import os import glob import pickle from tqdm import trange import numpy as np import h5py from numpy.core.fromnumeric import reshape from .base_dumper import BaseDumper import sys ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")) sys.path.insert(0, ROOT_DIR) import utils class fmbench(BaseDumper): def get_seqs(self): data_dir=os.path.join(self.config['rawdata_dir']) self.split_list=[] for seq in self.config['data_seq']: cur_split_list=np.unique(np.loadtxt(os.path.join(data_dir,seq,'pairs_which_dataset.txt'),dtype=str)) self.split_list.append(cur_split_list) for split in cur_split_list: split_dir=os.path.join(data_dir,seq,split) dump_dir=os.path.join(self.config['feature_dump_dir'],seq,split) cur_img_seq=glob.glob(os.path.join(split_dir,'Images','*.jpg')) cur_dump_seq=[os.path.join(dump_dir,path.split('/')[-1])+'_'+self.config['extractor']['name']+'_'+str(self.config['extractor']['num_kpt'])\ +'.hdf5' for path in cur_img_seq] self.img_seq+=cur_img_seq self.dump_seq+=cur_dump_seq def format_dump_folder(self): if not os.path.exists(self.config['feature_dump_dir']): os.mkdir(self.config['feature_dump_dir']) for seq_index in range(len(self.config['data_seq'])): seq_dir=os.path.join(self.config['feature_dump_dir'],self.config['data_seq'][seq_index]) if not os.path.exists(seq_dir): os.mkdir(seq_dir) for split in self.split_list[seq_index]: split_dir=os.path.join(seq_dir,split) if not os.path.exists(split_dir): os.mkdir(split_dir) def format_dump_data(self): print('Formatting data...') self.data={'K1':[],'K2':[],'R':[],'T':[],'e':[],'f':[],'fea_path1':[],'fea_path2':[],'img_path1':[],'img_path2':[]} for seq_index in range(len(self.config['data_seq'])): seq=self.config['data_seq'][seq_index] print(seq) pair_list=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'pairs_with_gt.txt'),dtype=float) which_split_list=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'pairs_which_dataset.txt'),dtype=str) for pair_index in trange(len(pair_list)): cur_pair=pair_list[pair_index] cur_split=which_split_list[pair_index] index1,index2=int(cur_pair[0]),int(cur_pair[1]) #get intrinsic camera=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,cur_split,'Camera.txt'),dtype=float) K1,K2=camera[index1].reshape([3,3]),camera[index2].reshape([3,3]) #get pose pose=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,cur_split,'Poses.txt'),dtype=float) pose1,pose2=pose[index1].reshape([3,4]),pose[index2].reshape([3,4]) R1,R2,t1,t2=pose1[:3,:3],pose2[:3,:3],pose1[:3,3][:,np.newaxis],pose2[:3,3][:,np.newaxis] dR = np.dot(R2, R1.T) dt = t2 - np.dot(dR, t1) dt /= np.sqrt(np.sum(dt**2)) e_gt_unnorm = np.reshape(np.matmul( np.reshape(utils.evaluation_utils.np_skew_symmetric(dt.astype('float64').reshape(1, 3)), (3, 3)), np.reshape(dR.astype('float64'), (3, 3))), (3, 3)) e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm) f=cur_pair[2:].reshape([3,3]) f_gt=f / np.linalg.norm(f) self.data['K1'].append(K1),self.data['K2'].append(K2) self.data['R'].append(dR),self.data['T'].append(dt) self.data['e'].append(e_gt),self.data['f'].append(f_gt) img_path1,img_path2=os.path.join(seq,cur_split,'Images',str(index1).zfill(8)+'.jpg'),\ os.path.join(seq,cur_split,'Images',str(index1).zfill(8)+'.jpg') fea_path1,fea_path2=os.path.join(self.config['feature_dump_dir'],seq,cur_split,str(index1).zfill(8)+'.jpg'+'_'+self.config['extractor']['name'] +'_'+str(self.config['extractor']['num_kpt'])+'.hdf5'),\ os.path.join(self.config['feature_dump_dir'],seq,cur_split,str(index2).zfill(8)+'.jpg'+'_'+self.config['extractor']['name'] +'_'+str(self.config['extractor']['num_kpt'])+'.hdf5') self.data['img_path1'].append(img_path1),self.data['img_path2'].append(img_path2) self.data['fea_path1'].append(fea_path1),self.data['fea_path2'].append(fea_path2) self.form_standard_dataset()