import os import glob import pickle import numpy as np import h5py from .base_dumper import BaseDumper import sys ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")) sys.path.insert(0, ROOT_DIR) import utils class yfcc(BaseDumper): def get_seqs(self): data_dir=os.path.join(self.config['rawdata_dir'],'yfcc100m') for seq in self.config['data_seq']: for split in self.config['data_split']: split_dir=os.path.join(data_dir,seq,split) dump_dir=os.path.join(self.config['feature_dump_dir'],seq,split) cur_img_seq=glob.glob(os.path.join(split_dir,'images','*.jpg')) cur_dump_seq=[os.path.join(dump_dir,path.split('/')[-1])+'_'+self.config['extractor']['name']+'_'+str(self.config['extractor']['num_kpt'])\ +'.hdf5' for path in cur_img_seq] self.img_seq+=cur_img_seq self.dump_seq+=cur_dump_seq def format_dump_folder(self): if not os.path.exists(self.config['feature_dump_dir']): os.mkdir(self.config['feature_dump_dir']) for seq in self.config['data_seq']: seq_dir=os.path.join(self.config['feature_dump_dir'],seq) if not os.path.exists(seq_dir): os.mkdir(seq_dir) for split in self.config['data_split']: split_dir=os.path.join(seq_dir,split) if not os.path.exists(split_dir): os.mkdir(split_dir) def format_dump_data(self): print('Formatting data...') pair_path=os.path.join(self.config['rawdata_dir'],'pairs') self.data={'K1':[],'K2':[],'R':[],'T':[],'e':[],'f':[],'fea_path1':[],'fea_path2':[],'img_path1':[],'img_path2':[]} for seq in self.config['data_seq']: pair_name=os.path.join(pair_path,seq+'-te-1000-pairs.pkl') with open(pair_name, 'rb') as f: pairs=pickle.load(f) #generate id list seq_dir=os.path.join(self.config['rawdata_dir'],'yfcc100m',seq,'test') name_list=np.loadtxt(os.path.join(seq_dir,'images.txt'),dtype=str) cam_name_list=np.loadtxt(os.path.join(seq_dir,'calibration.txt'),dtype=str) for cur_pair in pairs: index1,index2=cur_pair[0],cur_pair[1] cam1,cam2=h5py.File(os.path.join(seq_dir,cam_name_list[index1]),'r'),h5py.File(os.path.join(seq_dir,cam_name_list[index2]),'r') K1,K2=cam1['K'][()],cam2['K'][()] [w1,h1],[w2,h2]=cam1['imsize'][()][0],cam2['imsize'][()][0] cx1,cy1,cx2,cy2 = (w1 - 1.0) * 0.5,(h1 - 1.0) * 0.5, (w2 - 1.0) * 0.5,(h2 - 1.0) * 0.5 K1[0,2],K1[1,2],K2[0,2],K2[1,2]=cx1,cy1,cx2,cy2 R1,R2,t1,t2=cam1['R'][()],cam2['R'][()],cam1['T'][()].reshape([3,1]),cam2['T'][()].reshape([3,1]) dR = np.dot(R2, R1.T) dt = t2 - np.dot(dR, t1) dt /= np.sqrt(np.sum(dt**2)) e_gt_unnorm = np.reshape(np.matmul( np.reshape(utils.evaluation_utils.np_skew_symmetric(dt.astype('float64').reshape(1, 3)), (3, 3)), np.reshape(dR.astype('float64'), (3, 3))), (3, 3)) e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm) f_gt_unnorm=np.linalg.inv(K2.T)@e_gt@np.linalg.inv(K1) f_gt = f_gt_unnorm / np.linalg.norm(f_gt_unnorm) self.data['K1'].append(K1),self.data['K2'].append(K2) self.data['R'].append(dR),self.data['T'].append(dt) self.data['e'].append(e_gt),self.data['f'].append(f_gt) img_path1,img_path2=os.path.join('yfcc100m',seq,'test',name_list[index1]),os.path.join('yfcc100m',seq,'test',name_list[index2]) dump_seq_dir=os.path.join(self.config['feature_dump_dir'],seq,'test') fea_path1,fea_path2=os.path.join(dump_seq_dir,name_list[index1].split('/')[-1]+'_'+self.config['extractor']['name'] +'_'+str(self.config['extractor']['num_kpt'])+'.hdf5'),\ os.path.join(dump_seq_dir,name_list[index2].split('/')[-1]+'_'+self.config['extractor']['name'] +'_'+str(self.config['extractor']['num_kpt'])+'.hdf5') self.data['img_path1'].append(img_path1),self.data['img_path2'].append(img_path2) self.data['fea_path1'].append(fea_path1),self.data['fea_path2'].append(fea_path2) self.form_standard_dataset()