import pytorch_lightning as pl import argparse import pprint from loguru import logger as loguru_logger from src.config.default import get_cfg_defaults from src.utils.profiler import build_profiler from src.lightning.data import MultiSceneDataModule from src.lightning.lightning_loftr import PL_LoFTR import torch def parse_args(): # init a costum parser which will be added into pl.Trainer parser # check documentation: https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-flags parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( 'data_cfg_path', type=str, help='data config path') parser.add_argument( 'main_cfg_path', type=str, help='main config path') parser.add_argument( '--ckpt_path', type=str, default="weights/indoor_ds.ckpt", help='path to the checkpoint') parser.add_argument( '--dump_dir', type=str, default=None, help="if set, the matching results will be dump to dump_dir") parser.add_argument( '--profiler_name', type=str, default=None, help='options: [inference, pytorch], or leave it unset') parser.add_argument( '--batch_size', type=int, default=1, help='batch_size per gpu') parser.add_argument( '--num_workers', type=int, default=2) parser.add_argument( '--thr', type=float, default=None, help='modify the coarse-level matching threshold.') parser.add_argument( '--pixel_thr', type=float, default=None, help='modify the RANSAC threshold.') parser.add_argument( '--ransac', type=str, default=None, help='modify the RANSAC method') parser.add_argument( '--scannetX', type=int, default=None, help='ScanNet resize X') parser.add_argument( '--scannetY', type=int, default=None, help='ScanNet resize Y') parser.add_argument( '--megasize', type=int, default=None, help='MegaDepth resize') parser.add_argument( '--npe', action='store_true', default=False, help='') parser.add_argument( '--fp32', action='store_true', default=False, help='') parser.add_argument( '--ransac_times', type=int, default=None, help='repeat ransac multiple times for more robust evaluation') parser.add_argument( '--rmbd', type=int, default=None, help='remove border matches') parser.add_argument( '--deter', action='store_true', default=False, help='use deterministic mode for testing') parser.add_argument( '--half', action='store_true', default=False, help='pure16') parser.add_argument( '--flash', action='store_true', default=False, help='flash') parser = pl.Trainer.add_argparse_args(parser) return parser.parse_args() def inplace_relu(m): classname = m.__class__.__name__ if classname.find('ReLU') != -1: m.inplace=True if __name__ == '__main__': # parse arguments args = parse_args() pprint.pprint(vars(args)) # init default-cfg and merge it with the main- and data-cfg config = get_cfg_defaults() config.merge_from_file(args.main_cfg_path) config.merge_from_file(args.data_cfg_path) if args.deter: torch.backends.cudnn.deterministic = True pl.seed_everything(config.TRAINER.SEED) # reproducibility # tune when testing if args.thr is not None: config.LOFTR.MATCH_COARSE.THR = args.thr if args.scannetX is not None and args.scannetY is not None: config.DATASET.SCAN_IMG_RESIZEX = args.scannetX config.DATASET.SCAN_IMG_RESIZEY = args.scannetY if args.megasize is not None: config.DATASET.MGDPT_IMG_RESIZE = args.megasize if args.npe: if config.LOFTR.COARSE.ROPE: assert config.DATASET.NPE_NAME is not None if config.DATASET.NPE_NAME is not None: if config.DATASET.NPE_NAME == 'megadepth': config.LOFTR.COARSE.NPE = [832, 832, config.DATASET.MGDPT_IMG_RESIZE, config.DATASET.MGDPT_IMG_RESIZE] # [832, 832, 1152, 1152] elif config.DATASET.NPE_NAME == 'scannet': config.LOFTR.COARSE.NPE = [832, 832, config.DATASET.SCAN_IMG_RESIZEX, config.DATASET.SCAN_IMG_RESIZEX] # [832, 832, 640, 640] else: config.LOFTR.COARSE.NPE = [832, 832, 832, 832] if args.ransac_times is not None: config.LOFTR.EVAL_TIMES = args.ransac_times if args.rmbd is not None: config.LOFTR.MATCH_COARSE.BORDER_RM = args.rmbd if args.pixel_thr is not None: config.TRAINER.RANSAC_PIXEL_THR = args.pixel_thr if args.ransac is not None: config.TRAINER.POSE_ESTIMATION_METHOD = args.ransac if args.ransac == 'LO-RANSAC' and config.TRAINER.RANSAC_PIXEL_THR == 0.5: config.TRAINER.RANSAC_PIXEL_THR = 2.0 if args.fp32: config.LOFTR.MP = False if args.half: config.LOFTR.HALF = True config.DATASET.FP16 = True else: config.LOFTR.HALF = False config.DATASET.FP16 = False if args.flash: config.LOFTR.COARSE.NO_FLASH = False loguru_logger.info(f"Args and config initialized!") # lightning module profiler = build_profiler(args.profiler_name) model = PL_LoFTR(config, pretrained_ckpt=args.ckpt_path, profiler=profiler, dump_dir=args.dump_dir) loguru_logger.info(f"LoFTR-lightning initialized!") # lightning data data_module = MultiSceneDataModule(args, config) loguru_logger.info(f"DataModule initialized!") # lightning trainer trainer = pl.Trainer.from_argparse_args(args, replace_sampler_ddp=False, logger=False) loguru_logger.info(f"Start testing!") trainer.test(model, datamodule=data_module, verbose=False)