from matplotlib import pyplot as plt + +from src.loftr import LoFTR +# from src.loftr.utils.supervision import compute_supervision_coarse, compute_supervision_fine +# from src.losses.loftr_loss import LoFTRLoss +from src.optimizers import build_optimizer, build_scheduler +from src.utils.metrics import ( + compute_symmetrical_epipolar_errors, + compute_pose_errors, + aggregate_metrics +) +from src.utils.plotting import make_matching_figures +from src.utils.comm import gather, all_gather +from src.utils.misc import lower_config, flattenList +from src.utils.profiler import PassThroughProfiler + +from torch.profiler import profile + +def reparameter(matcher): + module = matcher.backbone.layer0 + if hasattr(module, 'switch_to_deploy'): + module.switch_to_deploy() + for modules in [matcher.backbone.layer1, matcher.backbone.layer2, matcher.backbone.layer3]: + for module in modules: + if hasattr(module, 'switch_to_deploy'): + module.switch_to_deploy() + for modules in [matcher.fine_preprocess.layer2_outconv2, matcher.fine_preprocess.layer1_outconv2]: + for module in modules: + if hasattr(module, 'switch_to_deploy'): + module.switch_to_deploy() + return matcher + + +class PL_LoFTR(pl.LightningModule): + def __init__(self, config, pretrained_ckpt=None, profiler=None, dump_dir=None): + """ + TODO: + - use the new version of PL logging API. + """ + super().__init__() + # Misc + self.config = config # full config + _config = lower_config(self.config) + self.loftr_cfg = lower_config(_config['loftr']) + self.profiler = profiler or PassThroughProfiler() + self.n_vals_plot = max(config.TRAINER.N_VAL_PAIRS_TO_PLOT // config.TRAINER.WORLD_SIZE, 1) + + # Matcher: LoFTR + self.matcher = LoFTR(config=_config['loftr'], profiler=self.profiler) + # self.loss = LoFTRLoss(_config) + + # Pretrained weights + if pretrained_ckpt: + state_dict = torch.load(pretrained_ckpt, map_location='cpu')['state_dict'] + msg=self.matcher.load_state_dict(state_dict, strict=False) + logger.info(f"Load \'{pretrained_ckpt}\' as pretrained checkpoint") + + # Testing + self.warmup = False + self.reparameter = False + self.start_event = torch.cuda.Event(enable_timing=True) + self.end_event = torch.cuda.Event(enable_timing=True) + self.total_ms = 0 + + def configure_optimizers(self): + # FIXME: The scheduler did not work properly when `--resume_from_checkpoint` + optimizer = build_optimizer(self, self.config) + scheduler = build_scheduler(self.config, optimizer) + return [optimizer], [scheduler] + + def optimizer_step( + self, epoch, batch_idx, optimizer, optimizer_idx, + optimizer_closure, on_tpu, using_native_amp, using_lbfgs): + # learning rate warm up + warmup_step = self.config.TRAINER.WARMUP_STEP + if self.trainer.global_step < warmup_step: + if self.config.TRAINER.WARMUP_TYPE == 'linear': + base_lr = self.config.TRAINER.WARMUP_RATIO * self.config.TRAINER.TRUE_LR + lr = base_lr + \ + (self.trainer.global_step / self.config.TRAINER.WARMUP_STEP) * \ + abs(self.config.TRAINER.TRUE_LR - base_lr) + for pg in optimizer.param_groups: + pg['lr'] = lr + elif self.config.TRAINER.WARMUP_TYPE == 'constant': + pass + else: + raise ValueError(f'Unknown lr warm-up strategy: {self.config.TRAINER.WARMUP_TYPE}') + + # update params + optimizer.step(closure=optimizer_closure) + optimizer.zero_grad() + + def _trainval_inference(self, batch): + with self.profiler.profile("Compute coarse supervision"): + with torch.autocast(enabled=False, device_type='cuda'): + compute_supervision_coarse(batch, self.config) + + with self.profiler.profile("LoFTR"): + with torch.autocast(enabled=self.config.LOFTR.MP, device_type='cuda'): + self.matcher(batch) + + with self.profiler.profile("Compute fine supervision"): + with torch.autocast(enabled=False, device_type='cuda'): + compute_supervision_fine(batch, self.config, self.logger) + + with self.profiler.profile("Compute losses"): + with torch.autocast(enabled=self.config.LOFTR.MP, device_type='cuda'): + self.loss(batch) + + def _compute_metrics(self, batch): + compute_symmetrical_epipolar_errors(batch) # compute epi_errs for each match + compute_pose_errors(batch, self.config) # compute R_errs, t_errs, pose_errs for each pair + + rel_pair_names = list(zip(*batch['pair_names'])) + bs = batch['image0'].size(0) + metrics = { + # to filter duplicate pairs caused by DistributedSampler + 'identifiers': ['#'.join(rel_pair_names[b]) for b in range(bs)], + 'epi_errs': [(batch['epi_errs'].reshape(-1,1))[batch['m_bids'] == b].reshape(-1).cpu().numpy() for b in range(bs)], + 'R_errs': batch['R_errs'], + 't_errs': batch['t_errs'], + 'inliers': batch['inliers'], + 'num_matches': [batch['mconf'].shape[0]], # batch size = 1 only + } + ret_dict = {'metrics': metrics} + return ret_dict, rel_pair_names + + def training_step(self, batch, batch_idx): + self._trainval_inference(batch) + + # logging + if self.trainer.global_rank == 0 and self.global_step % self.trainer.log_every_n_steps == 0: + # scalars + for k, v in batch['loss_scalars'].items(): + self.logger.experiment.add_scalar(f'train/{k}', v, self.global_step) + + # figures + if self.config.TRAINER.ENABLE_PLOTTING: + compute_symmetrical_epipolar_errors(batch) # compute epi_errs for each match + figures = make_matching_figures(batch, self.config, self.config.TRAINER.PLOT_MODE) + for k, v in figures.items(): + self.logger.experiment.add_figure(f'train_match/{k}', v, self.global_step) + return {'loss': batch['loss']} + + def training_epoch_end(self, outputs): + avg_loss = torch.stack([x['loss'] for x in outputs]).mean() + if self.trainer.global_rank == 0: + self.logger.experiment.add_scalar( + 'train/avg_loss_on_epoch', avg_loss, + global_step=self.current_epoch) + + def validation_step(self, batch, batch_idx): + self._trainval_inference(batch) + + ret_dict, _ = self._compute_metrics(batch) + + val_plot_interval = max(self.trainer.num_val_batches[0] // self.n_vals_plot, 1) + figures = {self.config.TRAINER.PLOT_MODE: []} + if batch_idx % val_plot_interval == 0: + figures = make_matching_figures(batch, self.config, mode=self.config.TRAINER.PLOT_MODE) + + return { + **ret_dict, + 'loss_scalars': batch['loss_scalars'], + 'figures': figures, + } + + def validation_epoch_end(self, outputs): + # handle multiple validation sets + multi_outputs = [outputs] if not isinstance(outputs[0], (list, tuple)) else outputs + multi_val_metrics = defaultdict(list) + + for valset_idx, outputs in enumerate(multi_outputs): + # since pl performs sanity_check at the very begining of the training + cur_epoch = self.trainer.current_epoch + if not self.trainer.resume_from_checkpoint and self.trainer.running_sanity_check: + cur_epoch = -1 + + # 1. loss_scalars: dict of list, on cpu + _loss_scalars = [o['loss_scalars'] for o in outputs] + loss_scalars = {k: flattenList(all_gather([_ls[k] for _ls in _loss_scalars])) for k in _loss_scalars[0]} + + # 2. val metrics: dict of list, numpy + _metrics = [o['metrics'] for o in outputs] + metrics = {k: flattenList(all_gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]} + # NOTE: all ranks need to `aggregate_merics`, but only log at rank-0 + val_metrics_4tb = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR, config=self.config) + for thr in [5, 10, 20]: + multi_val_metrics[f'auc@{thr}'].append(val_metrics_4tb[f'auc@{thr}']) + + # 3. figures + _figures = [o['figures'] for o in outputs] + figures = {k: flattenList(gather(flattenList([_me[k] for _me in _figures]))) for k in _figures[0]} + + # tensorboard records only on rank 0 + if self.trainer.global_rank == 0: + for k, v in loss_scalars.items(): + mean_v = torch.stack(v).mean() + self.logger.experiment.add_scalar(f'val_{valset_idx}/avg_{k}', mean_v, global_step=cur_epoch) + + for k, v in val_metrics_4tb.items(): + self.logger.experiment.add_scalar(f"metrics_{valset_idx}/{k}", v, global_step=cur_epoch) + + for k, v in figures.items(): + if self.trainer.global_rank == 0: + for plot_idx, fig in enumerate(v): + self.logger.experiment.add_figure( + f'val_match_{valset_idx}/{k}/pair-{plot_idx}', fig, cur_epoch, close=True) + plt.close('all') + + for thr in [5, 10, 20]: + # log on all ranks for ModelCheckpoint callback to work properly + self.log(f'auc@{thr}', torch.tensor(np.mean(multi_val_metrics[f'auc@{thr}']))) # ckpt monitors on this + + def test_step(self, batch, batch_idx): + if (self.config.LOFTR.BACKBONE_TYPE == 'RepVGG') and not self.reparameter: + self.matcher = reparameter(self.matcher) + if self.config.LOFTR.HALF: + self.matcher = self.matcher.eval().half() + self.reparameter = True + + if not self.warmup: + if self.config.LOFTR.HALF: + for i in range(50): + self.matcher(batch) + else: + with torch.autocast(enabled=self.config.LOFTR.MP, device_type='cuda'): + for i in range(50): + self.matcher(batch) + self.warmup = True + torch.cuda.synchronize() + + if self.config.LOFTR.HALF: + self.start_event.record() + self.matcher(batch) + self.end_event.record() + torch.cuda.synchronize() + self.total_ms += self.start_event.elapsed_time(self.end_event) + else: + with torch.autocast(enabled=self.config.LOFTR.MP, device_type='cuda'): + self.start_event.record() + self.matcher(batch) + self.end_event.record() + torch.cuda.synchronize() + self.total_ms += self.start_event.elapsed_time(self.end_event) + + ret_dict, rel_pair_names = self._compute_metrics(batch) + return ret_dict + + def test_epoch_end(self, outputs): + # metrics: dict of list, numpy + _metrics = [o['metrics'] for o in outputs] + metrics = {k: flattenList(gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]} + + # [{key: [{...}, *#bs]}, *#batch] + if self.trainer.global_rank == 0: + print('Averaged Matching time over 1500 pairs: {:.2f} ms'.format(self.total_ms / 1500)) + val_metrics_4tb = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR, config=self.config) + logger.info('\n' + pprint.pformat(val_metrics_4tb)) \ No newline at end of file diff --git a/third_party/EfficientLoFTR/src/loftr/__init__.py b/third_party/EfficientLoFTR/src/loftr/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..362c0d04fa437c0073016a9ceac607ec5cffdfb7 --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/__init__.py @@ -0,0 +1,4 @@ +from .loftr import LoFTR +from .utils.full_config import full_default_cfg +from .utils.opt_config import opt_default_cfg +from .loftr import reparameter \ No newline at end of file diff --git a/third_party/EfficientLoFTR/src/loftr/backbone/__init__.py b/third_party/EfficientLoFTR/src/loftr/backbone/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..aa2c02f486958a542550c0943ce284cf97e44050 --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/backbone/__init__.py @@ -0,0 +1,11 @@ +from .backbone import RepVGG_8_1_align + +def build_backbone(config): + if config['backbone_type'] == 'RepVGG': + if config['align_corner'] is False: + if config['resolution'] == (8, 1): + return RepVGG_8_1_align(config['backbone']) + else: + raise ValueError(f"LOFTR.ALIGN_CORNER {config['align_corner']} not supported.") + else: + raise ValueError(f"LOFTR.BACKBONE_TYPE {config['backbone_type']} not supported.") diff --git a/third_party/EfficientLoFTR/src/loftr/backbone/backbone.py b/third_party/EfficientLoFTR/src/loftr/backbone/backbone.py new file mode 100644 index 0000000000000000000000000000000000000000..f1d921971914d4d465e5e4c7fe87c90e773d4ef1 --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/backbone/backbone.py @@ -0,0 +1,37 @@ +import torch.nn as nn +import torch.nn.functional as F +from .repvgg import create_RepVGG + +class RepVGG_8_1_align(nn.Module): + """ + RepVGG backbone, output resolution are 1/8 and 1. + Each block has 2 layers. + """ + + def __init__(self, config): + super().__init__() + backbone = create_RepVGG(False) + + self.layer0, self.layer1, self.layer2, self.layer3 = backbone.stage0, backbone.stage1, backbone.stage2, backbone.stage3 + + for layer in [self.layer0, self.layer1, self.layer2, self.layer3]: + for m in layer.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + + def forward(self, x): + out = self.layer0(x) # 1/2 + for module in self.layer1: + out = module(out) # 1/2 + x1 = out + for module in self.layer2: + out = module(out) # 1/4 + x2 = out + for module in self.layer3: + out = module(out) # 1/8 + x3 = out + + return {'feats_c': x3, 'feats_f': None, 'feats_x2': x2, 'feats_x1': x1} diff --git a/third_party/EfficientLoFTR/src/loftr/backbone/repvgg.py b/third_party/EfficientLoFTR/src/loftr/backbone/repvgg.py new file mode 100644 index 0000000000000000000000000000000000000000..45b038c82511e902947b65d7c63ff461dc24c3e7 --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/backbone/repvgg.py @@ -0,0 +1,224 @@ +# -------------------------------------------------------- +# RepVGG: Making VGG-style ConvNets Great Again (https://openaccess.thecvf.com/content/CVPR2021/papers/Ding_RepVGG_Making_VGG-Style_ConvNets_Great_Again_CVPR_2021_paper.pdf) +# Github source: https://github.com/DingXiaoH/RepVGG +# Licensed under The MIT License [see LICENSE for details] +# Modified from: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py +# -------------------------------------------------------- +import torch.nn as nn +import numpy as np +import torch +import copy +# from se_block import SEBlock +import torch.utils.checkpoint as checkpoint +from loguru import logger + +def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1): + result = nn.Sequential() + result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels, + kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False)) + result.add_module('bn', nn.BatchNorm2d(num_features=out_channels)) + return result + +class RepVGGBlock(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, + stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False): + super(RepVGGBlock, self).__init__() + self.deploy = deploy + self.groups = groups + self.in_channels = in_channels + + assert kernel_size == 3 + assert padding == 1 + + padding_11 = padding - kernel_size // 2 + + self.nonlinearity = nn.ReLU() + + if use_se: + # Note that RepVGG-D2se uses SE before nonlinearity. But RepVGGplus models uses SE after nonlinearity. + # self.se = SEBlock(out_channels, internal_neurons=out_channels // 16) + raise ValueError(f"SEBlock not supported") + else: + self.se = nn.Identity() + + if deploy: + self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, + padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode) + else: + self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None + self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups) + self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding_11, groups=groups) + + def forward(self, inputs): + if hasattr(self, 'rbr_reparam'): + return self.nonlinearity(self.se(self.rbr_reparam(inputs))) + + if self.rbr_identity is None: + id_out = 0 + else: + id_out = self.rbr_identity(inputs) + + return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)) + + + # Optional. This may improve the accuracy and facilitates quantization in some cases. + # 1. Cancel the original weight decay on rbr_dense.conv.weight and rbr_1x1.conv.weight. + # 2. Use like this. + # loss = criterion(....) + # for every RepVGGBlock blk: + # loss += weight_decay_coefficient * 0.5 * blk.get_cust_L2() + # optimizer.zero_grad() + # loss.backward() + def get_custom_L2(self): + K3 = self.rbr_dense.conv.weight + K1 = self.rbr_1x1.conv.weight + t3 = (self.rbr_dense.bn.weight / ((self.rbr_dense.bn.running_var + self.rbr_dense.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach() + t1 = (self.rbr_1x1.bn.weight / ((self.rbr_1x1.bn.running_var + self.rbr_1x1.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach() + + l2_loss_circle = (K3 ** 2).sum() - (K3[:, :, 1:2, 1:2] ** 2).sum() # The L2 loss of the "circle" of weights in 3x3 kernel. Use regular L2 on them. + eq_kernel = K3[:, :, 1:2, 1:2] * t3 + K1 * t1 # The equivalent resultant central point of 3x3 kernel. + l2_loss_eq_kernel = (eq_kernel ** 2 / (t3 ** 2 + t1 ** 2)).sum() # Normalize for an L2 coefficient comparable to regular L2. + return l2_loss_eq_kernel + l2_loss_circle + + + +# This func derives the equivalent kernel and bias in a DIFFERENTIABLE way. +# You can get the equivalent kernel and bias at any time and do whatever you want, + # for example, apply some penalties or constraints during training, just like you do to the other models. +# May be useful for quantization or pruning. + def get_equivalent_kernel_bias(self): + kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense) + kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1) + kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity) + return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid + + def _pad_1x1_to_3x3_tensor(self, kernel1x1): + if kernel1x1 is None: + return 0 + else: + return torch.nn.functional.pad(kernel1x1, [1,1,1,1]) + + def _fuse_bn_tensor(self, branch): + if branch is None: + return 0, 0 + if isinstance(branch, nn.Sequential): + kernel = branch.conv.weight + running_mean = branch.bn.running_mean + running_var = branch.bn.running_var + gamma = branch.bn.weight + beta = branch.bn.bias + eps = branch.bn.eps + else: + assert isinstance(branch, nn.BatchNorm2d) + if not hasattr(self, 'id_tensor'): + input_dim = self.in_channels // self.groups + kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32) + for i in range(self.in_channels): + kernel_value[i, i % input_dim, 1, 1] = 1 + self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device) + kernel = self.id_tensor + running_mean = branch.running_mean + running_var = branch.running_var + gamma = branch.weight + beta = branch.bias + eps = branch.eps + std = (running_var + eps).sqrt() + t = (gamma / std).reshape(-1, 1, 1, 1) + return kernel * t, beta - running_mean * gamma / std + + def switch_to_deploy(self): + if hasattr(self, 'rbr_reparam'): + return + kernel, bias = self.get_equivalent_kernel_bias() + self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.conv.in_channels, out_channels=self.rbr_dense.conv.out_channels, + kernel_size=self.rbr_dense.conv.kernel_size, stride=self.rbr_dense.conv.stride, + padding=self.rbr_dense.conv.padding, dilation=self.rbr_dense.conv.dilation, groups=self.rbr_dense.conv.groups, bias=True) + self.rbr_reparam.weight.data = kernel + self.rbr_reparam.bias.data = bias + self.__delattr__('rbr_dense') + self.__delattr__('rbr_1x1') + if hasattr(self, 'rbr_identity'): + self.__delattr__('rbr_identity') + if hasattr(self, 'id_tensor'): + self.__delattr__('id_tensor') + self.deploy = True + + + +class RepVGG(nn.Module): + + def __init__(self, num_blocks, num_classes=1000, width_multiplier=None, override_groups_map=None, deploy=False, use_se=False, use_checkpoint=False): + super(RepVGG, self).__init__() + assert len(width_multiplier) == 4 + self.deploy = deploy + self.override_groups_map = override_groups_map or dict() + assert 0 not in self.override_groups_map + self.use_se = use_se + self.use_checkpoint = use_checkpoint + + self.in_planes = min(64, int(64 * width_multiplier[0])) + self.stage0 = RepVGGBlock(in_channels=1, out_channels=self.in_planes, kernel_size=3, stride=2, padding=1, deploy=self.deploy, use_se=self.use_se) + self.cur_layer_idx = 1 + self.stage1 = self._make_stage(int(64 * width_multiplier[0]), num_blocks[0], stride=1) + self.stage2 = self._make_stage(int(128 * width_multiplier[1]), num_blocks[1], stride=2) + self.stage3 = self._make_stage(int(256 * width_multiplier[2]), num_blocks[2], stride=2) + + def _make_stage(self, planes, num_blocks, stride): + strides = [stride] + [1]*(num_blocks-1) + blocks = [] + for stride in strides: + cur_groups = self.override_groups_map.get(self.cur_layer_idx, 1) + blocks.append(RepVGGBlock(in_channels=self.in_planes, out_channels=planes, kernel_size=3, + stride=stride, padding=1, groups=cur_groups, deploy=self.deploy, use_se=self.use_se)) + self.in_planes = planes + self.cur_layer_idx += 1 + return nn.ModuleList(blocks) + + def forward(self, x): + out = self.stage0(x) + for stage in (self.stage1, self.stage2, self.stage3): + for block in stage: + if self.use_checkpoint: + out = checkpoint.checkpoint(block, out) + else: + out = block(out) + out = self.gap(out) + out = out.view(out.size(0), -1) + out = self.linear(out) + return out + + +optional_groupwise_layers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26] +g2_map = {l: 2 for l in optional_groupwise_layers} +g4_map = {l: 4 for l in optional_groupwise_layers} + +def create_RepVGG(deploy=False, use_checkpoint=False): + return RepVGG(num_blocks=[2, 4, 14, 1], num_classes=1000, + width_multiplier=[1, 1, 1, 2.5], override_groups_map=None, deploy=deploy, use_checkpoint=use_checkpoint) + +# Use this for converting a RepVGG model or a bigger model with RepVGG as its component +# Use like this +# model = create_RepVGG_A0(deploy=False) +# train model or load weights +# repvgg_model_convert(model, save_path='repvgg_deploy.pth') +# If you want to preserve the original model, call with do_copy=True + +# ====================== for using RepVGG as the backbone of a bigger model, e.g., PSPNet, the pseudo code will be like +# train_backbone = create_RepVGG_B2(deploy=False) +# train_backbone.load_state_dict(torch.load('RepVGG-B2-train.pth')) +# train_pspnet = build_pspnet(backbone=train_backbone) +# segmentation_train(train_pspnet) +# deploy_pspnet = repvgg_model_convert(train_pspnet) +# segmentation_test(deploy_pspnet) +# ===================== example_pspnet.py shows an example + +def repvgg_model_convert(model:torch.nn.Module, save_path=None, do_copy=True): + if do_copy: + model = copy.deepcopy(model) + for module in model.modules(): + if hasattr(module, 'switch_to_deploy'): + module.switch_to_deploy() + if save_path is not None: + torch.save(model.state_dict(), save_path) + return model diff --git a/third_party/EfficientLoFTR/src/loftr/loftr.py b/third_party/EfficientLoFTR/src/loftr/loftr.py new file mode 100644 index 0000000000000000000000000000000000000000..8f76939a1b0c68504f535d4c9eb4ef91d19cd63a --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/loftr.py @@ -0,0 +1,124 @@ +import torch +import torch.nn as nn +from einops.einops import rearrange + +from .backbone import build_backbone +from .loftr_module import LocalFeatureTransformer, FinePreprocess +from .utils.coarse_matching import CoarseMatching +from .utils.fine_matching import FineMatching +from ..utils.misc import detect_NaN + +from loguru import logger + +def reparameter(matcher): + module = matcher.backbone.layer0 + if hasattr(module, 'switch_to_deploy'): + module.switch_to_deploy() + for modules in [matcher.backbone.layer1, matcher.backbone.layer2, matcher.backbone.layer3]: + for module in modules: + if hasattr(module, 'switch_to_deploy'): + module.switch_to_deploy() + for modules in [matcher.fine_preprocess.layer2_outconv2, matcher.fine_preprocess.layer1_outconv2]: + for module in modules: + if hasattr(module, 'switch_to_deploy'): + module.switch_to_deploy() + return matcher + +class LoFTR(nn.Module): + def __init__(self, config, profiler=None): + super().__init__() + # Misc + self.config = config + self.profiler = profiler + + # Modules + self.backbone = build_backbone(config) + self.loftr_coarse = LocalFeatureTransformer(config) + self.coarse_matching = CoarseMatching(config['match_coarse']) + self.fine_preprocess = FinePreprocess(config) + self.fine_matching = FineMatching(config) + + def forward(self, data): + """ + Update: + data (dict): { + 'image0': (torch.Tensor): (N, 1, H, W) + 'image1': (torch.Tensor): (N, 1, H, W) + 'mask0'(optional) : (torch.Tensor): (N, H, W) '0' indicates a padded position + 'mask1'(optional) : (torch.Tensor): (N, H, W) + } + """ + # 1. Local Feature CNN + data.update({ + 'bs': data['image0'].size(0), + 'hw0_i': data['image0'].shape[2:], 'hw1_i': data['image1'].shape[2:] + }) + + if data['hw0_i'] == data['hw1_i']: # faster & better BN convergence + ret_dict = self.backbone(torch.cat([data['image0'], data['image1']], dim=0)) + feats_c = ret_dict['feats_c'] + data.update({ + 'feats_x2': ret_dict['feats_x2'], + 'feats_x1': ret_dict['feats_x1'], + }) + (feat_c0, feat_c1) = feats_c.split(data['bs']) + else: # handle different input shapes + ret_dict0, ret_dict1 = self.backbone(data['image0']), self.backbone(data['image1']) + feat_c0 = ret_dict0['feats_c'] + feat_c1 = ret_dict1['feats_c'] + data.update({ + 'feats_x2_0': ret_dict0['feats_x2'], + 'feats_x1_0': ret_dict0['feats_x1'], + 'feats_x2_1': ret_dict1['feats_x2'], + 'feats_x1_1': ret_dict1['feats_x1'], + }) + + + mul = self.config['resolution'][0] // self.config['resolution'][1] + data.update({ + 'hw0_c': feat_c0.shape[2:], 'hw1_c': feat_c1.shape[2:], + 'hw0_f': [feat_c0.shape[2] * mul, feat_c0.shape[3] * mul] , + 'hw1_f': [feat_c1.shape[2] * mul, feat_c1.shape[3] * mul] + }) + + # 2. coarse-level loftr module + mask_c0 = mask_c1 = None # mask is useful in training + if 'mask0' in data: + mask_c0, mask_c1 = data['mask0'], data['mask1'] + + feat_c0, feat_c1 = self.loftr_coarse(feat_c0, feat_c1, mask_c0, mask_c1) + + feat_c0 = rearrange(feat_c0, 'n c h w -> n (h w) c') + feat_c1 = rearrange(feat_c1, 'n c h w -> n (h w) c') + + # detect NaN during mixed precision training + if self.config['replace_nan'] and (torch.any(torch.isnan(feat_c0)) or torch.any(torch.isnan(feat_c1))): + detect_NaN(feat_c0, feat_c1) + + # 3. match coarse-level + self.coarse_matching(feat_c0, feat_c1, data, + mask_c0=mask_c0.view(mask_c0.size(0), -1) if mask_c0 is not None else mask_c0, + mask_c1=mask_c1.view(mask_c1.size(0), -1) if mask_c1 is not None else mask_c1 + ) + + # prevent fp16 overflow during mixed precision training + feat_c0, feat_c1 = map(lambda feat: feat / feat.shape[-1]**.5, + [feat_c0, feat_c1]) + + # 4. fine-level refinement + feat_f0_unfold, feat_f1_unfold = self.fine_preprocess(feat_c0, feat_c1, data) + + # detect NaN during mixed precision training + if self.config['replace_nan'] and (torch.any(torch.isnan(feat_f0_unfold)) or torch.any(torch.isnan(feat_f1_unfold))): + detect_NaN(feat_f0_unfold, feat_f1_unfold) + + del feat_c0, feat_c1, mask_c0, mask_c1 + + # 5. match fine-level + self.fine_matching(feat_f0_unfold, feat_f1_unfold, data) + + def load_state_dict(self, state_dict, *args, **kwargs): + for k in list(state_dict.keys()): + if k.startswith('matcher.'): + state_dict[k.replace('matcher.', '', 1)] = state_dict.pop(k) + return super().load_state_dict(state_dict, *args, **kwargs) \ No newline at end of file diff --git a/third_party/EfficientLoFTR/src/loftr/loftr_module/__init__.py b/third_party/EfficientLoFTR/src/loftr/loftr_module/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ca51db4f50a0c4f3dcd795e74b83e633ab2e990a --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/loftr_module/__init__.py @@ -0,0 +1,2 @@ +from .transformer import LocalFeatureTransformer +from .fine_preprocess import FinePreprocess diff --git a/third_party/EfficientLoFTR/src/loftr/loftr_module/fine_preprocess.py b/third_party/EfficientLoFTR/src/loftr/loftr_module/fine_preprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..ca37e02a0e709650d8133db04e84e9cfccbd6bf0 --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/loftr_module/fine_preprocess.py @@ -0,0 +1,112 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from einops.einops import rearrange, repeat + +from loguru import logger + +def conv1x1(in_planes, out_planes, stride=1): + """1x1 convolution without padding""" + return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False) + + +def conv3x3(in_planes, out_planes, stride=1): + """3x3 convolution with padding""" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) + +class FinePreprocess(nn.Module): + def __init__(self, config): + super().__init__() + + self.config = config + block_dims = config['backbone']['block_dims'] + self.W = self.config['fine_window_size'] + self.fine_d_model = block_dims[0] + + self.layer3_outconv = conv1x1(block_dims[2], block_dims[2]) + self.layer2_outconv = conv1x1(block_dims[1], block_dims[2]) + self.layer2_outconv2 = nn.Sequential( + conv3x3(block_dims[2], block_dims[2]), + nn.BatchNorm2d(block_dims[2]), + nn.LeakyReLU(), + conv3x3(block_dims[2], block_dims[1]), + ) + self.layer1_outconv = conv1x1(block_dims[0], block_dims[1]) + self.layer1_outconv2 = nn.Sequential( + conv3x3(block_dims[1], block_dims[1]), + nn.BatchNorm2d(block_dims[1]), + nn.LeakyReLU(), + conv3x3(block_dims[1], block_dims[0]), + ) + + self._reset_parameters() + + def _reset_parameters(self): + for p in self.parameters(): + if p.dim() > 1: + nn.init.kaiming_normal_(p, mode="fan_out", nonlinearity="relu") + + def inter_fpn(self, feat_c, x2, x1, stride): + feat_c = self.layer3_outconv(feat_c) + feat_c = F.interpolate(feat_c, scale_factor=2., mode='bilinear', align_corners=False) + + x2 = self.layer2_outconv(x2) + x2 = self.layer2_outconv2(x2+feat_c) + x2 = F.interpolate(x2, scale_factor=2., mode='bilinear', align_corners=False) + + x1 = self.layer1_outconv(x1) + x1 = self.layer1_outconv2(x1+x2) + x1 = F.interpolate(x1, scale_factor=2., mode='bilinear', align_corners=False) + return x1 + + def forward(self, feat_c0, feat_c1, data): + W = self.W + stride = data['hw0_f'][0] // data['hw0_c'][0] + + data.update({'W': W}) + if data['b_ids'].shape[0] == 0: + feat0 = torch.empty(0, self.W**2, self.fine_d_model, device=feat_c0.device) + feat1 = torch.empty(0, self.W**2, self.fine_d_model, device=feat_c0.device) + return feat0, feat1 + + if data['hw0_i'] == data['hw1_i']: + feat_c = rearrange(torch.cat([feat_c0, feat_c1], 0), 'b (h w) c -> b c h w', h=data['hw0_c'][0]) # 1/8 feat + x2 = data['feats_x2'] # 1/4 feat + x1 = data['feats_x1'] # 1/2 feat + del data['feats_x2'], data['feats_x1'] + + # 1. fine feature extraction + x1 = self.inter_fpn(feat_c, x2, x1, stride) + feat_f0, feat_f1 = torch.chunk(x1, 2, dim=0) + + # 2. unfold(crop) all local windows + feat_f0 = F.unfold(feat_f0, kernel_size=(W, W), stride=stride, padding=0) + feat_f0 = rearrange(feat_f0, 'n (c ww) l -> n l ww c', ww=W**2) + feat_f1 = F.unfold(feat_f1, kernel_size=(W+2, W+2), stride=stride, padding=1) + feat_f1 = rearrange(feat_f1, 'n (c ww) l -> n l ww c', ww=(W+2)**2) + + # 3. select only the predicted matches + feat_f0 = feat_f0[data['b_ids'], data['i_ids']] # [n, ww, cf] + feat_f1 = feat_f1[data['b_ids'], data['j_ids']] + + return feat_f0, feat_f1 + else: # handle different input shapes + feat_c0, feat_c1 = rearrange(feat_c0, 'b (h w) c -> b c h w', h=data['hw0_c'][0]), rearrange(feat_c1, 'b (h w) c -> b c h w', h=data['hw1_c'][0]) # 1/8 feat + x2_0, x2_1 = data['feats_x2_0'], data['feats_x2_1'] # 1/4 feat + x1_0, x1_1 = data['feats_x1_0'], data['feats_x1_1'] # 1/2 feat + del data['feats_x2_0'], data['feats_x1_0'], data['feats_x2_1'], data['feats_x1_1'] + + # 1. fine feature extraction + feat_f0, feat_f1 = self.inter_fpn(feat_c0, x2_0, x1_0, stride), self.inter_fpn(feat_c1, x2_1, x1_1, stride) + + # 2. unfold(crop) all local windows + feat_f0 = F.unfold(feat_f0, kernel_size=(W, W), stride=stride, padding=0) + feat_f0 = rearrange(feat_f0, 'n (c ww) l -> n l ww c', ww=W**2) + feat_f1 = F.unfold(feat_f1, kernel_size=(W+2, W+2), stride=stride, padding=1) + feat_f1 = rearrange(feat_f1, 'n (c ww) l -> n l ww c', ww=(W+2)**2) + + # 3. select only the predicted matches + feat_f0 = feat_f0[data['b_ids'], data['i_ids']] # [n, ww, cf] + feat_f1 = feat_f1[data['b_ids'], data['j_ids']] + + return feat_f0, feat_f1 \ No newline at end of file diff --git a/third_party/EfficientLoFTR/src/loftr/loftr_module/linear_attention.py b/third_party/EfficientLoFTR/src/loftr/loftr_module/linear_attention.py new file mode 100644 index 0000000000000000000000000000000000000000..4d95414e35441522c7df65c88a403672d3aa227b --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/loftr_module/linear_attention.py @@ -0,0 +1,103 @@ +""" +Linear Transformer proposed in "Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention" +Modified from: https://github.com/idiap/fast-transformers/blob/master/fast_transformers/attention/linear_attention.py +""" + +import torch +from torch.nn import Module +import torch.nn.functional as F +from einops.einops import rearrange + +if hasattr(F, 'scaled_dot_product_attention'): + FLASH_AVAILABLE = True + from torch.backends.cuda import sdp_kernel +else: + FLASH_AVAILABLE = False + +def crop_feature(query, key, value, x_mask, source_mask): + mask_h0, mask_w0, mask_h1, mask_w1 = x_mask[0].sum(-2)[0], x_mask[0].sum(-1)[0], source_mask[0].sum(-2)[0], source_mask[0].sum(-1)[0] + query = query[:, :mask_h0, :mask_w0, :] + key = key[:, :mask_h1, :mask_w1, :] + value = value[:, :mask_h1, :mask_w1, :] + return query, key, value, mask_h0, mask_w0 + +def pad_feature(m, mask_h0, mask_w0, x_mask): + bs, L, H, D = m.size() + m = m.view(bs, mask_h0, mask_w0, H, D) + if mask_h0 != x_mask.size(-2): + m = torch.cat([m, torch.zeros(m.size(0), x_mask.size(-2)-mask_h0, x_mask.size(-1), H, D, device=m.device, dtype=m.dtype)], dim=1) + elif mask_w0 != x_mask.size(-1): + m = torch.cat([m, torch.zeros(m.size(0), x_mask.size(-2), x_mask.size(-1)-mask_w0, H, D, device=m.device, dtype=m.dtype)], dim=2) + return m + +class Attention(Module): + def __init__(self, no_flash=False, nhead=8, dim=256, fp32=False): + super().__init__() + self.flash = FLASH_AVAILABLE and not no_flash + self.nhead = nhead + self.dim = dim + self.fp32 = fp32 + + def attention(self, query, key, value, q_mask=None, kv_mask=None): + assert q_mask is None and kv_mask is None, "Not support generalized attention mask yet." + if self.flash and not self.fp32: + args = [x.contiguous() for x in [query, key, value]] + with sdp_kernel(enable_math= False, enable_flash= True, enable_mem_efficient= False): + out = F.scaled_dot_product_attention(*args) + elif self.flash: + args = [x.contiguous() for x in [query, key, value]] + out = F.scaled_dot_product_attention(*args) + else: + QK = torch.einsum("nlhd,nshd->nlsh", query, key) + + # Compute the attention and the weighted average + softmax_temp = 1. / query.size(3)**.5 # sqrt(D) + A = torch.softmax(softmax_temp * QK, dim=2) + + out = torch.einsum("nlsh,nshd->nlhd", A, value) + return out + + def _forward(self, query, key, value, q_mask=None, kv_mask=None): + if q_mask is not None: + query, key, value, mask_h0, mask_w0 = crop_feature(query, key, value, q_mask, kv_mask) + + if self.flash: + query, key, value = map(lambda x: rearrange(x, 'n h w (nhead d) -> n nhead (h w) d', nhead=self.nhead, d=self.dim), [query, key, value]) + else: + query, key, value = map(lambda x: rearrange(x, 'n h w (nhead d) -> n (h w) nhead d', nhead=self.nhead, d=self.dim), [query, key, value]) + + m = self.attention(query, key, value, q_mask=None, kv_mask=None) + + if self.flash: + m = rearrange(m, 'n nhead L d -> n L nhead d', nhead=self.nhead, d=self.dim) + + if q_mask is not None: + m = pad_feature(m, mask_h0, mask_w0, q_mask) + + return m + + def forward(self, query, key, value, q_mask=None, kv_mask=None): + """ Multi-head scaled dot-product attention, a.k.a full attention. + Args: + if FLASH_AVAILABLE: # pytorch scaled_dot_product_attention + queries: [N, H, L, D] + keys: [N, H, S, D] + values: [N, H, S, D] + else: + queries: [N, L, H, D] + keys: [N, S, H, D] + values: [N, S, H, D] + q_mask: [N, L] + kv_mask: [N, S] + Returns: + queried_values: (N, L, H, D) + """ + bs = query.size(0) + if bs == 1 or q_mask is None: + m = self._forward(query, key, value, q_mask=q_mask, kv_mask=kv_mask) + else: # for faster trainning with padding mask while batch size > 1 + m_list = [] + for i in range(bs): + m_list.append(self._forward(query[i:i+1], key[i:i+1], value[i:i+1], q_mask=q_mask[i:i+1], kv_mask=kv_mask[i:i+1])) + m = torch.cat(m_list, dim=0) + return m \ No newline at end of file diff --git a/third_party/EfficientLoFTR/src/loftr/loftr_module/transformer.py b/third_party/EfficientLoFTR/src/loftr/loftr_module/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..fd6eaeda7a4ac360c812d07c5c5757717bb39f3e --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/loftr_module/transformer.py @@ -0,0 +1,164 @@ +import copy +import torch +import torch.nn as nn +import torch.nn.functional as F +from .linear_attention import Attention, crop_feature, pad_feature +from einops.einops import rearrange +from collections import OrderedDict +from ..utils.position_encoding import RoPEPositionEncodingSine +import numpy as np +from loguru import logger + +class AG_RoPE_EncoderLayer(nn.Module): + def __init__(self, + d_model, + nhead, + agg_size0=4, + agg_size1=4, + no_flash=False, + rope=False, + npe=None, + fp32=False, + ): + super(AG_RoPE_EncoderLayer, self).__init__() + + self.dim = d_model // nhead + self.nhead = nhead + self.agg_size0, self.agg_size1 = agg_size0, agg_size1 + self.rope = rope + + # aggregate and position encoding + self.aggregate = nn.Conv2d(d_model, d_model, kernel_size=agg_size0, padding=0, stride=agg_size0, bias=False, groups=d_model) if self.agg_size0 != 1 else nn.Identity() + self.max_pool = torch.nn.MaxPool2d(kernel_size=self.agg_size1, stride=self.agg_size1) if self.agg_size1 != 1 else nn.Identity() + self.rope_pos_enc = RoPEPositionEncodingSine(d_model, max_shape=(256, 256), npe=npe, ropefp16=True) + + # multi-head attention + self.q_proj = nn.Linear(d_model, d_model, bias=False) + self.k_proj = nn.Linear(d_model, d_model, bias=False) + self.v_proj = nn.Linear(d_model, d_model, bias=False) + self.attention = Attention(no_flash, self.nhead, self.dim, fp32) + self.merge = nn.Linear(d_model, d_model, bias=False) + + # feed-forward network + self.mlp = nn.Sequential( + nn.Linear(d_model*2, d_model*2, bias=False), + nn.LeakyReLU(inplace = True), + nn.Linear(d_model*2, d_model, bias=False), + ) + + # norm + self.norm1 = nn.LayerNorm(d_model) + self.norm2 = nn.LayerNorm(d_model) + + def forward(self, x, source, x_mask=None, source_mask=None): + """ + Args: + x (torch.Tensor): [N, C, H0, W0] + source (torch.Tensor): [N, C, H1, W1] + x_mask (torch.Tensor): [N, H0, W0] (optional) (L = H0*W0) + source_mask (torch.Tensor): [N, H1, W1] (optional) (S = H1*W1) + """ + bs, C, H0, W0 = x.size() + H1, W1 = source.size(-2), source.size(-1) + + # Aggragate feature + assert x_mask is None and source_mask is None + query, source = self.norm1(self.aggregate(x).permute(0,2,3,1)), self.norm1(self.max_pool(source).permute(0,2,3,1)) # [N, H, W, C] + if x_mask is not None: + x_mask, source_mask = map(lambda x: self.max_pool(x.float()).bool(), [x_mask, source_mask]) + query, key, value = self.q_proj(query), self.k_proj(source), self.v_proj(source) + + # Positional encoding + if self.rope: + query = self.rope_pos_enc(query) + key = self.rope_pos_enc(key) + + # multi-head attention handle padding mask + m = self.attention(query, key, value, q_mask=x_mask, kv_mask=source_mask) + m = self.merge(m.reshape(bs, -1, self.nhead*self.dim)) # [N, L, C] + + # Upsample feature + m = rearrange(m, 'b (h w) c -> b c h w', h=H0 // self.agg_size0, w=W0 // self.agg_size0) # [N, C, H0, W0] + if self.agg_size0 != 1: + m = torch.nn.functional.interpolate(m, scale_factor=self.agg_size0, mode='bilinear', align_corners=False) # [N, C, H0, W0] + + # feed-forward network + m = self.mlp(torch.cat([x, m], dim=1).permute(0, 2, 3, 1)) # [N, H0, W0, C] + m = self.norm2(m).permute(0, 3, 1, 2) # [N, C, H0, W0] + + return x + m + +class LocalFeatureTransformer(nn.Module): + """A Local Feature Transformer (LoFTR) module.""" + + def __init__(self, config): + super(LocalFeatureTransformer, self).__init__() + + self.full_config = config + self.fp32 = not (config['mp'] or config['half']) + config = config['coarse'] + self.d_model = config['d_model'] + self.nhead = config['nhead'] + self.layer_names = config['layer_names'] + self.agg_size0, self.agg_size1 = config['agg_size0'], config['agg_size1'] + self.rope = config['rope'] + + self_layer = AG_RoPE_EncoderLayer(config['d_model'], config['nhead'], config['agg_size0'], config['agg_size1'], + config['no_flash'], config['rope'], config['npe'], self.fp32) + cross_layer = AG_RoPE_EncoderLayer(config['d_model'], config['nhead'], config['agg_size0'], config['agg_size1'], + config['no_flash'], False, config['npe'], self.fp32) + self.layers = nn.ModuleList([copy.deepcopy(self_layer) if _ == 'self' else copy.deepcopy(cross_layer) for _ in self.layer_names]) + self._reset_parameters() + + def _reset_parameters(self): + for p in self.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + + def forward(self, feat0, feat1, mask0=None, mask1=None, data=None): + """ + Args: + feat0 (torch.Tensor): [N, C, H, W] + feat1 (torch.Tensor): [N, C, H, W] + mask0 (torch.Tensor): [N, L] (optional) + mask1 (torch.Tensor): [N, S] (optional) + """ + H0, W0, H1, W1 = feat0.size(-2), feat0.size(-1), feat1.size(-2), feat1.size(-1) + bs = feat0.shape[0] + + feature_cropped = False + if bs == 1 and mask0 is not None and mask1 is not None: + mask_H0, mask_W0, mask_H1, mask_W1 = mask0.size(-2), mask0.size(-1), mask1.size(-2), mask1.size(-1) + mask_h0, mask_w0, mask_h1, mask_w1 = mask0[0].sum(-2)[0], mask0[0].sum(-1)[0], mask1[0].sum(-2)[0], mask1[0].sum(-1)[0] + mask_h0, mask_w0, mask_h1, mask_w1 = mask_h0//self.agg_size0*self.agg_size0, mask_w0//self.agg_size0*self.agg_size0, mask_h1//self.agg_size1*self.agg_size1, mask_w1//self.agg_size1*self.agg_size1 + feat0 = feat0[:, :, :mask_h0, :mask_w0] + feat1 = feat1[:, :, :mask_h1, :mask_w1] + feature_cropped = True + + for i, (layer, name) in enumerate(zip(self.layers, self.layer_names)): + if feature_cropped: + mask0, mask1 = None, None + if name == 'self': + feat0 = layer(feat0, feat0, mask0, mask0) + feat1 = layer(feat1, feat1, mask1, mask1) + elif name == 'cross': + feat0 = layer(feat0, feat1, mask0, mask1) + feat1 = layer(feat1, feat0, mask1, mask0) + else: + raise KeyError + + if feature_cropped: + # padding feature + bs, c, mask_h0, mask_w0 = feat0.size() + if mask_h0 != mask_H0: + feat0 = torch.cat([feat0, torch.zeros(bs, c, mask_H0-mask_h0, mask_W0, device=feat0.device, dtype=feat0.dtype)], dim=-2) + elif mask_w0 != mask_W0: + feat0 = torch.cat([feat0, torch.zeros(bs, c, mask_H0, mask_W0-mask_w0, device=feat0.device, dtype=feat0.dtype)], dim=-1) + + bs, c, mask_h1, mask_w1 = feat1.size() + if mask_h1 != mask_H1: + feat1 = torch.cat([feat1, torch.zeros(bs, c, mask_H1-mask_h1, mask_W1, device=feat1.device, dtype=feat1.dtype)], dim=-2) + elif mask_w1 != mask_W1: + feat1 = torch.cat([feat1, torch.zeros(bs, c, mask_H1, mask_W1-mask_w1, device=feat1.device, dtype=feat1.dtype)], dim=-1) + + return feat0, feat1 \ No newline at end of file diff --git a/third_party/EfficientLoFTR/src/loftr/utils/coarse_matching.py b/third_party/EfficientLoFTR/src/loftr/utils/coarse_matching.py new file mode 100644 index 0000000000000000000000000000000000000000..156c9eecf8c2cfb54b8eb22a8663d5cda5afa6a8 --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/utils/coarse_matching.py @@ -0,0 +1,241 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from einops.einops import rearrange, repeat + +from loguru import logger +import numpy as np + +INF = 1e9 + +def mask_border(m, b: int, v): + """ Mask borders with value + Args: + m (torch.Tensor): [N, H0, W0, H1, W1] + b (int) + v (m.dtype) + """ + if b <= 0: + return + + m[:, :b] = v + m[:, :, :b] = v + m[:, :, :, :b] = v + m[:, :, :, :, :b] = v + m[:, -b:] = v + m[:, :, -b:] = v + m[:, :, :, -b:] = v + m[:, :, :, :, -b:] = v + + +def mask_border_with_padding(m, bd, v, p_m0, p_m1): + if bd <= 0: + return + + m[:, :bd] = v + m[:, :, :bd] = v + m[:, :, :, :bd] = v + m[:, :, :, :, :bd] = v + + h0s, w0s = p_m0.sum(1).max(-1)[0].int(), p_m0.sum(-1).max(-1)[0].int() + h1s, w1s = p_m1.sum(1).max(-1)[0].int(), p_m1.sum(-1).max(-1)[0].int() + for b_idx, (h0, w0, h1, w1) in enumerate(zip(h0s, w0s, h1s, w1s)): + m[b_idx, h0 - bd:] = v + m[b_idx, :, w0 - bd:] = v + m[b_idx, :, :, h1 - bd:] = v + m[b_idx, :, :, :, w1 - bd:] = v + + +def compute_max_candidates(p_m0, p_m1): + """Compute the max candidates of all pairs within a batch + + Args: + p_m0, p_m1 (torch.Tensor): padded masks + """ + h0s, w0s = p_m0.sum(1).max(-1)[0], p_m0.sum(-1).max(-1)[0] + h1s, w1s = p_m1.sum(1).max(-1)[0], p_m1.sum(-1).max(-1)[0] + max_cand = torch.sum( + torch.min(torch.stack([h0s * w0s, h1s * w1s], -1), -1)[0]) + return max_cand + +class CoarseMatching(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + # general config + self.thr = config['thr'] + self.border_rm = config['border_rm'] + self.temperature = config['dsmax_temperature'] + self.skip_softmax = config['skip_softmax'] + self.fp16matmul = config['fp16matmul'] + # -- # for trainig fine-level LoFTR + self.train_coarse_percent = config['train_coarse_percent'] + self.train_pad_num_gt_min = config['train_pad_num_gt_min'] + + def forward(self, feat_c0, feat_c1, data, mask_c0=None, mask_c1=None): + """ + Args: + feat0 (torch.Tensor): [N, L, C] + feat1 (torch.Tensor): [N, S, C] + data (dict) + mask_c0 (torch.Tensor): [N, L] (optional) + mask_c1 (torch.Tensor): [N, S] (optional) + Update: + data (dict): { + 'b_ids' (torch.Tensor): [M'], + 'i_ids' (torch.Tensor): [M'], + 'j_ids' (torch.Tensor): [M'], + 'm_bids' (torch.Tensor): [M], + 'mkpts0_c' (torch.Tensor): [M, 2], + 'mkpts1_c' (torch.Tensor): [M, 2], + 'mconf' (torch.Tensor): [M]} + NOTE: M' != M during training. + """ + N, L, S, C = feat_c0.size(0), feat_c0.size(1), feat_c1.size(1), feat_c0.size(2) + + # normalize + feat_c0, feat_c1 = map(lambda feat: feat / feat.shape[-1]**.5, + [feat_c0, feat_c1]) + + if self.fp16matmul: + sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0, + feat_c1) / self.temperature + del feat_c0, feat_c1 + if mask_c0 is not None: + sim_matrix = sim_matrix.masked_fill( + ~(mask_c0[..., None] * mask_c1[:, None]).bool(), + -1e4 + ) + else: + with torch.autocast(enabled=False, device_type='cuda'): + sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0, + feat_c1) / self.temperature + del feat_c0, feat_c1 + if mask_c0 is not None: + sim_matrix = sim_matrix.float().masked_fill( + ~(mask_c0[..., None] * mask_c1[:, None]).bool(), + -INF + ) + if self.skip_softmax: + sim_matrix = sim_matrix + else: + sim_matrix = F.softmax(sim_matrix, 1) * F.softmax(sim_matrix, 2) + + data.update({'conf_matrix': sim_matrix}) + + # predict coarse matches from conf_matrix + data.update(**self.get_coarse_match(sim_matrix, data)) + + @torch.no_grad() + def get_coarse_match(self, conf_matrix, data): + """ + Args: + conf_matrix (torch.Tensor): [N, L, S] + data (dict): with keys ['hw0_i', 'hw1_i', 'hw0_c', 'hw1_c'] + Returns: + coarse_matches (dict): { + 'b_ids' (torch.Tensor): [M'], + 'i_ids' (torch.Tensor): [M'], + 'j_ids' (torch.Tensor): [M'], + 'm_bids' (torch.Tensor): [M], + 'mkpts0_c' (torch.Tensor): [M, 2], + 'mkpts1_c' (torch.Tensor): [M, 2], + 'mconf' (torch.Tensor): [M]} + """ + axes_lengths = { + 'h0c': data['hw0_c'][0], + 'w0c': data['hw0_c'][1], + 'h1c': data['hw1_c'][0], + 'w1c': data['hw1_c'][1] + } + _device = conf_matrix.device + # 1. confidence thresholding + mask = conf_matrix > self.thr + mask = rearrange(mask, 'b (h0c w0c) (h1c w1c) -> b h0c w0c h1c w1c', + **axes_lengths) + + if 'mask0' not in data: + mask_border(mask, self.border_rm, False) + else: + mask_border_with_padding(mask, self.border_rm, False, + data['mask0'], data['mask1']) + mask = rearrange(mask, 'b h0c w0c h1c w1c -> b (h0c w0c) (h1c w1c)', + **axes_lengths) + + # 2. mutual nearest + mask = mask \ + * (conf_matrix == conf_matrix.max(dim=2, keepdim=True)[0]) \ + * (conf_matrix == conf_matrix.max(dim=1, keepdim=True)[0]) + + # 3. find all valid coarse matches + # this only works when at most one `True` in each row + mask_v, all_j_ids = mask.max(dim=2) + b_ids, i_ids = torch.where(mask_v) + j_ids = all_j_ids[b_ids, i_ids] + mconf = conf_matrix[b_ids, i_ids, j_ids] + + # 4. Random sampling of training samples for fine-level LoFTR + # (optional) pad samples with gt coarse-level matches + if self.training: + # NOTE: + # The sampling is performed across all pairs in a batch without manually balancing + # #samples for fine-level increases w.r.t. batch_size + if 'mask0' not in data: + num_candidates_max = mask.size(0) * max( + mask.size(1), mask.size(2)) + else: + num_candidates_max = compute_max_candidates( + data['mask0'], data['mask1']) + num_matches_train = int(num_candidates_max * + self.train_coarse_percent) + num_matches_pred = len(b_ids) + assert self.train_pad_num_gt_min < num_matches_train, "min-num-gt-pad should be less than num-train-matches" + + # pred_indices is to select from prediction + if num_matches_pred <= num_matches_train - self.train_pad_num_gt_min: + pred_indices = torch.arange(num_matches_pred, device=_device) + else: + pred_indices = torch.randint( + num_matches_pred, + (num_matches_train - self.train_pad_num_gt_min, ), + device=_device) + + # gt_pad_indices is to select from gt padding. e.g. max(3787-4800, 200) + gt_pad_indices = torch.randint( + len(data['spv_b_ids']), + (max(num_matches_train - num_matches_pred, + self.train_pad_num_gt_min), ), + device=_device) + mconf_gt = torch.zeros(len(data['spv_b_ids']), device=_device) # set conf of gt paddings to all zero + + b_ids, i_ids, j_ids, mconf = map( + lambda x, y: torch.cat([x[pred_indices], y[gt_pad_indices]], + dim=0), + *zip([b_ids, data['spv_b_ids']], [i_ids, data['spv_i_ids']], + [j_ids, data['spv_j_ids']], [mconf, mconf_gt])) + + # These matches select patches that feed into fine-level network + coarse_matches = {'b_ids': b_ids, 'i_ids': i_ids, 'j_ids': j_ids} + + # 4. Update with matches in original image resolution + scale = data['hw0_i'][0] / data['hw0_c'][0] + + scale0 = scale * data['scale0'][b_ids] if 'scale0' in data else scale + scale1 = scale * data['scale1'][b_ids] if 'scale1' in data else scale + mkpts0_c = torch.stack( + [i_ids % data['hw0_c'][1], i_ids // data['hw0_c'][1]], + dim=1) * scale0 + mkpts1_c = torch.stack( + [j_ids % data['hw1_c'][1], j_ids // data['hw1_c'][1]], + dim=1) * scale1 + + m_bids = b_ids[mconf != 0] + # These matches is the current prediction (for visualization) + coarse_matches.update({ + 'm_bids': m_bids, # mconf == 0 => gt matches + 'mkpts0_c': mkpts0_c[mconf != 0], + 'mkpts1_c': mkpts1_c[mconf != 0], + 'mconf': mconf[mconf != 0] + }) + + return coarse_matches \ No newline at end of file diff --git a/third_party/EfficientLoFTR/src/loftr/utils/fine_matching.py b/third_party/EfficientLoFTR/src/loftr/utils/fine_matching.py new file mode 100644 index 0000000000000000000000000000000000000000..8d6da60c9fe8230e01a5ab47334d5ab506cbc7af --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/utils/fine_matching.py @@ -0,0 +1,155 @@ +import math +import torch +import torch.nn as nn +import torch.nn.functional as F + +from kornia.geometry.subpix import dsnt +from kornia.utils.grid import create_meshgrid + +from loguru import logger + +class FineMatching(nn.Module): + """FineMatching with s2d paradigm""" + + def __init__(self, config): + super().__init__() + self.config = config + self.local_regress_temperature = config['match_fine']['local_regress_temperature'] + self.local_regress_slicedim = config['match_fine']['local_regress_slicedim'] + self.fp16 = config['half'] + + def forward(self, feat_0, feat_1, data): + """ + Args: + feat0 (torch.Tensor): [M, WW, C] + feat1 (torch.Tensor): [M, WW, C] + data (dict) + Update: + data (dict):{ + 'expec_f' (torch.Tensor): [M, 3], + 'mkpts0_f' (torch.Tensor): [M, 2], + 'mkpts1_f' (torch.Tensor): [M, 2]} + """ + M, WW, C = feat_0.shape + W = int(math.sqrt(WW)) + scale = data['hw0_i'][0] / data['hw0_f'][0] + self.M, self.W, self.WW, self.C, self.scale = M, W, WW, C, scale + + # corner case: if no coarse matches found + if M == 0: + assert self.training == False, "M is always > 0 while training, see coarse_matching.py" + data.update({ + 'conf_matrix_f': torch.empty(0, WW, WW, device=feat_0.device), + 'mkpts0_f': data['mkpts0_c'], + 'mkpts1_f': data['mkpts1_c'], + }) + return + + # compute pixel-level confidence matrix + with torch.autocast(enabled=True, device_type='cuda'): + feat_f0, feat_f1 = feat_0[...,:-self.local_regress_slicedim], feat_1[...,:-self.local_regress_slicedim] + feat_ff0, feat_ff1 = feat_0[...,-self.local_regress_slicedim:], feat_1[...,-self.local_regress_slicedim:] + feat_f0, feat_f1 = feat_f0 / C**.5, feat_f1 / C**.5 + conf_matrix_f = torch.einsum('mlc,mrc->mlr', feat_f0, feat_f1) + conf_matrix_ff = torch.einsum('mlc,mrc->mlr', feat_ff0, feat_ff1 / (self.local_regress_slicedim)**.5) + + softmax_matrix_f = F.softmax(conf_matrix_f, 1) * F.softmax(conf_matrix_f, 2) + softmax_matrix_f = softmax_matrix_f.reshape(M, self.WW, self.W+2, self.W+2) + softmax_matrix_f = softmax_matrix_f[...,1:-1,1:-1].reshape(M, self.WW, self.WW) + + # for fine-level supervision + if self.training: + data.update({'sim_matrix_ff': conf_matrix_ff}) + data.update({'conf_matrix_f': softmax_matrix_f}) + + # compute pixel-level absolute kpt coords + self.get_fine_ds_match(softmax_matrix_f, data) + + # generate seconde-stage 3x3 grid + idx_l, idx_r = data['idx_l'], data['idx_r'] + m_ids = torch.arange(M, device=idx_l.device, dtype=torch.long).unsqueeze(-1) + m_ids = m_ids[:len(data['mconf'])] + idx_r_iids, idx_r_jids = idx_r // W, idx_r % W + + m_ids, idx_l, idx_r_iids, idx_r_jids = m_ids.reshape(-1), idx_l.reshape(-1), idx_r_iids.reshape(-1), idx_r_jids.reshape(-1) + delta = create_meshgrid(3, 3, True, conf_matrix_ff.device).to(torch.long) # [1, 3, 3, 2] + + m_ids = m_ids[...,None,None].expand(-1, 3, 3) + idx_l = idx_l[...,None,None].expand(-1, 3, 3) # [m, k, 3, 3] + + idx_r_iids = idx_r_iids[...,None,None].expand(-1, 3, 3) + delta[None, ..., 1] + idx_r_jids = idx_r_jids[...,None,None].expand(-1, 3, 3) + delta[None, ..., 0] + + if idx_l.numel() == 0: + data.update({ + 'mkpts0_f': data['mkpts0_c'], + 'mkpts1_f': data['mkpts1_c'], + }) + return + + # compute second-stage heatmap + conf_matrix_ff = conf_matrix_ff.reshape(M, self.WW, self.W+2, self.W+2) + conf_matrix_ff = conf_matrix_ff[m_ids, idx_l, idx_r_iids, idx_r_jids] + conf_matrix_ff = conf_matrix_ff.reshape(-1, 9) + conf_matrix_ff = F.softmax(conf_matrix_ff / self.local_regress_temperature, -1) + heatmap = conf_matrix_ff.reshape(-1, 3, 3) + + # compute coordinates from heatmap + coords_normalized = dsnt.spatial_expectation2d(heatmap[None], True)[0] + + if data['bs'] == 1: + scale1 = scale * data['scale1'] if 'scale0' in data else scale + else: + scale1 = scale * data['scale1'][data['b_ids']][:len(data['mconf']), ...][:,None,:].expand(-1, -1, 2).reshape(-1, 2) if 'scale0' in data else scale + + # compute subpixel-level absolute kpt coords + self.get_fine_match_local(coords_normalized, data, scale1) + + def get_fine_match_local(self, coords_normed, data, scale1): + W, WW, C, scale = self.W, self.WW, self.C, self.scale + + mkpts0_c, mkpts1_c = data['mkpts0_c'], data['mkpts1_c'] + + # mkpts0_f and mkpts1_f + mkpts0_f = mkpts0_c + mkpts1_f = mkpts1_c + (coords_normed * (3 // 2) * scale1) + + data.update({ + "mkpts0_f": mkpts0_f, + "mkpts1_f": mkpts1_f + }) + + @torch.no_grad() + def get_fine_ds_match(self, conf_matrix, data): + W, WW, C, scale = self.W, self.WW, self.C, self.scale + m, _, _ = conf_matrix.shape + + conf_matrix = conf_matrix.reshape(m, -1)[:len(data['mconf']),...] + val, idx = torch.max(conf_matrix, dim = -1) + idx = idx[:,None] + idx_l, idx_r = idx // WW, idx % WW + + data.update({'idx_l': idx_l, 'idx_r': idx_r}) + + if self.fp16: + grid = create_meshgrid(W, W, False, conf_matrix.device, dtype=torch.float16) - W // 2 + 0.5 # kornia >= 0.5.1 + else: + grid = create_meshgrid(W, W, False, conf_matrix.device) - W // 2 + 0.5 + grid = grid.reshape(1, -1, 2).expand(m, -1, -1) + delta_l = torch.gather(grid, 1, idx_l.unsqueeze(-1).expand(-1, -1, 2)) + delta_r = torch.gather(grid, 1, idx_r.unsqueeze(-1).expand(-1, -1, 2)) + + scale0 = scale * data['scale0'][data['b_ids']] if 'scale0' in data else scale + scale1 = scale * data['scale1'][data['b_ids']] if 'scale0' in data else scale + + if torch.is_tensor(scale0) and scale0.numel() > 1: # scale0 is a tensor + mkpts0_f = (data['mkpts0_c'][:,None,:] + (delta_l * scale0[:len(data['mconf']),...][:,None,:])).reshape(-1, 2) + mkpts1_f = (data['mkpts1_c'][:,None,:] + (delta_r * scale1[:len(data['mconf']),...][:,None,:])).reshape(-1, 2) + else: # scale0 is a float + mkpts0_f = (data['mkpts0_c'][:,None,:] + (delta_l * scale0)).reshape(-1, 2) + mkpts1_f = (data['mkpts1_c'][:,None,:] + (delta_r * scale1)).reshape(-1, 2) + + data.update({ + "mkpts0_c": mkpts0_f, + "mkpts1_c": mkpts1_f + }) \ No newline at end of file diff --git a/third_party/EfficientLoFTR/src/loftr/utils/full_config.py b/third_party/EfficientLoFTR/src/loftr/utils/full_config.py new file mode 100644 index 0000000000000000000000000000000000000000..ccf84b48f6693be4bf9306c8bd987d87a6f43792 --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/utils/full_config.py @@ -0,0 +1,50 @@ +from yacs.config import CfgNode as CN + + +def lower_config(yacs_cfg): + if not isinstance(yacs_cfg, CN): + return yacs_cfg + return {k.lower(): lower_config(v) for k, v in yacs_cfg.items()} + + +_CN = CN() +_CN.BACKBONE_TYPE = 'RepVGG' +_CN.ALIGN_CORNER = False +_CN.RESOLUTION = (8, 1) +_CN.FINE_WINDOW_SIZE = 8 # window_size in fine_level, must be even +_CN.MP = False +_CN.REPLACE_NAN = True +_CN.HALF = False + +# 1. LoFTR-backbone (local feature CNN) config +_CN.BACKBONE = CN() +_CN.BACKBONE.BLOCK_DIMS = [64, 128, 256] # s1, s2, s3 + +# 2. LoFTR-coarse module config +_CN.COARSE = CN() +_CN.COARSE.D_MODEL = 256 +_CN.COARSE.D_FFN = 256 +_CN.COARSE.NHEAD = 8 +_CN.COARSE.LAYER_NAMES = ['self', 'cross'] * 4 +_CN.COARSE.AGG_SIZE0 = 4 +_CN.COARSE.AGG_SIZE1 = 4 +_CN.COARSE.NO_FLASH = False +_CN.COARSE.ROPE = True +_CN.COARSE.NPE = [832, 832, 832, 832] # [832, 832, long_side, long_side] Suggest setting based on the long side of the input image, especially when the long_side > 832 + +# 3. Coarse-Matching config +_CN.MATCH_COARSE = CN() +_CN.MATCH_COARSE.THR = 0.2 # recommend 0.2 for full model and 25 for optimized model +_CN.MATCH_COARSE.BORDER_RM = 2 +_CN.MATCH_COARSE.DSMAX_TEMPERATURE = 0.1 +_CN.MATCH_COARSE.SKIP_SOFTMAX = False # False for full model and True for optimized model +_CN.MATCH_COARSE.FP16MATMUL = False # False for full model and True for optimized model +_CN.MATCH_COARSE.TRAIN_COARSE_PERCENT = 0.2 # training tricks: save GPU memory +_CN.MATCH_COARSE.TRAIN_PAD_NUM_GT_MIN = 200 # training tricks: avoid DDP deadlock + +# 4. Fine-Matching config +_CN.MATCH_FINE = CN() +_CN.MATCH_FINE.LOCAL_REGRESS_TEMPERATURE = 10.0 # use 10.0 as fine local regress temperature, not 1.0 +_CN.MATCH_FINE.LOCAL_REGRESS_SLICEDIM = 8 + +full_default_cfg = lower_config(_CN) diff --git a/third_party/EfficientLoFTR/src/loftr/utils/geometry.py b/third_party/EfficientLoFTR/src/loftr/utils/geometry.py new file mode 100644 index 0000000000000000000000000000000000000000..f95cdb65b48324c4f4ceb20231b1bed992b41116 --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/utils/geometry.py @@ -0,0 +1,54 @@ +import torch + + +@torch.no_grad() +def warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1): + """ Warp kpts0 from I0 to I1 with depth, K and Rt + Also check covisibility and depth consistency. + Depth is consistent if relative error < 0.2 (hard-coded). + + Args: + kpts0 (torch.Tensor): [N, L, 2] - , + depth0 (torch.Tensor): [N, H, W], + depth1 (torch.Tensor): [N, H, W], + T_0to1 (torch.Tensor): [N, 3, 4], + K0 (torch.Tensor): [N, 3, 3], + K1 (torch.Tensor): [N, 3, 3], + Returns: + calculable_mask (torch.Tensor): [N, L] + warped_keypoints0 (torch.Tensor): [N, L, 2] + """ + kpts0_long = kpts0.round().long() + + # Sample depth, get calculable_mask on depth != 0 + kpts0_depth = torch.stack( + [depth0[i, kpts0_long[i, :, 1], kpts0_long[i, :, 0]] for i in range(kpts0.shape[0])], dim=0 + ) # (N, L) + nonzero_mask = kpts0_depth != 0 + + # Unproject + kpts0_h = torch.cat([kpts0, torch.ones_like(kpts0[:, :, [0]])], dim=-1) * kpts0_depth[..., None] # (N, L, 3) + kpts0_cam = K0.inverse() @ kpts0_h.transpose(2, 1) # (N, 3, L) + + # Rigid Transform + w_kpts0_cam = T_0to1[:, :3, :3] @ kpts0_cam + T_0to1[:, :3, [3]] # (N, 3, L) + w_kpts0_depth_computed = w_kpts0_cam[:, 2, :] + + # Project + w_kpts0_h = (K1 @ w_kpts0_cam).transpose(2, 1) # (N, L, 3) + w_kpts0 = w_kpts0_h[:, :, :2] / (w_kpts0_h[:, :, [2]] + 1e-4) # (N, L, 2), +1e-4 to avoid zero depth + + # Covisible Check + h, w = depth1.shape[1:3] + covisible_mask = (w_kpts0[:, :, 0] > 0) * (w_kpts0[:, :, 0] < w-1) * \ + (w_kpts0[:, :, 1] > 0) * (w_kpts0[:, :, 1] < h-1) + w_kpts0_long = w_kpts0.long() + w_kpts0_long[~covisible_mask, :] = 0 + + w_kpts0_depth = torch.stack( + [depth1[i, w_kpts0_long[i, :, 1], w_kpts0_long[i, :, 0]] for i in range(w_kpts0_long.shape[0])], dim=0 + ) # (N, L) + consistent_mask = ((w_kpts0_depth - w_kpts0_depth_computed) / w_kpts0_depth).abs() < 0.2 + valid_mask = nonzero_mask * covisible_mask * consistent_mask + + return valid_mask, w_kpts0 diff --git a/third_party/EfficientLoFTR/src/loftr/utils/opt_config.py b/third_party/EfficientLoFTR/src/loftr/utils/opt_config.py new file mode 100644 index 0000000000000000000000000000000000000000..61b7fa1e88a72db226dbbbf3b47c2b4f40e7aff7 --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/utils/opt_config.py @@ -0,0 +1,50 @@ +from yacs.config import CfgNode as CN + + +def lower_config(yacs_cfg): + if not isinstance(yacs_cfg, CN): + return yacs_cfg + return {k.lower(): lower_config(v) for k, v in yacs_cfg.items()} + + +_CN = CN() +_CN.BACKBONE_TYPE = 'RepVGG' +_CN.ALIGN_CORNER = False +_CN.RESOLUTION = (8, 1) +_CN.FINE_WINDOW_SIZE = 8 # window_size in fine_level, must be even +_CN.MP = False +_CN.REPLACE_NAN = True +_CN.HALF = False + +# 1. LoFTR-backbone (local feature CNN) config +_CN.BACKBONE = CN() +_CN.BACKBONE.BLOCK_DIMS = [64, 128, 256] # s1, s2, s3 + +# 2. LoFTR-coarse module config +_CN.COARSE = CN() +_CN.COARSE.D_MODEL = 256 +_CN.COARSE.D_FFN = 256 +_CN.COARSE.NHEAD = 8 +_CN.COARSE.LAYER_NAMES = ['self', 'cross'] * 4 +_CN.COARSE.AGG_SIZE0 = 4 +_CN.COARSE.AGG_SIZE1 = 4 +_CN.COARSE.NO_FLASH = False +_CN.COARSE.ROPE = True +_CN.COARSE.NPE = [832, 832, 832, 832] # [832, 832, long_side, long_side] Suggest setting based on the long side of the input image, especially when the long_side > 832 + +# 3. Coarse-Matching config +_CN.MATCH_COARSE = CN() +_CN.MATCH_COARSE.THR = 25 # recommend 0.2 for full model and 25 for optimized model +_CN.MATCH_COARSE.BORDER_RM = 2 +_CN.MATCH_COARSE.DSMAX_TEMPERATURE = 0.1 +_CN.MATCH_COARSE.SKIP_SOFTMAX = True # False for full model and True for optimized model +_CN.MATCH_COARSE.FP16MATMUL = True # False for full model and True for optimized model +_CN.MATCH_COARSE.TRAIN_COARSE_PERCENT = 0.2 # training tricks: save GPU memory +_CN.MATCH_COARSE.TRAIN_PAD_NUM_GT_MIN = 200 # training tricks: avoid DDP deadlock + +# 4. Fine-Matching config +_CN.MATCH_FINE = CN() +_CN.MATCH_FINE.LOCAL_REGRESS_TEMPERATURE = 10.0 # use 10.0 as fine local regress temperature, not 1.0 +_CN.MATCH_FINE.LOCAL_REGRESS_SLICEDIM = 8 + +opt_default_cfg = lower_config(_CN) diff --git a/third_party/EfficientLoFTR/src/loftr/utils/position_encoding.py b/third_party/EfficientLoFTR/src/loftr/utils/position_encoding.py new file mode 100644 index 0000000000000000000000000000000000000000..6431d0e2ce468fad5b0f0f6838c2ae2e5c089b32 --- /dev/null +++ b/third_party/EfficientLoFTR/src/loftr/utils/position_encoding.py @@ -0,0 +1,50 @@ +import math +import torch +from torch import nn + +class RoPEPositionEncodingSine(nn.Module): + """ + This is a sinusoidal position encoding that generalized to 2-dimensional images + """ + + def __init__(self, d_model, max_shape=(256, 256), npe=None, ropefp16=True): + """ + Args: + max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels + """ + super().__init__() + + i_position = torch.ones(max_shape).cumsum(0).float().unsqueeze(-1) # [H, 1] + j_position = torch.ones(max_shape).cumsum(1).float().unsqueeze(-1) # [W, 1] + + assert npe is not None + train_res_H, train_res_W, test_res_H, test_res_W = npe[0], npe[1], npe[2], npe[3] # train_res_H, train_res_W, test_res_H, test_res_W + i_position, j_position = i_position * train_res_H / test_res_H, j_position * train_res_W / test_res_W + + div_term = torch.exp(torch.arange(0, d_model//4, 1).float() * (-math.log(10000.0) / (d_model//4))) + div_term = div_term[None, None, :] # [1, 1, C//4] + + sin = torch.zeros(*max_shape, d_model//2, dtype=torch.float16 if ropefp16 else torch.float32) + cos = torch.zeros(*max_shape, d_model//2, dtype=torch.float16 if ropefp16 else torch.float32) + sin[:, :, 0::2] = torch.sin(i_position * div_term).half() if ropefp16 else torch.sin(i_position * div_term) + sin[:, :, 1::2] = torch.sin(j_position * div_term).half() if ropefp16 else torch.sin(j_position * div_term) + cos[:, :, 0::2] = torch.cos(i_position * div_term).half() if ropefp16 else torch.cos(i_position * div_term) + cos[:, :, 1::2] = torch.cos(j_position * div_term).half() if ropefp16 else torch.cos(j_position * div_term) + + sin = sin.repeat_interleave(2, dim=-1) + cos = cos.repeat_interleave(2, dim=-1) + + self.register_buffer('sin', sin.unsqueeze(0), persistent=False) # [1, H, W, C//2] + self.register_buffer('cos', cos.unsqueeze(0), persistent=False) # [1, H, W, C//2] + + def forward(self, x, ratio=1): + """ + Args: + x: [N, H, W, C] + """ + return (x * self.cos[:, :x.size(1), :x.size(2), :]) + (self.rotate_half(x) * self.sin[:, :x.size(1), :x.size(2), :]) + + def rotate_half(self, x): + x = x.unflatten(-1, (-1, 2)) + x1, x2 = x.unbind(dim=-1) + return torch.stack((-x2, x1), dim=-1).flatten(start_dim=-2) \ No newline at end of file diff --git a/third_party/EfficientLoFTR/src/optimizers/__init__.py b/third_party/EfficientLoFTR/src/optimizers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e1db2285352586c250912bdd2c4ae5029620ab5f --- /dev/null +++ b/third_party/EfficientLoFTR/src/optimizers/__init__.py @@ -0,0 +1,42 @@ +import torch +from torch.optim.lr_scheduler import MultiStepLR, CosineAnnealingLR, ExponentialLR + + +def build_optimizer(model, config): + name = config.TRAINER.OPTIMIZER + lr = config.TRAINER.TRUE_LR + + if name == "adam": + return torch.optim.Adam(model.parameters(), lr=lr, weight_decay=config.TRAINER.ADAM_DECAY) + elif name == "adamw": + return torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=config.TRAINER.ADAMW_DECAY) + else: + raise ValueError(f"TRAINER.OPTIMIZER = {name} is not a valid optimizer!") + + +def build_scheduler(config, optimizer): + """ + Returns: + scheduler (dict):{ + 'scheduler': lr_scheduler, + 'interval': 'step', # or 'epoch' + 'monitor': 'val_f1', (optional) + 'frequency': x, (optional) + } + """ + scheduler = {'interval': config.TRAINER.SCHEDULER_INTERVAL} + name = config.TRAINER.SCHEDULER + + if name == 'MultiStepLR': + scheduler.update( + {'scheduler': MultiStepLR(optimizer, config.TRAINER.MSLR_MILESTONES, gamma=config.TRAINER.MSLR_GAMMA)}) + elif name == 'CosineAnnealing': + scheduler.update( + {'scheduler': CosineAnnealingLR(optimizer, config.TRAINER.COSA_TMAX)}) + elif name == 'ExponentialLR': + scheduler.update( + {'scheduler': ExponentialLR(optimizer, config.TRAINER.ELR_GAMMA)}) + else: + raise NotImplementedError() + + return scheduler diff --git a/third_party/EfficientLoFTR/src/utils/augment.py b/third_party/EfficientLoFTR/src/utils/augment.py new file mode 100644 index 0000000000000000000000000000000000000000..d7c5d3e11b6fe083aaeff7555bb7ce3a4bfb755d --- /dev/null +++ b/third_party/EfficientLoFTR/src/utils/augment.py @@ -0,0 +1,55 @@ +import albumentations as A + + +class DarkAug(object): + """ + Extreme dark augmentation aiming at Aachen Day-Night + """ + + def __init__(self) -> None: + self.augmentor = A.Compose([ + A.RandomBrightnessContrast(p=0.75, brightness_limit=(-0.6, 0.0), contrast_limit=(-0.5, 0.3)), + A.Blur(p=0.1, blur_limit=(3, 9)), + A.MotionBlur(p=0.2, blur_limit=(3, 25)), + A.RandomGamma(p=0.1, gamma_limit=(15, 65)), + A.HueSaturationValue(p=0.1, val_shift_limit=(-100, -40)) + ], p=0.75) + + def __call__(self, x): + return self.augmentor(image=x)['image'] + + +class MobileAug(object): + """ + Random augmentations aiming at images of mobile/handhold devices. + """ + + def __init__(self): + self.augmentor = A.Compose([ + A.MotionBlur(p=0.25), + A.ColorJitter(p=0.5), + A.RandomRain(p=0.1), # random occlusion + A.RandomSunFlare(p=0.1), + A.JpegCompression(p=0.25), + A.ISONoise(p=0.25) + ], p=1.0) + + def __call__(self, x): + return self.augmentor(image=x)['image'] + + +def build_augmentor(method=None, **kwargs): + if method is not None: + raise NotImplementedError('Using of augmentation functions are not supported yet!') + if method == 'dark': + return DarkAug() + elif method == 'mobile': + return MobileAug() + elif method is None: + return None + else: + raise ValueError(f'Invalid augmentation method: {method}') + + +if __name__ == '__main__': + augmentor = build_augmentor('FDA') diff --git a/third_party/EfficientLoFTR/src/utils/comm.py b/third_party/EfficientLoFTR/src/utils/comm.py new file mode 100644 index 0000000000000000000000000000000000000000..26ec9517cc47e224430106d8ae9aa99a3fe49167 --- /dev/null +++ b/third_party/EfficientLoFTR/src/utils/comm.py @@ -0,0 +1,265 @@ +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved +""" +[Copied from detectron2] +This file contains primitives for multi-gpu communication. +This is useful when doing distributed training. +""" + +import functools +import logging +import numpy as np +import pickle +import torch +import torch.distributed as dist + +_LOCAL_PROCESS_GROUP = None +""" +A torch process group which only includes processes that on the same machine as the current process. +This variable is set when processes are spawned by `launch()` in "engine/launch.py". +""" + + +def get_world_size() -> int: + if not dist.is_available(): + return 1 + if not dist.is_initialized(): + return 1 + return dist.get_world_size() + + +def get_rank() -> int: + if not dist.is_available(): + return 0 + if not dist.is_initialized(): + return 0 + return dist.get_rank() + + +def get_local_rank() -> int: + """ + Returns: + The rank of the current process within the local (per-machine) process group. + """ + if not dist.is_available(): + return 0 + if not dist.is_initialized(): + return 0 + assert _LOCAL_PROCESS_GROUP is not None + return dist.get_rank(group=_LOCAL_PROCESS_GROUP) + + +def get_local_size() -> int: + """ + Returns: + The size of the per-machine process group, + i.e. the number of processes per machine. + """ + if not dist.is_available(): + return 1 + if not dist.is_initialized(): + return 1 + return dist.get_world_size(group=_LOCAL_PROCESS_GROUP) + + +def is_main_process() -> bool: + return get_rank() == 0 + + +def synchronize(): + """ + Helper function to synchronize (barrier) among all processes when + using distributed training + """ + if not dist.is_available(): + return + if not dist.is_initialized(): + return + world_size = dist.get_world_size() + if world_size == 1: + return + dist.barrier() + + +@functools.lru_cache() +def _get_global_gloo_group(): + """ + Return a process group based on gloo backend, containing all the ranks + The result is cached. + """ + if dist.get_backend() == "nccl": + return dist.new_group(backend="gloo") + else: + return dist.group.WORLD + + +def _serialize_to_tensor(data, group): + backend = dist.get_backend(group) + assert backend in ["gloo", "nccl"] + device = torch.device("cpu" if backend == "gloo" else "cuda") + + buffer = pickle.dumps(data) + if len(buffer) > 1024 ** 3: + logger = logging.getLogger(__name__) + logger.warning( + "Rank {} trying to all-gather {:.2f} GB of data on device {}".format( + get_rank(), len(buffer) / (1024 ** 3), device + ) + ) + storage = torch.ByteStorage.from_buffer(buffer) + tensor = torch.ByteTensor(storage).to(device=device) + return tensor + + +def _pad_to_largest_tensor(tensor, group): + """ + Returns: + list[int]: size of the tensor, on each rank + Tensor: padded tensor that has the max size + """ + world_size = dist.get_world_size(group=group) + assert ( + world_size >= 1 + ), "comm.gather/all_gather must be called from ranks within the given group!" + local_size = torch.tensor([tensor.numel()], dtype=torch.int64, device=tensor.device) + size_list = [ + torch.zeros([1], dtype=torch.int64, device=tensor.device) for _ in range(world_size) + ] + dist.all_gather(size_list, local_size, group=group) + + size_list = [int(size.item()) for size in size_list] + + max_size = max(size_list) + + # we pad the tensor because torch all_gather does not support + # gathering tensors of different shapes + if local_size != max_size: + padding = torch.zeros((max_size - local_size,), dtype=torch.uint8, device=tensor.device) + tensor = torch.cat((tensor, padding), dim=0) + return size_list, tensor + + +def all_gather(data, group=None): + """ + Run all_gather on arbitrary picklable data (not necessarily tensors). + + Args: + data: any picklable object + group: a torch process group. By default, will use a group which + contains all ranks on gloo backend. + + Returns: + list[data]: list of data gathered from each rank + """ + if get_world_size() == 1: + return [data] + if group is None: + group = _get_global_gloo_group() + if dist.get_world_size(group) == 1: + return [data] + + tensor = _serialize_to_tensor(data, group) + + size_list, tensor = _pad_to_largest_tensor(tensor, group) + max_size = max(size_list) + + # receiving Tensor from all ranks + tensor_list = [ + torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list + ] + dist.all_gather(tensor_list, tensor, group=group) + + data_list = [] + for size, tensor in zip(size_list, tensor_list): + buffer = tensor.cpu().numpy().tobytes()[:size] + data_list.append(pickle.loads(buffer)) + + return data_list + + +def gather(data, dst=0, group=None): + """ + Run gather on arbitrary picklable data (not necessarily tensors). + + Args: + data: any picklable object + dst (int): destination rank + group: a torch process group. By default, will use a group which + contains all ranks on gloo backend. + + Returns: + list[data]: on dst, a list of data gathered from each rank. Otherwise, + an empty list. + """ + if get_world_size() == 1: + return [data] + if group is None: + group = _get_global_gloo_group() + if dist.get_world_size(group=group) == 1: + return [data] + rank = dist.get_rank(group=group) + + tensor = _serialize_to_tensor(data, group) + size_list, tensor = _pad_to_largest_tensor(tensor, group) + + # receiving Tensor from all ranks + if rank == dst: + max_size = max(size_list) + tensor_list = [ + torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list + ] + dist.gather(tensor, tensor_list, dst=dst, group=group) + + data_list = [] + for size, tensor in zip(size_list, tensor_list): + buffer = tensor.cpu().numpy().tobytes()[:size] + data_list.append(pickle.loads(buffer)) + return data_list + else: + dist.gather(tensor, [], dst=dst, group=group) + return [] + + +def shared_random_seed(): + """ + Returns: + int: a random number that is the same across all workers. + If workers need a shared RNG, they can use this shared seed to + create one. + + All workers must call this function, otherwise it will deadlock. + """ + ints = np.random.randint(2 ** 31) + all_ints = all_gather(ints) + return all_ints[0] + + +def reduce_dict(input_dict, average=True): + """ + Reduce the values in the dictionary from all processes so that process with rank + 0 has the reduced results. + + Args: + input_dict (dict): inputs to be reduced. All the values must be scalar CUDA Tensor. + average (bool): whether to do average or sum + + Returns: + a dict with the same keys as input_dict, after reduction. + """ + world_size = get_world_size() + if world_size < 2: + return input_dict + with torch.no_grad(): + names = [] + values = [] + # sort the keys so that they are consistent across processes + for k in sorted(input_dict.keys()): + names.append(k) + values.append(input_dict[k]) + values = torch.stack(values, dim=0) + dist.reduce(values, dst=0) + if dist.get_rank() == 0 and average: + # only main process gets accumulated, so only divide by + # world_size in this case + values /= world_size + reduced_dict = {k: v for k, v in zip(names, values)} + return reduced_dict diff --git a/third_party/EfficientLoFTR/src/utils/dataloader.py b/third_party/EfficientLoFTR/src/utils/dataloader.py new file mode 100644 index 0000000000000000000000000000000000000000..6da37b880a290c2bb3ebb028d0c8dab592acc5c1 --- /dev/null +++ b/third_party/EfficientLoFTR/src/utils/dataloader.py @@ -0,0 +1,23 @@ +import numpy as np + + +# --- PL-DATAMODULE --- + +def get_local_split(items: list, world_size: int, rank: int, seed: int): + """ The local rank only loads a split of the dataset. """ + n_items = len(items) + items_permute = np.random.RandomState(seed).permutation(items) + if n_items % world_size == 0: + padded_items = items_permute + else: + padding = np.random.RandomState(seed).choice( + items, + world_size - (n_items % world_size), + replace=True) + padded_items = np.concatenate([items_permute, padding]) + assert len(padded_items) % world_size == 0, \ + f'len(padded_items): {len(padded_items)}; world_size: {world_size}; len(padding): {len(padding)}' + n_per_rank = len(padded_items) // world_size + local_items = padded_items[n_per_rank * rank: n_per_rank * (rank+1)] + + return local_items diff --git a/third_party/EfficientLoFTR/src/utils/dataset.py b/third_party/EfficientLoFTR/src/utils/dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..37831292d08b5e9f13eeb0dee64ae8882f52a63f --- /dev/null +++ b/third_party/EfficientLoFTR/src/utils/dataset.py @@ -0,0 +1,186 @@ +import io +from loguru import logger + +import cv2 +import numpy as np +import h5py +import torch +from numpy.linalg import inv + + +try: + # for internel use only + from .client import MEGADEPTH_CLIENT, SCANNET_CLIENT +except Exception: + MEGADEPTH_CLIENT = SCANNET_CLIENT = None + +# --- DATA IO --- + +def load_array_from_s3( + path, client, cv_type, + use_h5py=False, +): + byte_str = client.Get(path) + try: + if not use_h5py: + raw_array = np.fromstring(byte_str, np.uint8) + data = cv2.imdecode(raw_array, cv_type) + else: + f = io.BytesIO(byte_str) + data = np.array(h5py.File(f, 'r')['/depth']) + except Exception as ex: + print(f"==> Data loading failure: {path}") + raise ex + + assert data is not None + return data + + +def imread_gray(path, augment_fn=None, client=SCANNET_CLIENT): + cv_type = cv2.IMREAD_GRAYSCALE if augment_fn is None \ + else cv2.IMREAD_COLOR + if str(path).startswith('s3://'): + image = load_array_from_s3(str(path), client, cv_type) + else: + image = cv2.imread(str(path), cv_type) + + if augment_fn is not None: + image = cv2.imread(str(path), cv2.IMREAD_COLOR) + image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) + image = augment_fn(image) + image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) + return image # (h, w) + + +def get_resized_wh(w, h, resize=None): + if resize is not None: # resize the longer edge + scale = resize / max(h, w) + w_new, h_new = int(round(w*scale)), int(round(h*scale)) + else: + w_new, h_new = w, h + return w_new, h_new + + +def get_divisible_wh(w, h, df=None): + if df is not None: + w_new, h_new = map(lambda x: int(x // df * df), [w, h]) + else: + w_new, h_new = w, h + return w_new, h_new + + +def pad_bottom_right(inp, pad_size, ret_mask=False): + assert isinstance(pad_size, int) and pad_size >= max(inp.shape[-2:]), f"{pad_size} < {max(inp.shape[-2:])}" + mask = None + if inp.ndim == 2: + padded = np.zeros((pad_size, pad_size), dtype=inp.dtype) + padded[:inp.shape[0], :inp.shape[1]] = inp + if ret_mask: + mask = np.zeros((pad_size, pad_size), dtype=bool) + mask[:inp.shape[0], :inp.shape[1]] = True + elif inp.ndim == 3: + padded = np.zeros((inp.shape[0], pad_size, pad_size), dtype=inp.dtype) + padded[:, :inp.shape[1], :inp.shape[2]] = inp + if ret_mask: + mask = np.zeros((inp.shape[0], pad_size, pad_size), dtype=bool) + mask[:, :inp.shape[1], :inp.shape[2]] = True + else: + raise NotImplementedError() + return padded, mask + + +# --- MEGADEPTH --- + +def read_megadepth_gray(path, resize=None, df=None, padding=False, augment_fn=None): + """ + Args: + resize (int, optional): the longer edge of resized images. None for no resize. + padding (bool): If set to 'True', zero-pad resized images to squared size. + augment_fn (callable, optional): augments images with pre-defined visual effects + Returns: + image (torch.tensor): (1, h, w) + mask (torch.tensor): (h, w) + scale (torch.tensor): [w/w_new, h/h_new] + """ + # read image + image = imread_gray(path, augment_fn, client=MEGADEPTH_CLIENT) + + # resize image + w, h = image.shape[1], image.shape[0] + w_new, h_new = get_resized_wh(w, h, resize) + w_new, h_new = get_divisible_wh(w_new, h_new, df) + + image = cv2.resize(image, (w_new, h_new)) + scale = torch.tensor([w/w_new, h/h_new], dtype=torch.float) + + if padding: # padding + pad_to = max(h_new, w_new) + image, mask = pad_bottom_right(image, pad_to, ret_mask=True) + else: + mask = None + + image = torch.from_numpy(image).float()[None] / 255 # (h, w) -> (1, h, w) and normalized + if mask is not None: + mask = torch.from_numpy(mask) + + return image, mask, scale + + +def read_megadepth_depth(path, pad_to=None): + if str(path).startswith('s3://'): + depth = load_array_from_s3(path, MEGADEPTH_CLIENT, None, use_h5py=True) + else: + depth = np.array(h5py.File(path, 'r')['depth']) + if pad_to is not None: + depth, _ = pad_bottom_right(depth, pad_to, ret_mask=False) + depth = torch.from_numpy(depth).float() # (h, w) + return depth + + +# --- ScanNet --- + +def read_scannet_gray(path, resize=(640, 480), augment_fn=None): + """ + Args: + resize (tuple): align image to depthmap, in (w, h). + augment_fn (callable, optional): augments images with pre-defined visual effects + Returns: + image (torch.tensor): (1, h, w) + mask (torch.tensor): (h, w) + scale (torch.tensor): [w/w_new, h/h_new] + """ + # read and resize image + image = imread_gray(path, augment_fn) + image = cv2.resize(image, resize) + + # (h, w) -> (1, h, w) and normalized + image = torch.from_numpy(image).float()[None] / 255 + return image + + +def read_scannet_depth(path): + if str(path).startswith('s3://'): + depth = load_array_from_s3(str(path), SCANNET_CLIENT, cv2.IMREAD_UNCHANGED) + else: + depth = cv2.imread(str(path), cv2.IMREAD_UNCHANGED) + depth = depth / 1000 + depth = torch.from_numpy(depth).float() # (h, w) + return depth + + +def read_scannet_pose(path): + """ Read ScanNet's Camera2World pose and transform it to World2Camera. + + Returns: + pose_w2c (np.ndarray): (4, 4) + """ + cam2world = np.loadtxt(path, delimiter=' ') + world2cam = inv(cam2world) + return world2cam + + +def read_scannet_intrinsic(path): + """ Read ScanNet's intrinsic matrix and return the 3x3 matrix. + """ + intrinsic = np.loadtxt(path, delimiter=' ') + return intrinsic[:-1, :-1] diff --git a/third_party/EfficientLoFTR/src/utils/metrics.py b/third_party/EfficientLoFTR/src/utils/metrics.py new file mode 100644 index 0000000000000000000000000000000000000000..1cc37896f363567d1f91d630def7bb717569a4ed --- /dev/null +++ b/third_party/EfficientLoFTR/src/utils/metrics.py @@ -0,0 +1,264 @@ +import torch +import cv2 +import numpy as np +from collections import OrderedDict +from loguru import logger +from kornia.geometry.epipolar import numeric +from kornia.geometry.conversions import convert_points_to_homogeneous +import pprint + + +# --- METRICS --- + +def relative_pose_error(T_0to1, R, t, ignore_gt_t_thr=0.0): + # angle error between 2 vectors + t_gt = T_0to1[:3, 3] + n = np.linalg.norm(t) * np.linalg.norm(t_gt) + t_err = np.rad2deg(np.arccos(np.clip(np.dot(t, t_gt) / n, -1.0, 1.0))) + t_err = np.minimum(t_err, 180 - t_err) # handle E ambiguity + if np.linalg.norm(t_gt) < ignore_gt_t_thr: # pure rotation is challenging + t_err = 0 + + # angle error between 2 rotation matrices + R_gt = T_0to1[:3, :3] + cos = (np.trace(np.dot(R.T, R_gt)) - 1) / 2 + cos = np.clip(cos, -1., 1.) # handle numercial errors + R_err = np.rad2deg(np.abs(np.arccos(cos))) + + return t_err, R_err + + +def symmetric_epipolar_distance(pts0, pts1, E, K0, K1): + """Squared symmetric epipolar distance. + This can be seen as a biased estimation of the reprojection error. + Args: + pts0 (torch.Tensor): [N, 2] + E (torch.Tensor): [3, 3] + """ + pts0 = (pts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None] + pts1 = (pts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None] + pts0 = convert_points_to_homogeneous(pts0) + pts1 = convert_points_to_homogeneous(pts1) + + Ep0 = pts0 @ E.T # [N, 3] + p1Ep0 = torch.sum(pts1 * Ep0, -1) # [N,] + Etp1 = pts1 @ E # [N, 3] + + d = p1Ep0**2 * (1.0 / (Ep0[:, 0]**2 + Ep0[:, 1]**2) + 1.0 / (Etp1[:, 0]**2 + Etp1[:, 1]**2)) # N + return d + + +def compute_symmetrical_epipolar_errors(data): + """ + Update: + data (dict):{"epi_errs": [M]} + """ + Tx = numeric.cross_product_matrix(data['T_0to1'][:, :3, 3]) + E_mat = Tx @ data['T_0to1'][:, :3, :3] + + m_bids = data['m_bids'] + pts0 = data['mkpts0_f'] + pts1 = data['mkpts1_f'] + + epi_errs = [] + for bs in range(Tx.size(0)): + mask = m_bids == bs + epi_errs.append( + symmetric_epipolar_distance(pts0[mask], pts1[mask], E_mat[bs], data['K0'][bs], data['K1'][bs])) + epi_errs = torch.cat(epi_errs, dim=0) + + data.update({'epi_errs': epi_errs}) + + +def estimate_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999): + if len(kpts0) < 5: + return None + # normalize keypoints + kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None] + kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None] + + # normalize ransac threshold + ransac_thr = thresh / np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]]) + + # compute pose with cv2 + E, mask = cv2.findEssentialMat( + kpts0, kpts1, np.eye(3), threshold=ransac_thr, prob=conf, method=cv2.RANSAC) + if E is None: + print("\nE is None while trying to recover pose.\n") + return None + + # recover pose from E + best_num_inliers = 0 + ret = None + for _E in np.split(E, len(E) / 3): + n, R, t, _ = cv2.recoverPose(_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask) + if n > best_num_inliers: + ret = (R, t[:, 0], mask.ravel() > 0) + best_num_inliers = n + + return ret + + +def estimate_lo_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999): + from .warppers import Camera, Pose + import poselib + camera0, camera1 = Camera.from_calibration_matrix(K0).float(), Camera.from_calibration_matrix(K1).float() + pts0, pts1 = kpts0, kpts1 + + M, info = poselib.estimate_relative_pose( + pts0, + pts1, + camera0.to_cameradict(), + camera1.to_cameradict(), + { + "max_epipolar_error": thresh, + }, + ) + success = M is not None and ( ((M.t != [0., 0., 0.]).all()) or ((M.q != [1., 0., 0., 0.]).all()) ) + if success: + M = Pose.from_Rt(torch.tensor(M.R), torch.tensor(M.t)) # .to(pts0) + # print(M) + else: + M = Pose.from_4x4mat(torch.eye(4).numpy()) # .to(pts0) + # print(M) + + estimation = { + "success": success, + "M_0to1": M, + "inliers": torch.tensor(info.pop("inliers")), # .to(pts0), + **info, + } + return estimation + + +def compute_pose_errors(data, config): + """ + Update: + data (dict):{ + "R_errs" List[float]: [N] + "t_errs" List[float]: [N] + "inliers" List[np.ndarray]: [N] + } + """ + pixel_thr = config.TRAINER.RANSAC_PIXEL_THR # 0.5 + conf = config.TRAINER.RANSAC_CONF # 0.99999 + RANSAC = config.TRAINER.POSE_ESTIMATION_METHOD + data.update({'R_errs': [], 't_errs': [], 'inliers': []}) + + m_bids = data['m_bids'].cpu().numpy() + pts0 = data['mkpts0_f'].cpu().numpy() + pts1 = data['mkpts1_f'].cpu().numpy() + K0 = data['K0'].cpu().numpy() + K1 = data['K1'].cpu().numpy() + T_0to1 = data['T_0to1'].cpu().numpy() + + for bs in range(K0.shape[0]): + mask = m_bids == bs + if config.LOFTR.EVAL_TIMES >= 1: + bpts0, bpts1 = pts0[mask], pts1[mask] + R_list, T_list, inliers_list = [], [], [] + # for _ in range(config.LOFTR.EVAL_TIMES): + for _ in range(5): + shuffling = np.random.permutation(np.arange(len(bpts0))) + if _ >= config.LOFTR.EVAL_TIMES: + continue + bpts0 = bpts0[shuffling] + bpts1 = bpts1[shuffling] + + if RANSAC == 'RANSAC': + ret = estimate_pose(bpts0, bpts1, K0[bs], K1[bs], pixel_thr, conf=conf) + if ret is None: + R_list.append(np.inf) + T_list.append(np.inf) + inliers_list.append(np.array([]).astype(bool)) + else: + R, t, inliers = ret + t_err, R_err = relative_pose_error(T_0to1[bs], R, t, ignore_gt_t_thr=0.0) + R_list.append(R_err) + T_list.append(t_err) + inliers_list.append(inliers) + + elif RANSAC == 'LO-RANSAC': + est = estimate_lo_pose(bpts0, bpts1, K0[bs], K1[bs], pixel_thr, conf=conf) + if not est["success"]: + R_list.append(90) + T_list.append(90) + inliers_list.append(np.array([]).astype(bool)) + else: + M = est["M_0to1"] + inl = est["inliers"].numpy() + t_error, r_error = relative_pose_error(T_0to1[bs], M.R, M.t, ignore_gt_t_thr=0.0) + R_list.append(r_error) + T_list.append(t_error) + inliers_list.append(inl) + else: + raise ValueError(f"Unknown RANSAC method: {RANSAC}") + + data['R_errs'].append(R_list) + data['t_errs'].append(T_list) + data['inliers'].append(inliers_list[0]) + + +# --- METRIC AGGREGATION --- + +def error_auc(errors, thresholds): + """ + Args: + errors (list): [N,] + thresholds (list) + """ + errors = [0] + sorted(list(errors)) + recall = list(np.linspace(0, 1, len(errors))) + + aucs = [] + thresholds = [5, 10, 20] + for thr in thresholds: + last_index = np.searchsorted(errors, thr) + y = recall[:last_index] + [recall[last_index-1]] + x = errors[:last_index] + [thr] + aucs.append(np.trapz(y, x) / thr) + + return {f'auc@{t}': auc for t, auc in zip(thresholds, aucs)} + + +def epidist_prec(errors, thresholds, ret_dict=False): + precs = [] + for thr in thresholds: + prec_ = [] + for errs in errors: + correct_mask = errs < thr + prec_.append(np.mean(correct_mask) if len(correct_mask) > 0 else 0) + precs.append(np.mean(prec_) if len(prec_) > 0 else 0) + if ret_dict: + return {f'prec@{t:.0e}': prec for t, prec in zip(thresholds, precs)} + else: + return precs + + +def aggregate_metrics(metrics, epi_err_thr=5e-4, config=None): + """ Aggregate metrics for the whole dataset: + (This method should be called once per dataset) + 1. AUC of the pose error (angular) at the threshold [5, 10, 20] + 2. Mean matching precision at the threshold 5e-4(ScanNet), 1e-4(MegaDepth) + """ + # filter duplicates + unq_ids = OrderedDict((iden, id) for id, iden in enumerate(metrics['identifiers'])) + unq_ids = list(unq_ids.values()) + logger.info(f'Aggregating metrics over {len(unq_ids)} unique items...') + + # pose auc + angular_thresholds = [5, 10, 20] + + if config.LOFTR.EVAL_TIMES >= 1: + pose_errors = np.max(np.stack([metrics['R_errs'], metrics['t_errs']]), axis=0).reshape(-1, config.LOFTR.EVAL_TIMES)[unq_ids].reshape(-1) + else: + pose_errors = np.max(np.stack([metrics['R_errs'], metrics['t_errs']]), axis=0)[unq_ids] + aucs = error_auc(pose_errors, angular_thresholds) # (auc@5, auc@10, auc@20) + + # matching precision + dist_thresholds = [epi_err_thr] + precs = epidist_prec(np.array(metrics['epi_errs'], dtype=object)[unq_ids], dist_thresholds, True) # (prec@err_thr) + + u_num_mathces = np.array(metrics['num_matches'], dtype=object)[unq_ids] + num_matches = {f'num_matches': u_num_mathces.mean() } + return {**aucs, **precs, **num_matches} diff --git a/third_party/EfficientLoFTR/src/utils/misc.py b/third_party/EfficientLoFTR/src/utils/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..604b9bc93e0fb92a9750fe72f3d692edc84207b5 --- /dev/null +++ b/third_party/EfficientLoFTR/src/utils/misc.py @@ -0,0 +1,106 @@ +import os +import contextlib +import joblib +from typing import Union +from loguru import _Logger, logger +from itertools import chain + +import torch +from yacs.config import CfgNode as CN +from pytorch_lightning.utilities import rank_zero_only + + +def lower_config(yacs_cfg): + if not isinstance(yacs_cfg, CN): + return yacs_cfg + return {k.lower(): lower_config(v) for k, v in yacs_cfg.items()} + + +def upper_config(dict_cfg): + if not isinstance(dict_cfg, dict): + return dict_cfg + return {k.upper(): upper_config(v) for k, v in dict_cfg.items()} + + +def log_on(condition, message, level): + if condition: + assert level in ['INFO', 'DEBUG', 'WARNING', 'ERROR', 'CRITICAL'] + logger.log(level, message) + + +def get_rank_zero_only_logger(logger: _Logger): + if rank_zero_only.rank == 0: + return logger + else: + for _level in logger._core.levels.keys(): + level = _level.lower() + setattr(logger, level, + lambda x: None) + logger._log = lambda x: None + return logger + + +def setup_gpus(gpus: Union[str, int]) -> int: + """ A temporary fix for pytorch-lighting 1.3.x """ + gpus = str(gpus) + gpu_ids = [] + + if ',' not in gpus: + n_gpus = int(gpus) + return n_gpus if n_gpus != -1 else torch.cuda.device_count() + else: + gpu_ids = [i.strip() for i in gpus.split(',') if i != ''] + + # setup environment variables + visible_devices = os.getenv('CUDA_VISIBLE_DEVICES') + if visible_devices is None: + os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" + os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(i) for i in gpu_ids) + visible_devices = os.getenv('CUDA_VISIBLE_DEVICES') + logger.warning(f'[Temporary Fix] manually set CUDA_VISIBLE_DEVICES when specifying gpus to use: {visible_devices}') + else: + logger.warning('[Temporary Fix] CUDA_VISIBLE_DEVICES already set by user or the main process.') + return len(gpu_ids) + + +def flattenList(x): + return list(chain(*x)) + + +@contextlib.contextmanager +def tqdm_joblib(tqdm_object): + """Context manager to patch joblib to report into tqdm progress bar given as argument + + Usage: + with tqdm_joblib(tqdm(desc="My calculation", total=10)) as progress_bar: + Parallel(n_jobs=16)(delayed(sqrt)(i**2) for i in range(10)) + + When iterating over a generator, directly use of tqdm is also a solutin (but monitor the task queuing, instead of finishing) + ret_vals = Parallel(n_jobs=args.world_size)( + delayed(lambda x: _compute_cov_score(pid, *x))(param) + for param in tqdm(combinations(image_ids, 2), + desc=f'Computing cov_score of [{pid}]', + total=len(image_ids)*(len(image_ids)-1)/2)) + Src: https://stackoverflow.com/a/58936697 + """ + class TqdmBatchCompletionCallback(joblib.parallel.BatchCompletionCallBack): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def __call__(self, *args, **kwargs): + tqdm_object.update(n=self.batch_size) + return super().__call__(*args, **kwargs) + + old_batch_callback = joblib.parallel.BatchCompletionCallBack + joblib.parallel.BatchCompletionCallBack = TqdmBatchCompletionCallback + try: + yield tqdm_object + finally: + joblib.parallel.BatchCompletionCallBack = old_batch_callback + tqdm_object.close() + +def detect_NaN(feat_0, feat_1): + logger.info(f'NaN detected in feature') + logger.info(f"#NaN in feat_0: {torch.isnan(feat_0).int().sum()}, #NaN in feat_1: {torch.isnan(feat_1).int().sum()}") + feat_0[torch.isnan(feat_0)] = 0 + feat_1[torch.isnan(feat_1)] = 0 diff --git a/third_party/EfficientLoFTR/src/utils/plotting.py b/third_party/EfficientLoFTR/src/utils/plotting.py new file mode 100644 index 0000000000000000000000000000000000000000..9d4260c7487cfbc76dda94c589957601cea972d4 --- /dev/null +++ b/third_party/EfficientLoFTR/src/utils/plotting.py @@ -0,0 +1,154 @@ +import bisect +import numpy as np +import matplotlib.pyplot as plt +import matplotlib + +import torch + +def _compute_conf_thresh(data): + dataset_name = data['dataset_name'][0].lower() + if dataset_name == 'scannet': + thr = 5e-4 + elif dataset_name == 'megadepth': + thr = 1e-4 + else: + raise ValueError(f'Unknown dataset: {dataset_name}') + return thr + + +# --- VISUALIZATION --- # + +def make_matching_figure( + img0, img1, mkpts0, mkpts1, color, + kpts0=None, kpts1=None, text=[], dpi=75, path=None): + # draw image pair + assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}' + fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi) + axes[0].imshow(img0, cmap='gray') + axes[1].imshow(img1, cmap='gray') + for i in range(2): # clear all frames + axes[i].get_yaxis().set_ticks([]) + axes[i].get_xaxis().set_ticks([]) + for spine in axes[i].spines.values(): + spine.set_visible(False) + plt.tight_layout(pad=1) + + if kpts0 is not None: + assert kpts1 is not None + axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c='w', s=2) + axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c='w', s=2) + + # draw matches + if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0: + fig.canvas.draw() + transFigure = fig.transFigure.inverted() + fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0)) + fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1)) + fig.lines = [matplotlib.lines.Line2D((fkpts0[i, 0], fkpts1[i, 0]), + (fkpts0[i, 1], fkpts1[i, 1]), + transform=fig.transFigure, c=color[i], linewidth=1) + for i in range(len(mkpts0))] + + axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color, s=4) + axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color, s=4) + + # put txts + txt_color = 'k' if img0[:100, :200].mean() > 200 else 'w' + fig.text( + 0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes, + fontsize=15, va='top', ha='left', color=txt_color) + + # save or return figure + if path: + plt.savefig(str(path), bbox_inches='tight', pad_inches=0) + plt.close() + else: + return fig + + +def _make_evaluation_figure(data, b_id, alpha='dynamic'): + b_mask = data['m_bids'] == b_id + conf_thr = _compute_conf_thresh(data) + + img0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.int32) + img1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.int32) + kpts0 = data['mkpts0_f'][b_mask].cpu().numpy() + kpts1 = data['mkpts1_f'][b_mask].cpu().numpy() + + # for megadepth, we visualize matches on the resized image + if 'scale0' in data: + kpts0 = kpts0 / data['scale0'][b_id].cpu().numpy()[[1, 0]] + kpts1 = kpts1 / data['scale1'][b_id].cpu().numpy()[[1, 0]] + + epi_errs = data['epi_errs'][b_mask].cpu().numpy() + correct_mask = epi_errs < conf_thr + precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0 + n_correct = np.sum(correct_mask) + n_gt_matches = int(data['conf_matrix_gt'][b_id].sum().cpu()) + recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches) + # recall might be larger than 1, since the calculation of conf_matrix_gt + # uses groundtruth depths and camera poses, but epipolar distance is used here. + + # matching info + if alpha == 'dynamic': + alpha = dynamic_alpha(len(correct_mask)) + color = error_colormap(epi_errs, conf_thr, alpha=alpha) + + text = [ + f'#Matches {len(kpts0)}', + f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}', + f'Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}' + ] + + # make the figure + figure = make_matching_figure(img0, img1, kpts0, kpts1, + color, text=text) + return figure + +def _make_confidence_figure(data, b_id): + # TODO: Implement confidence figure + raise NotImplementedError() + +def make_matching_figures(data, config, mode='evaluation'): + """ Make matching figures for a batch. + + Args: + data (Dict): a batch updated by PL_LoFTR. + config (Dict): matcher config + Returns: + figures (Dict[str, List[plt.figure]] + """ + assert mode in ['evaluation', 'confidence', 'gt'] # 'confidence' + figures = {mode: []} + for b_id in range(data['image0'].size(0)): + if mode == 'evaluation': + fig = _make_evaluation_figure( + data, b_id, + alpha=config.TRAINER.PLOT_MATCHES_ALPHA) + elif mode == 'confidence': + fig = _make_confidence_figure(data, b_id) + else: + raise ValueError(f'Unknown plot mode: {mode}') + figures[mode].append(fig) + return figures + + +def dynamic_alpha(n_matches, + milestones=[0, 300, 1000, 2000], + alphas=[1.0, 0.8, 0.4, 0.2]): + if n_matches == 0: + return 1.0 + ranges = list(zip(alphas, alphas[1:] + [None])) + loc = bisect.bisect_right(milestones, n_matches) - 1 + _range = ranges[loc] + if _range[1] is None: + return _range[0] + return _range[1] + (milestones[loc + 1] - n_matches) / ( + milestones[loc + 1] - milestones[loc]) * (_range[0] - _range[1]) + + +def error_colormap(err, thr, alpha=1.0): + assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}" + x = 1 - np.clip(err / (thr * 2), 0, 1) + return np.clip( + np.stack([2-x*2, x*2, np.zeros_like(x), np.ones_like(x)*alpha], -1), 0, 1) \ No newline at end of file diff --git a/third_party/EfficientLoFTR/src/utils/profiler.py b/third_party/EfficientLoFTR/src/utils/profiler.py new file mode 100644 index 0000000000000000000000000000000000000000..6d21ed79fb506ef09c75483355402c48a195aaa9 --- /dev/null +++ b/third_party/EfficientLoFTR/src/utils/profiler.py @@ -0,0 +1,39 @@ +import torch +from pytorch_lightning.profiler import SimpleProfiler, PassThroughProfiler +from contextlib import contextmanager +from pytorch_lightning.utilities import rank_zero_only + + +class InferenceProfiler(SimpleProfiler): + """ + This profiler records duration of actions with cuda.synchronize() + Use this in test time. + """ + + def __init__(self): + super().__init__() + self.start = rank_zero_only(self.start) + self.stop = rank_zero_only(self.stop) + self.summary = rank_zero_only(self.summary) + + @contextmanager + def profile(self, action_name: str) -> None: + try: + torch.cuda.synchronize() + self.start(action_name) + yield action_name + finally: + torch.cuda.synchronize() + self.stop(action_name) + + +def build_profiler(name): + if name == 'inference': + return InferenceProfiler() + elif name == 'pytorch': + from pytorch_lightning.profiler import PyTorchProfiler + return PyTorchProfiler(use_cuda=True, profile_memory=True, row_limit=100) + elif name is None: + return PassThroughProfiler() + else: + raise ValueError(f'Invalid profiler: {name}') diff --git a/third_party/EfficientLoFTR/src/utils/warppers.py b/third_party/EfficientLoFTR/src/utils/warppers.py new file mode 100644 index 0000000000000000000000000000000000000000..a2f33b78f0d1645b3eefc8c9c6dbe14f24f7b2d6 --- /dev/null +++ b/third_party/EfficientLoFTR/src/utils/warppers.py @@ -0,0 +1,426 @@ +""" +Convenience classes for an SE3 pose and a pinhole Camera with lens distortion. +Based on PyTorch tensors: differentiable, batched, with GPU support. +Modified from: https://github.com/cvg/glue-factory/blob/scannet1500/gluefactory/geometry/wrappers.py +""" + +import functools +import inspect +import math +from typing import Dict, List, NamedTuple, Optional, Tuple, Union + +import numpy as np +import torch + +from .warppers_utils import ( + J_distort_points, + distort_points, + skew_symmetric, + so3exp_map, + to_homogeneous, +) + + +def autocast(func): + """Cast the inputs of a TensorWrapper method to PyTorch tensors + if they are numpy arrays. Use the device and dtype of the wrapper. + """ + + @functools.wraps(func) + def wrap(self, *args): + device = torch.device("cpu") + dtype = None + if isinstance(self, TensorWrapper): + if self._data is not None: + device = self.device + dtype = self.dtype + elif not inspect.isclass(self) or not issubclass(self, TensorWrapper): + raise ValueError(self) + + cast_args = [] + for arg in args: + if isinstance(arg, np.ndarray): + arg = torch.from_numpy(arg) + arg = arg.to(device=device, dtype=dtype) + cast_args.append(arg) + return func(self, *cast_args) + + return wrap + + +class TensorWrapper: + _data = None + + @autocast + def __init__(self, data: torch.Tensor): + self._data = data + + @property + def shape(self): + return self._data.shape[:-1] + + @property + def device(self): + return self._data.device + + @property + def dtype(self): + return self._data.dtype + + def __getitem__(self, index): + return self.__class__(self._data[index]) + + def __setitem__(self, index, item): + self._data[index] = item.data + + def to(self, *args, **kwargs): + return self.__class__(self._data.to(*args, **kwargs)) + + def cpu(self): + return self.__class__(self._data.cpu()) + + def cuda(self): + return self.__class__(self._data.cuda()) + + def pin_memory(self): + return self.__class__(self._data.pin_memory()) + + def float(self): + return self.__class__(self._data.float()) + + def double(self): + return self.__class__(self._data.double()) + + def detach(self): + return self.__class__(self._data.detach()) + + @classmethod + def stack(cls, objects: List, dim=0, *, out=None): + data = torch.stack([obj._data for obj in objects], dim=dim, out=out) + return cls(data) + + @classmethod + def __torch_function__(self, func, types, args=(), kwargs=None): + if kwargs is None: + kwargs = {} + if func is torch.stack: + return self.stack(*args, **kwargs) + else: + return NotImplemented + + +class Pose(TensorWrapper): + def __init__(self, data: torch.Tensor): + assert data.shape[-1] == 12 + super().__init__(data) + + @classmethod + @autocast + def from_Rt(cls, R: torch.Tensor, t: torch.Tensor): + """Pose from a rotation matrix and translation vector. + Accepts numpy arrays or PyTorch tensors. + + Args: + R: rotation matrix with shape (..., 3, 3). + t: translation vector with shape (..., 3). + """ + assert R.shape[-2:] == (3, 3) + assert t.shape[-1] == 3 + assert R.shape[:-2] == t.shape[:-1] + data = torch.cat([R.flatten(start_dim=-2), t], -1) + return cls(data) + + @classmethod + @autocast + def from_aa(cls, aa: torch.Tensor, t: torch.Tensor): + """Pose from an axis-angle rotation vector and translation vector. + Accepts numpy arrays or PyTorch tensors. + + Args: + aa: axis-angle rotation vector with shape (..., 3). + t: translation vector with shape (..., 3). + """ + assert aa.shape[-1] == 3 + assert t.shape[-1] == 3 + assert aa.shape[:-1] == t.shape[:-1] + return cls.from_Rt(so3exp_map(aa), t) + + @classmethod + def from_4x4mat(cls, T: torch.Tensor): + """Pose from an SE(3) transformation matrix. + Args: + T: transformation matrix with shape (..., 4, 4). + """ + assert T.shape[-2:] == (4, 4) + R, t = T[..., :3, :3], T[..., :3, 3] + return cls.from_Rt(R, t) + + @classmethod + def from_colmap(cls, image: NamedTuple): + """Pose from a COLMAP Image.""" + return cls.from_Rt(image.qvec2rotmat(), image.tvec) + + @property + def R(self) -> torch.Tensor: + """Underlying rotation matrix with shape (..., 3, 3).""" + rvec = self._data[..., :9] + return rvec.reshape(rvec.shape[:-1] + (3, 3)) + + @property + def t(self) -> torch.Tensor: + """Underlying translation vector with shape (..., 3).""" + return self._data[..., -3:] + + def inv(self) -> "Pose": + """Invert an SE(3) pose.""" + R = self.R.transpose(-1, -2) + t = -(R @ self.t.unsqueeze(-1)).squeeze(-1) + return self.__class__.from_Rt(R, t) + + def compose(self, other: "Pose") -> "Pose": + """Chain two SE(3) poses: T_B2C.compose(T_A2B) -> T_A2C.""" + R = self.R @ other.R + t = self.t + (self.R @ other.t.unsqueeze(-1)).squeeze(-1) + return self.__class__.from_Rt(R, t) + + @autocast + def transform(self, p3d: torch.Tensor) -> torch.Tensor: + """Transform a set of 3D points. + Args: + p3d: 3D points, numpy array or PyTorch tensor with shape (..., 3). + """ + assert p3d.shape[-1] == 3 + # assert p3d.shape[:-2] == self.shape # allow broadcasting + return p3d @ self.R.transpose(-1, -2) + self.t.unsqueeze(-2) + + def __mul__(self, p3D: torch.Tensor) -> torch.Tensor: + """Transform a set of 3D points: T_A2B * p3D_A -> p3D_B.""" + return self.transform(p3D) + + def __matmul__( + self, other: Union["Pose", torch.Tensor] + ) -> Union["Pose", torch.Tensor]: + """Transform a set of 3D points: T_A2B * p3D_A -> p3D_B. + or chain two SE(3) poses: T_B2C @ T_A2B -> T_A2C.""" + if isinstance(other, self.__class__): + return self.compose(other) + else: + return self.transform(other) + + @autocast + def J_transform(self, p3d_out: torch.Tensor): + # [[1,0,0,0,-pz,py], + # [0,1,0,pz,0,-px], + # [0,0,1,-py,px,0]] + J_t = torch.diag_embed(torch.ones_like(p3d_out)) + J_rot = -skew_symmetric(p3d_out) + J = torch.cat([J_t, J_rot], dim=-1) + return J # N x 3 x 6 + + def numpy(self) -> Tuple[np.ndarray]: + return self.R.numpy(), self.t.numpy() + + def magnitude(self) -> Tuple[torch.Tensor]: + """Magnitude of the SE(3) transformation. + Returns: + dr: rotation anngle in degrees. + dt: translation distance in meters. + """ + trace = torch.diagonal(self.R, dim1=-1, dim2=-2).sum(-1) + cos = torch.clamp((trace - 1) / 2, -1, 1) + dr = torch.acos(cos).abs() / math.pi * 180 + dt = torch.norm(self.t, dim=-1) + return dr, dt + + def __repr__(self): + return f"Pose: {self.shape} {self.dtype} {self.device}" + + +class Camera(TensorWrapper): + eps = 1e-4 + + def __init__(self, data: torch.Tensor): + assert data.shape[-1] in {6, 8, 10} + super().__init__(data) + + @classmethod + def from_colmap(cls, camera: Union[Dict, NamedTuple]): + """Camera from a COLMAP Camera tuple or dictionary. + We use the corner-convetion from COLMAP (center of top left pixel is (0.5, 0.5)) + """ + if isinstance(camera, tuple): + camera = camera._asdict() + + model = camera["model"] + params = camera["params"] + + if model in ["OPENCV", "PINHOLE", "RADIAL"]: + (fx, fy, cx, cy), params = np.split(params, [4]) + elif model in ["SIMPLE_PINHOLE", "SIMPLE_RADIAL"]: + (f, cx, cy), params = np.split(params, [3]) + fx = fy = f + if model == "SIMPLE_RADIAL": + params = np.r_[params, 0.0] + else: + raise NotImplementedError(model) + + data = np.r_[camera["width"], camera["height"], fx, fy, cx, cy, params] + return cls(data) + + @classmethod + @autocast + def from_calibration_matrix(cls, K: torch.Tensor): + cx, cy = K[..., 0, 2], K[..., 1, 2] + fx, fy = K[..., 0, 0], K[..., 1, 1] + data = torch.stack([2 * cx, 2 * cy, fx, fy, cx, cy], -1) + return cls(data) + + @autocast + def calibration_matrix(self): + K = torch.zeros( + *self._data.shape[:-1], + 3, + 3, + device=self._data.device, + dtype=self._data.dtype, + ) + K[..., 0, 2] = self._data[..., 4] + K[..., 1, 2] = self._data[..., 5] + K[..., 0, 0] = self._data[..., 2] + K[..., 1, 1] = self._data[..., 3] + K[..., 2, 2] = 1.0 + return K + + @property + def size(self) -> torch.Tensor: + """Size (width height) of the images, with shape (..., 2).""" + return self._data[..., :2] + + @property + def f(self) -> torch.Tensor: + """Focal lengths (fx, fy) with shape (..., 2).""" + return self._data[..., 2:4] + + @property + def c(self) -> torch.Tensor: + """Principal points (cx, cy) with shape (..., 2).""" + return self._data[..., 4:6] + + @property + def dist(self) -> torch.Tensor: + """Distortion parameters, with shape (..., {0, 2, 4}).""" + return self._data[..., 6:] + + @autocast + def scale(self, scales: torch.Tensor): + """Update the camera parameters after resizing an image.""" + s = scales + data = torch.cat([self.size * s, self.f * s, self.c * s, self.dist], -1) + return self.__class__(data) + + def crop(self, left_top: Tuple[float], size: Tuple[int]): + """Update the camera parameters after cropping an image.""" + left_top = self._data.new_tensor(left_top) + size = self._data.new_tensor(size) + data = torch.cat([size, self.f, self.c - left_top, self.dist], -1) + return self.__class__(data) + + @autocast + def in_image(self, p2d: torch.Tensor): + """Check if 2D points are within the image boundaries.""" + assert p2d.shape[-1] == 2 + # assert p2d.shape[:-2] == self.shape # allow broadcasting + size = self.size.unsqueeze(-2) + valid = torch.all((p2d >= 0) & (p2d <= (size - 1)), -1) + return valid + + @autocast + def project(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]: + """Project 3D points into the camera plane and check for visibility.""" + z = p3d[..., -1] + valid = z > self.eps + z = z.clamp(min=self.eps) + p2d = p3d[..., :-1] / z.unsqueeze(-1) + return p2d, valid + + def J_project(self, p3d: torch.Tensor): + x, y, z = p3d[..., 0], p3d[..., 1], p3d[..., 2] + zero = torch.zeros_like(z) + z = z.clamp(min=self.eps) + J = torch.stack([1 / z, zero, -x / z**2, zero, 1 / z, -y / z**2], dim=-1) + J = J.reshape(p3d.shape[:-1] + (2, 3)) + return J # N x 2 x 3 + + @autocast + def distort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]: + """Distort normalized 2D coordinates + and check for validity of the distortion model. + """ + assert pts.shape[-1] == 2 + # assert pts.shape[:-2] == self.shape # allow broadcasting + return distort_points(pts, self.dist) + + def J_distort(self, pts: torch.Tensor): + return J_distort_points(pts, self.dist) # N x 2 x 2 + + @autocast + def denormalize(self, p2d: torch.Tensor) -> torch.Tensor: + """Convert normalized 2D coordinates into pixel coordinates.""" + return p2d * self.f.unsqueeze(-2) + self.c.unsqueeze(-2) + + @autocast + def normalize(self, p2d: torch.Tensor) -> torch.Tensor: + """Convert normalized 2D coordinates into pixel coordinates.""" + return (p2d - self.c.unsqueeze(-2)) / self.f.unsqueeze(-2) + + def J_denormalize(self): + return torch.diag_embed(self.f).unsqueeze(-3) # 1 x 2 x 2 + + @autocast + def cam2image(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]: + """Transform 3D points into 2D pixel coordinates.""" + p2d, visible = self.project(p3d) + p2d, mask = self.distort(p2d) + p2d = self.denormalize(p2d) + valid = visible & mask & self.in_image(p2d) + return p2d, valid + + def J_world2image(self, p3d: torch.Tensor): + p2d_dist, valid = self.project(p3d) + J = self.J_denormalize() @ self.J_distort(p2d_dist) @ self.J_project(p3d) + return J, valid + + @autocast + def image2cam(self, p2d: torch.Tensor) -> torch.Tensor: + """Convert 2D pixel corrdinates to 3D points with z=1""" + assert self._data.shape + p2d = self.normalize(p2d) + # iterative undistortion + return to_homogeneous(p2d) + + def to_cameradict(self, camera_model: Optional[str] = None) -> List[Dict]: + data = self._data.clone() + if data.dim() == 1: + data = data.unsqueeze(0) + assert data.dim() == 2 + b, d = data.shape + if camera_model is None: + camera_model = {6: "PINHOLE", 8: "RADIAL", 10: "OPENCV"}[d] + cameras = [] + for i in range(b): + if camera_model.startswith("SIMPLE_"): + params = [x.item() for x in data[i, 3 : min(d, 7)]] + else: + params = [x.item() for x in data[i, 2:]] + cameras.append( + { + "model": camera_model, + "width": int(data[i, 0].item()), + "height": int(data[i, 1].item()), + "params": params, + } + ) + return cameras if self._data.dim() == 2 else cameras[0] + + def __repr__(self): + return f"Camera {self.shape} {self.dtype} {self.device}" \ No newline at end of file diff --git a/third_party/EfficientLoFTR/src/utils/warppers_utils.py b/third_party/EfficientLoFTR/src/utils/warppers_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..ad3ef5c05d74cd3bd46f5b3b0d8c6d331a17dfad --- /dev/null +++ b/third_party/EfficientLoFTR/src/utils/warppers_utils.py @@ -0,0 +1,171 @@ +""" +Modified from: https://github.com/cvg/glue-factory/blob/scannet1500/gluefactory/geometry/utils.py +""" + +import numpy as np +import torch + + +def to_homogeneous(points): + """Convert N-dimensional points to homogeneous coordinates. + Args: + points: torch.Tensor or numpy.ndarray with size (..., N). + Returns: + A torch.Tensor or numpy.ndarray with size (..., N+1). + """ + if isinstance(points, torch.Tensor): + pad = points.new_ones(points.shape[:-1] + (1,)) + return torch.cat([points, pad], dim=-1) + elif isinstance(points, np.ndarray): + pad = np.ones((points.shape[:-1] + (1,)), dtype=points.dtype) + return np.concatenate([points, pad], axis=-1) + else: + raise ValueError + + +def from_homogeneous(points, eps=0.0): + """Remove the homogeneous dimension of N-dimensional points. + Args: + points: torch.Tensor or numpy.ndarray with size (..., N+1). + eps: Epsilon value to prevent zero division. + Returns: + A torch.Tensor or numpy ndarray with size (..., N). + """ + return points[..., :-1] / (points[..., -1:] + eps) + + +def batched_eye_like(x: torch.Tensor, n: int): + """Create a batch of identity matrices. + Args: + x: a reference torch.Tensor whose batch dimension will be copied. + n: the size of each identity matrix. + Returns: + A torch.Tensor of size (B, n, n), with same dtype and device as x. + """ + return torch.eye(n).to(x)[None].repeat(len(x), 1, 1) + + +def skew_symmetric(v): + """Create a skew-symmetric matrix from a (batched) vector of size (..., 3).""" + z = torch.zeros_like(v[..., 0]) + M = torch.stack( + [ + z, + -v[..., 2], + v[..., 1], + v[..., 2], + z, + -v[..., 0], + -v[..., 1], + v[..., 0], + z, + ], + dim=-1, + ).reshape(v.shape[:-1] + (3, 3)) + return M + + +def transform_points(T, points): + return from_homogeneous(to_homogeneous(points) @ T.transpose(-1, -2)) + + +def is_inside(pts, shape): + return (pts > 0).all(-1) & (pts < shape[:, None]).all(-1) + + +def so3exp_map(w, eps: float = 1e-7): + """Compute rotation matrices from batched twists. + Args: + w: batched 3D axis-angle vectors of size (..., 3). + Returns: + A batch of rotation matrices of size (..., 3, 3). + """ + theta = w.norm(p=2, dim=-1, keepdim=True) + small = theta < eps + div = torch.where(small, torch.ones_like(theta), theta) + W = skew_symmetric(w / div) + theta = theta[..., None] # ... x 1 x 1 + res = W * torch.sin(theta) + (W @ W) * (1 - torch.cos(theta)) + res = torch.where(small[..., None], W, res) # first-order Taylor approx + return torch.eye(3).to(W) + res + + +@torch.jit.script +def distort_points(pts, dist): + """Distort normalized 2D coordinates + and check for validity of the distortion model. + """ + dist = dist.unsqueeze(-2) # add point dimension + ndist = dist.shape[-1] + undist = pts + valid = torch.ones(pts.shape[:-1], device=pts.device, dtype=torch.bool) + if ndist > 0: + k1, k2 = dist[..., :2].split(1, -1) + r2 = torch.sum(pts**2, -1, keepdim=True) + radial = k1 * r2 + k2 * r2**2 + undist = undist + pts * radial + + # The distortion model is supposedly only valid within the image + # boundaries. Because of the negative radial distortion, points that + # are far outside of the boundaries might actually be mapped back + # within the image. To account for this, we discard points that are + # beyond the inflection point of the distortion model, + # e.g. such that d(r + k_1 r^3 + k2 r^5)/dr = 0 + limited = ((k2 > 0) & ((9 * k1**2 - 20 * k2) > 0)) | ((k2 <= 0) & (k1 > 0)) + limit = torch.abs( + torch.where( + k2 > 0, + (torch.sqrt(9 * k1**2 - 20 * k2) - 3 * k1) / (10 * k2), + 1 / (3 * k1), + ) + ) + valid = valid & torch.squeeze(~limited | (r2 < limit), -1) + + if ndist > 2: + p12 = dist[..., 2:] + p21 = p12.flip(-1) + uv = torch.prod(pts, -1, keepdim=True) + undist = undist + 2 * p12 * uv + p21 * (r2 + 2 * pts**2) + # TODO: handle tangential boundaries + + return undist, valid + + +@torch.jit.script +def J_distort_points(pts, dist): + dist = dist.unsqueeze(-2) # add point dimension + ndist = dist.shape[-1] + + J_diag = torch.ones_like(pts) + J_cross = torch.zeros_like(pts) + if ndist > 0: + k1, k2 = dist[..., :2].split(1, -1) + r2 = torch.sum(pts**2, -1, keepdim=True) + uv = torch.prod(pts, -1, keepdim=True) + radial = k1 * r2 + k2 * r2**2 + d_radial = 2 * k1 + 4 * k2 * r2 + J_diag += radial + (pts**2) * d_radial + J_cross += uv * d_radial + + if ndist > 2: + p12 = dist[..., 2:] + p21 = p12.flip(-1) + J_diag += 2 * p12 * pts.flip(-1) + 6 * p21 * pts + J_cross += 2 * p12 * pts + 2 * p21 * pts.flip(-1) + + J = torch.diag_embed(J_diag) + torch.diag_embed(J_cross).flip(-1) + return J + + +def get_image_coords(img): + h, w = img.shape[-2:] + return ( + torch.stack( + torch.meshgrid( + torch.arange(h, dtype=torch.float32, device=img.device), + torch.arange(w, dtype=torch.float32, device=img.device), + indexing="ij", + )[::-1], + dim=0, + ).permute(1, 2, 0) + )[None] + 0.5 \ No newline at end of file diff --git a/third_party/EfficientLoFTR/test.py b/third_party/EfficientLoFTR/test.py new file mode 100644 index 0000000000000000000000000000000000000000..e7a04324e9cd16c74ec3affbe17e9764d2a0002b --- /dev/null +++ b/third_party/EfficientLoFTR/test.py @@ -0,0 +1,143 @@ +import pytorch_lightning as pl +import argparse +import pprint +from loguru import logger as loguru_logger + +from src.config.default import get_cfg_defaults +from src.utils.profiler import build_profiler + +from src.lightning.data import MultiSceneDataModule +from src.lightning.lightning_loftr import PL_LoFTR + +import torch + +def parse_args(): + # init a costum parser which will be added into pl.Trainer parser + # check documentation: https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-flags + parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) + parser.add_argument( + 'data_cfg_path', type=str, help='data config path') + parser.add_argument( + 'main_cfg_path', type=str, help='main config path') + parser.add_argument( + '--ckpt_path', type=str, default="weights/indoor_ds.ckpt", help='path to the checkpoint') + parser.add_argument( + '--dump_dir', type=str, default=None, help="if set, the matching results will be dump to dump_dir") + parser.add_argument( + '--profiler_name', type=str, default=None, help='options: [inference, pytorch], or leave it unset') + parser.add_argument( + '--batch_size', type=int, default=1, help='batch_size per gpu') + parser.add_argument( + '--num_workers', type=int, default=2) + parser.add_argument( + '--thr', type=float, default=None, help='modify the coarse-level matching threshold.') + parser.add_argument( + '--pixel_thr', type=float, default=None, help='modify the RANSAC threshold.') + parser.add_argument( + '--ransac', type=str, default=None, help='modify the RANSAC method') + parser.add_argument( + '--scannetX', type=int, default=None, help='ScanNet resize X') + parser.add_argument( + '--scannetY', type=int, default=None, help='ScanNet resize Y') + parser.add_argument( + '--megasize', type=int, default=None, help='MegaDepth resize') + parser.add_argument( + '--npe', action='store_true', default=False, help='') + parser.add_argument( + '--fp32', action='store_true', default=False, help='') + parser.add_argument( + '--ransac_times', type=int, default=None, help='repeat ransac multiple times for more robust evaluation') + parser.add_argument( + '--rmbd', type=int, default=None, help='remove border matches') + parser.add_argument( + '--deter', action='store_true', default=False, help='use deterministic mode for testing') + parser.add_argument( + '--half', action='store_true', default=False, help='pure16') + parser.add_argument( + '--flash', action='store_true', default=False, help='flash') + + parser = pl.Trainer.add_argparse_args(parser) + return parser.parse_args() + +def inplace_relu(m): + classname = m.__class__.__name__ + if classname.find('ReLU') != -1: + m.inplace=True + +if __name__ == '__main__': + # parse arguments + args = parse_args() + pprint.pprint(vars(args)) + + # init default-cfg and merge it with the main- and data-cfg + config = get_cfg_defaults() + config.merge_from_file(args.main_cfg_path) + config.merge_from_file(args.data_cfg_path) + if args.deter: + torch.backends.cudnn.deterministic = True + pl.seed_everything(config.TRAINER.SEED) # reproducibility + + # tune when testing + if args.thr is not None: + config.LOFTR.MATCH_COARSE.THR = args.thr + + if args.scannetX is not None and args.scannetY is not None: + config.DATASET.SCAN_IMG_RESIZEX = args.scannetX + config.DATASET.SCAN_IMG_RESIZEY = args.scannetY + if args.megasize is not None: + config.DATASET.MGDPT_IMG_RESIZE = args.megasize + + if args.npe: + if config.LOFTR.COARSE.ROPE: + assert config.DATASET.NPE_NAME is not None + if config.DATASET.NPE_NAME is not None: + if config.DATASET.NPE_NAME == 'megadepth': + config.LOFTR.COARSE.NPE = [832, 832, config.DATASET.MGDPT_IMG_RESIZE, config.DATASET.MGDPT_IMG_RESIZE] # [832, 832, 1152, 1152] + elif config.DATASET.NPE_NAME == 'scannet': + config.LOFTR.COARSE.NPE = [832, 832, config.DATASET.SCAN_IMG_RESIZEX, config.DATASET.SCAN_IMG_RESIZEX] # [832, 832, 640, 640] + else: + config.LOFTR.COARSE.NPE = [832, 832, 832, 832] + + if args.ransac_times is not None: + config.LOFTR.EVAL_TIMES = args.ransac_times + + if args.rmbd is not None: + config.LOFTR.MATCH_COARSE.BORDER_RM = args.rmbd + + if args.pixel_thr is not None: + config.TRAINER.RANSAC_PIXEL_THR = args.pixel_thr + + if args.ransac is not None: + config.TRAINER.POSE_ESTIMATION_METHOD = args.ransac + if args.ransac == 'LO-RANSAC' and config.TRAINER.RANSAC_PIXEL_THR == 0.5: + config.TRAINER.RANSAC_PIXEL_THR = 2.0 + + if args.fp32: + config.LOFTR.MP = False + + if args.half: + config.LOFTR.HALF = True + config.DATASET.FP16 = True + else: + config.LOFTR.HALF = False + config.DATASET.FP16 = False + + if args.flash: + config.LOFTR.COARSE.NO_FLASH = False + + loguru_logger.info(f"Args and config initialized!") + + # lightning module + profiler = build_profiler(args.profiler_name) + model = PL_LoFTR(config, pretrained_ckpt=args.ckpt_path, profiler=profiler, dump_dir=args.dump_dir) + loguru_logger.info(f"LoFTR-lightning initialized!") + + # lightning data + data_module = MultiSceneDataModule(args, config) + loguru_logger.info(f"DataModule initialized!") + + # lightning trainer + trainer = pl.Trainer.from_argparse_args(args, replace_sampler_ddp=False, logger=False) + + loguru_logger.info(f"Start testing!") + trainer.test(model, datamodule=data_module, verbose=False) \ No newline at end of file diff --git a/ui/config.yaml b/ui/config.yaml index 22fe08bc00873d1b4417f31c3f975eec0fb83040..d94cc3f67789b454c248b10468b9b2354ba358a9 100644 --- a/ui/config.yaml +++ b/ui/config.yaml @@ -35,7 +35,7 @@ matcher_zoo: name: Mast3R #dispaly name source: "CVPR 2024" github: https://github.com/naver/mast3r - paper: https://arxiv.org/abs/2312.14132 + paper: https://arxiv.org/abs/2406.09756 project: https://dust3r.europe.naverlabs.com display: true DUSt3R: @@ -91,6 +91,16 @@ matcher_zoo: paper: https://arxiv.org/pdf/2104.00680 project: https://zju3dv.github.io/loftr display: true + eloftr: + matcher: eloftr + dense: true + info: + name: Efficient LoFTR #dispaly name + source: "CVPR 2024" + github: https://github.com/zju3dv/efficientloftr + paper: https://zju3dv.github.io/efficientloftr/files/EfficientLoFTR.pdf + project: https://zju3dv.github.io/efficientloftr + display: true cotr: enable: false skip_ci: true