## CroCo-Stereo and CroCo-Flow This README explains how to use CroCo-Stereo and CroCo-Flow as well as how they were trained. All commands should be launched from the root directory. ### Simple inference example We provide a simple inference exemple for CroCo-Stereo and CroCo-Flow in the Totebook `croco-stereo-flow-demo.ipynb`. Before running it, please download the trained models with: ``` bash stereoflow/download_model.sh crocostereo.pth bash stereoflow/download_model.sh crocoflow.pth ``` ### Prepare data for training or evaluation Put the datasets used for training/evaluation in `./data/stereoflow` (or update the paths at the top of `stereoflow/datasets_stereo.py` and `stereoflow/datasets_flow.py`). Please find below on the file structure should look for each dataset: <details> <summary>FlyingChairs</summary> ``` ./data/stereoflow/FlyingChairs/ └───chairs_split.txt └───data/ └─── ... ``` </details> <details> <summary>MPI-Sintel</summary> ``` ./data/stereoflow/MPI-Sintel/ └───training/ │ └───clean/ │ └───final/ │ └───flow/ └───test/ └───clean/ └───final/ ``` </details> <details> <summary>SceneFlow (including FlyingThings)</summary> ``` ./data/stereoflow/SceneFlow/ └───Driving/ │ └───disparity/ │ └───frames_cleanpass/ │ └───frames_finalpass/ └───FlyingThings/ │ └───disparity/ │ └───frames_cleanpass/ │ └───frames_finalpass/ │ └───optical_flow/ └───Monkaa/ └───disparity/ └───frames_cleanpass/ └───frames_finalpass/ ``` </details> <details> <summary>TartanAir</summary> ``` ./data/stereoflow/TartanAir/ └───abandonedfactory/ │ └───.../ └───abandonedfactory_night/ │ └───.../ └───.../ ``` </details> <details> <summary>Booster</summary> ``` ./data/stereoflow/booster_gt/ └───train/ └───balanced/ └───Bathroom/ └───Bedroom/ └───... ``` </details> <details> <summary>CREStereo</summary> ``` ./data/stereoflow/crenet_stereo_trainset/ └───stereo_trainset/ └───crestereo/ └───hole/ └───reflective/ └───shapenet/ └───tree/ ``` </details> <details> <summary>ETH3D Two-view Low-res</summary> ``` ./data/stereoflow/eth3d_lowres/ └───test/ │ └───lakeside_1l/ │ └───... └───train/ │ └───delivery_area_1l/ │ └───... └───train_gt/ └───delivery_area_1l/ └───... ``` </details> <details> <summary>KITTI 2012</summary> ``` ./data/stereoflow/kitti-stereo-2012/ └───testing/ │ └───colored_0/ │ └───colored_1/ └───training/ └───colored_0/ └───colored_1/ └───disp_occ/ └───flow_occ/ ``` </details> <details> <summary>KITTI 2015</summary> ``` ./data/stereoflow/kitti-stereo-2015/ └───testing/ │ └───image_2/ │ └───image_3/ └───training/ └───image_2/ └───image_3/ └───disp_occ_0/ └───flow_occ/ ``` </details> <details> <summary>Middlebury</summary> ``` ./data/stereoflow/middlebury └───2005/ │ └───train/ │ └───Art/ │ └───... └───2006/ │ └───Aloe/ │ └───Baby1/ │ └───... └───2014/ │ └───Adirondack-imperfect/ │ └───Adirondack-perfect/ │ └───... └───2021/ │ └───data/ │ └───artroom1/ │ └───artroom2/ │ └───... └───MiddEval3_F/ └───test/ │ └───Australia/ │ └───... └───train/ └───Adirondack/ └───... ``` </details> <details> <summary>Spring</summary> ``` ./data/stereoflow/spring/ └───test/ │ └───0003/ │ └───... └───train/ └───0001/ └───... ``` </details> ### CroCo-Stereo ##### Main model The main training of CroCo-Stereo was performed on a series of datasets, and it was used as it for Middlebury v3 benchmark. ``` # Download the model bash stereoflow/download_model.sh crocostereo.pth # Middlebury v3 submission python stereoflow/test.py --model stereoflow_models/crocostereo.pth --dataset "MdEval3('all_full')" --save submission --tile_overlap 0.9 # Training command that was used, using checkpoint-last.pth python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/ # or it can be launched on multiple gpus (while maintaining the effective batch size), e.g. on 3 gpus: torchrun --nproc_per_node 3 stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 2 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/ ``` For evaluation of validation set, we also provide the model trained on the `subtrain` subset of the training sets. ``` # Download the model bash stereoflow/download_model.sh crocostereo_subtrain.pth # Evaluation on validation sets python stereoflow/test.py --model stereoflow_models/crocostereo_subtrain.pth --dataset "MdEval3('subval_full')+ETH3DLowRes('subval')+SceneFlow('test_finalpass')+SceneFlow('test_cleanpass')" --save metrics --tile_overlap 0.9 # Training command that was used (same as above but on subtrain, using checkpoint-best.pth), can also be launched on multiple gpus python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('subtrain')+50*Md05('subtrain')+50*Md06('subtrain')+50*Md14('subtrain')+50*Md21('subtrain')+50*MdEval3('subtrain_full')+Booster('subtrain_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_subtrain/ ``` ##### Other models <details> <summary>Model for ETH3D</summary> The model used for the submission on ETH3D is trained with the same command but using an unbounded Laplacian loss. # Download the model bash stereoflow/download_model.sh crocostereo_eth3d.pth # ETH3D submission python stereoflow/test.py --model stereoflow_models/crocostereo_eth3d.pth --dataset "ETH3DLowRes('all')" --save submission --tile_overlap 0.9 # Training command that was used python -u stereoflow/train.py stereo --criterion "LaplacianLoss()" --tile_conf_mode conf_expbeta3 --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_eth3d/ </details> <details> <summary>Main model finetuned on Kitti</summary> # Download the model bash stereoflow/download_model.sh crocostereo_finetune_kitti.pth # Kitti submission python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.9 # Training that was used python -u stereoflow/train.py stereo --crop 352 1216 --criterion "LaplacianLossBounded2()" --dataset "Kitti12('train')+Kitti15('train')" --lr 3e-5 --batch_size 1 --accum_iter 6 --epochs 20 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_kitti/ --save_every 5 </details> <details> <summary>Main model finetuned on Spring</summary> # Download the model bash stereoflow/download_model.sh crocostereo_finetune_spring.pth # Spring submission python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9 # Training command that was used python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "Spring('train')" --lr 3e-5 --batch_size 6 --epochs 8 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_spring/ </details> <details> <summary>Smaller models</summary> To train CroCo-Stereo with smaller CroCo pretrained models, simply replace the <code>--pretrained</code> argument. To download the smaller CroCo-Stereo models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use <code>bash stereoflow/download_model.sh crocostereo_subtrain_vitb_smalldecoder.pth</code>, and for the model with a ViT-Base encoder and a Base decoder, use <code>bash stereoflow/download_model.sh crocostereo_subtrain_vitb_basedecoder.pth</code>. </details> ### CroCo-Flow ##### Main model The main training of CroCo-Flow was performed on the FlyingThings, FlyingChairs, MPI-Sintel and TartanAir datasets. It was used for our submission to the MPI-Sintel benchmark. ``` # Download the model bash stereoflow/download_model.sh crocoflow.pth # Evaluation python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --save metrics --tile_overlap 0.9 # Sintel submission python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('test_allpass')" --save submission --tile_overlap 0.9 # Training command that was used, with checkpoint-best.pth python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "40*MPISintel('subtrain_cleanpass')+40*MPISintel('subtrain_finalpass')+4*FlyingThings('train_allpass')+4*FlyingChairs('train')+TartanAir('train')" --val_dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --lr 2e-5 --batch_size 8 --epochs 240 --img_per_epoch 30000 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocoflow/main/ ``` ##### Other models <details> <summary>Main model finetuned on Kitti</summary> # Download the model bash stereoflow/download_model.sh crocoflow_finetune_kitti.pth # Kitti submission python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.99 # Training that was used, with checkpoint-last.pth python -u stereoflow/train.py flow --crop 352 1216 --criterion "LaplacianLossBounded()" --dataset "Kitti15('train')+Kitti12('train')" --lr 2e-5 --batch_size 1 --accum_iter 8 --epochs 150 --save_every 5 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_kitti/ </details> <details> <summary>Main model finetuned on Spring</summary> # Download the model bash stereoflow/download_model.sh crocoflow_finetune_spring.pth # Spring submission python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9 # Training command that was used, with checkpoint-last.pth python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "Spring('train')" --lr 2e-5 --batch_size 8 --epochs 12 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_spring/ </details> <details> <summary>Smaller models</summary> To train CroCo-Flow with smaller CroCo pretrained models, simply replace the <code>--pretrained</code> argument. To download the smaller CroCo-Flow models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use <code>bash stereoflow/download_model.sh crocoflow_vitb_smalldecoder.pth</code>, and for the model with a ViT-Base encoder and a Base decoder, use <code>bash stereoflow/download_model.sh crocoflow_vitb_basedecoder.pth</code>. </details>