# Copyright (C) 2022-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # utilitary functions for CroCo # -------------------------------------------------------- # References: # MAE: https://github.com/facebookresearch/mae # DeiT: https://github.com/facebookresearch/deit # BEiT: https://github.com/microsoft/unilm/tree/master/beit # -------------------------------------------------------- import builtins import datetime import os import time import math import json from collections import defaultdict, deque from pathlib import Path import numpy as np import torch import torch.distributed as dist from torch import inf class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {}".format(name, str(meter)) ) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None, max_iter=None): i = 0 if not header: header = '' start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f}') data_time = SmoothedValue(fmt='{avg:.4f}') len_iterable = min(len(iterable), max_iter) if max_iter else len(iterable) space_fmt = ':' + str(len(str(len_iterable))) + 'd' log_msg = [ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ] if torch.cuda.is_available(): log_msg.append('max mem: {memory:.0f}') log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 for it,obj in enumerate(iterable): data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len_iterable - 1: eta_seconds = iter_time.global_avg * (len_iterable - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print(log_msg.format( i, len_iterable, eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print(log_msg.format( i, len_iterable, eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() if max_iter and it >= max_iter: break total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len_iterable)) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ builtin_print = builtins.print def print(*args, **kwargs): force = kwargs.pop('force', False) force = force or (get_world_size() > 8) if is_master or force: now = datetime.datetime.now().time() builtin_print('[{}] '.format(now), end='') # print with time stamp builtin_print(*args, **kwargs) builtins.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): nodist = args.nodist if hasattr(args,'nodist') else False if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ and not nodist: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) else: print('Not using distributed mode') setup_for_distributed(is_master=True) # hack args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('| distributed init (rank {}): {}, gpu {}'.format( args.rank, args.dist_url, args.gpu), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.distributed.barrier() setup_for_distributed(args.rank == 0) class NativeScalerWithGradNormCount: state_dict_key = "amp_scaler" def __init__(self, enabled=True): self._scaler = torch.cuda.amp.GradScaler(enabled=enabled) def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): self._scaler.scale(loss).backward(create_graph=create_graph) if update_grad: if clip_grad is not None: assert parameters is not None self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) else: self._scaler.unscale_(optimizer) norm = get_grad_norm_(parameters) self._scaler.step(optimizer) self._scaler.update() else: norm = None return norm def state_dict(self): return self._scaler.state_dict() def load_state_dict(self, state_dict): self._scaler.load_state_dict(state_dict) def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None] norm_type = float(norm_type) if len(parameters) == 0: return torch.tensor(0.) device = parameters[0].grad.device if norm_type == inf: total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) else: total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) return total_norm def save_model(args, epoch, model_without_ddp, optimizer, loss_scaler, fname=None, best_so_far=None): output_dir = Path(args.output_dir) if fname is None: fname = str(epoch) checkpoint_path = output_dir / ('checkpoint-%s.pth' % fname) to_save = { 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'scaler': loss_scaler.state_dict(), 'args': args, 'epoch': epoch, } if best_so_far is not None: to_save['best_so_far'] = best_so_far print(f'>> Saving model to {checkpoint_path} ...') save_on_master(to_save, checkpoint_path) def load_model(args, model_without_ddp, optimizer, loss_scaler): args.start_epoch = 0 best_so_far = None if args.resume is not None: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') print("Resume checkpoint %s" % args.resume) model_without_ddp.load_state_dict(checkpoint['model'], strict=False) args.start_epoch = checkpoint['epoch'] + 1 optimizer.load_state_dict(checkpoint['optimizer']) if 'scaler' in checkpoint: loss_scaler.load_state_dict(checkpoint['scaler']) if 'best_so_far' in checkpoint: best_so_far = checkpoint['best_so_far'] print(" & best_so_far={:g}".format(best_so_far)) else: print("") print("With optim & sched! start_epoch={:d}".format(args.start_epoch), end='') return best_so_far def all_reduce_mean(x): world_size = get_world_size() if world_size > 1: x_reduce = torch.tensor(x).cuda() dist.all_reduce(x_reduce) x_reduce /= world_size return x_reduce.item() else: return x def _replace(text, src, tgt, rm=''): """ Advanced string replacement. Given a text: - replace all elements in src by the corresponding element in tgt - remove all elements in rm """ if len(tgt) == 1: tgt = tgt * len(src) assert len(src) == len(tgt), f"'{src}' and '{tgt}' should have the same len" for s,t in zip(src, tgt): text = text.replace(s,t) for c in rm: text = text.replace(c,'') return text def filename( obj ): """ transform a python obj or cmd into a proper filename. - \1 gets replaced by slash '/' - \2 gets replaced by comma ',' """ if not isinstance(obj, str): obj = repr(obj) obj = str(obj).replace('()','') obj = _replace(obj, '_,(*/\1\2','-__x%/,', rm=' )\'"') assert all(len(s) < 256 for s in obj.split(os.sep)), 'filename too long (>256 characters):\n'+obj return obj def _get_num_layer_for_vit(var_name, enc_depth, dec_depth): if var_name in ("cls_token", "mask_token", "pos_embed", "global_tokens"): return 0 elif var_name.startswith("patch_embed"): return 0 elif var_name.startswith("enc_blocks"): layer_id = int(var_name.split('.')[1]) return layer_id + 1 elif var_name.startswith('decoder_embed') or var_name.startswith('enc_norm'): # part of the last black return enc_depth elif var_name.startswith('dec_blocks'): layer_id = int(var_name.split('.')[1]) return enc_depth + layer_id + 1 elif var_name.startswith('dec_norm'): # part of the last block return enc_depth + dec_depth elif any(var_name.startswith(k) for k in ['head','prediction_head']): return enc_depth + dec_depth + 1 else: raise NotImplementedError(var_name) def get_parameter_groups(model, weight_decay, layer_decay=1.0, skip_list=(), no_lr_scale_list=[]): parameter_group_names = {} parameter_group_vars = {} enc_depth, dec_depth = None, None # prepare layer decay values assert layer_decay==1.0 or 0.<layer_decay<1. if layer_decay<1.: enc_depth = model.enc_depth dec_depth = model.dec_depth if hasattr(model, 'dec_blocks') else 0 num_layers = enc_depth+dec_depth layer_decay_values = list(layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2)) for name, param in model.named_parameters(): if not param.requires_grad: continue # frozen weights # Assign weight decay values if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay # Assign layer ID for LR scaling if layer_decay<1.: skip_scale = False layer_id = _get_num_layer_for_vit(name, enc_depth, dec_depth) group_name = "layer_%d_%s" % (layer_id, group_name) if name in no_lr_scale_list: skip_scale = True group_name = f'{group_name}_no_lr_scale' else: layer_id = 0 skip_scale = True if group_name not in parameter_group_names: if not skip_scale: scale = layer_decay_values[layer_id] else: scale = 1. parameter_group_names[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name]["params"].append(param) parameter_group_names[group_name]["params"].append(name) print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) return list(parameter_group_vars.values()) def adjust_learning_rate(optimizer, epoch, args): """Decay the learning rate with half-cycle cosine after warmup""" if epoch < args.warmup_epochs: lr = args.lr * epoch / args.warmup_epochs else: lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \ (1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs))) for param_group in optimizer.param_groups: if "lr_scale" in param_group: param_group["lr"] = lr * param_group["lr_scale"] else: param_group["lr"] = lr return lr