import bisect import numpy as np import matplotlib.pyplot as plt import matplotlib import torch def _compute_conf_thresh(data): dataset_name = data['dataset_name'][0].lower() if dataset_name == 'scannet': thr = 5e-4 elif dataset_name == 'megadepth': thr = 1e-4 else: raise ValueError(f'Unknown dataset: {dataset_name}') return thr # --- VISUALIZATION --- # def make_matching_figure( img0, img1, mkpts0, mkpts1, color, kpts0=None, kpts1=None, text=[], dpi=75, path=None): # draw image pair assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}' fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi) axes[0].imshow(img0, cmap='gray') axes[1].imshow(img1, cmap='gray') for i in range(2): # clear all frames axes[i].get_yaxis().set_ticks([]) axes[i].get_xaxis().set_ticks([]) for spine in axes[i].spines.values(): spine.set_visible(False) plt.tight_layout(pad=1) if kpts0 is not None: assert kpts1 is not None axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c='w', s=2) axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c='w', s=2) # draw matches if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0: fig.canvas.draw() transFigure = fig.transFigure.inverted() fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0)) fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1)) fig.lines = [matplotlib.lines.Line2D((fkpts0[i, 0], fkpts1[i, 0]), (fkpts0[i, 1], fkpts1[i, 1]), transform=fig.transFigure, c=color[i], linewidth=1) for i in range(len(mkpts0))] axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color, s=4) axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color, s=4) # put txts txt_color = 'k' if img0[:100, :200].mean() > 200 else 'w' fig.text( 0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes, fontsize=15, va='top', ha='left', color=txt_color) # save or return figure if path: plt.savefig(str(path), bbox_inches='tight', pad_inches=0) plt.close() else: return fig def _make_evaluation_figure(data, b_id, alpha='dynamic'): b_mask = data['m_bids'] == b_id conf_thr = _compute_conf_thresh(data) img0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.int32) img1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.int32) kpts0 = data['mkpts0_f'][b_mask].cpu().numpy() kpts1 = data['mkpts1_f'][b_mask].cpu().numpy() # for megadepth, we visualize matches on the resized image if 'scale0' in data: kpts0 = kpts0 / data['scale0'][b_id].cpu().numpy()[[1, 0]] kpts1 = kpts1 / data['scale1'][b_id].cpu().numpy()[[1, 0]] epi_errs = data['epi_errs'][b_mask].cpu().numpy() correct_mask = epi_errs < conf_thr precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0 n_correct = np.sum(correct_mask) n_gt_matches = int(data['conf_matrix_gt'][b_id].sum().cpu()) recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches) # recall might be larger than 1, since the calculation of conf_matrix_gt # uses groundtruth depths and camera poses, but epipolar distance is used here. # matching info if alpha == 'dynamic': alpha = dynamic_alpha(len(correct_mask)) color = error_colormap(epi_errs, conf_thr, alpha=alpha) text = [ f'#Matches {len(kpts0)}', f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}', f'Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}' ] # make the figure figure = make_matching_figure(img0, img1, kpts0, kpts1, color, text=text) return figure def _make_confidence_figure(data, b_id): # TODO: Implement confidence figure raise NotImplementedError() def make_matching_figures(data, config, mode='evaluation'): """ Make matching figures for a batch. Args: data (Dict): a batch updated by PL_LoFTR. config (Dict): matcher config Returns: figures (Dict[str, List[plt.figure]] """ assert mode in ['evaluation', 'confidence', 'gt'] # 'confidence' figures = {mode: []} for b_id in range(data['image0'].size(0)): if mode == 'evaluation': fig = _make_evaluation_figure( data, b_id, alpha=config.TRAINER.PLOT_MATCHES_ALPHA) elif mode == 'confidence': fig = _make_confidence_figure(data, b_id) else: raise ValueError(f'Unknown plot mode: {mode}') figures[mode].append(fig) return figures def dynamic_alpha(n_matches, milestones=[0, 300, 1000, 2000], alphas=[1.0, 0.8, 0.4, 0.2]): if n_matches == 0: return 1.0 ranges = list(zip(alphas, alphas[1:] + [None])) loc = bisect.bisect_right(milestones, n_matches) - 1 _range = ranges[loc] if _range[1] is None: return _range[0] return _range[1] + (milestones[loc + 1] - n_matches) / ( milestones[loc + 1] - milestones[loc]) * (_range[0] - _range[1]) def error_colormap(err, thr, alpha=1.0): assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}" x = 1 - np.clip(err / (thr * 2), 0, 1) return np.clip( np.stack([2-x*2, x*2, np.zeros_like(x), np.ones_like(x)*alpha], -1), 0, 1)