""" Some useful functions for dataset pre-processing """ import cv2 import numpy as np import shapely.geometry as sg from ..synthetic_util import get_line_map from . import homographic_transforms as homoaug def random_scaling(image, junctions, line_map, scale=1., h_crop=0, w_crop=0): H, W = image.shape[:2] H_scale, W_scale = round(H * scale), round(W * scale) # Nothing to do if the scale is too close to 1 if H_scale == H and W_scale == W: return (image, junctions, line_map, np.ones([H, W], dtype=np.int)) # Zoom-in => resize and random crop if scale >= 1.: image_big = cv2.resize(image, (W_scale, H_scale), interpolation=cv2.INTER_LINEAR) # Crop the image image = image_big[h_crop:h_crop+H, w_crop:w_crop+W, ...] valid_mask = np.ones([H, W], dtype=np.int) # Process junctions junctions, line_map = process_junctions_and_line_map( h_crop, w_crop, H, W, H_scale, W_scale, junctions, line_map, "zoom-in") # Zoom-out => resize and pad else: image_shape_raw = image.shape image_small = cv2.resize(image, (W_scale, H_scale), interpolation=cv2.INTER_AREA) # Decide the pasting location h_start = round((H - H_scale) / 2) w_start = round((W - W_scale) / 2) # Paste the image to the middle image = np.zeros(image_shape_raw, dtype=np.float) image[h_start:h_start+H_scale, w_start:w_start+W_scale, ...] = image_small valid_mask = np.zeros([H, W], dtype=np.int) valid_mask[h_start:h_start+H_scale, w_start:w_start+W_scale] = 1 # Process the junctions junctions, line_map = process_junctions_and_line_map( h_start, w_start, H, W, H_scale, W_scale, junctions, line_map, "zoom-out") return image, junctions, line_map, valid_mask def process_junctions_and_line_map(h_start, w_start, H, W, H_scale, W_scale, junctions, line_map, mode="zoom-in"): if mode == "zoom-in": junctions[:, 0] = junctions[:, 0] * H_scale / H junctions[:, 1] = junctions[:, 1] * W_scale / W line_segments = homoaug.convert_to_line_segments(junctions, line_map) # Crop segments to the new boundaries line_segments_new = np.zeros([0, 4]) image_poly = sg.Polygon( [[w_start, h_start], [w_start+W, h_start], [w_start+W, h_start+H], [w_start, h_start+H] ]) for idx in range(line_segments.shape[0]): # Get the line segment seg_raw = line_segments[idx, :] # in HW format. # Convert to shapely line (flip to xy format) seg = sg.LineString([np.flip(seg_raw[:2]), np.flip(seg_raw[2:])]) # The line segment is just inside the image. if seg.intersection(image_poly) == seg: line_segments_new = np.concatenate( (line_segments_new, seg_raw[None, ...]), axis=0) # Intersect with the image. elif seg.intersects(image_poly): # Check intersection try: p = np.array( seg.intersection(image_poly).coords).reshape([-1, 4]) # If intersect at exact one point, just continue. except: continue segment = np.concatenate([np.flip(p[0, :2]), np.flip(p[0, 2:], axis=0)])[None, ...] line_segments_new = np.concatenate( (line_segments_new, segment), axis=0) else: continue line_segments_new = (np.round(line_segments_new)).astype(np.int) # Filter segments with 0 length segment_lens = np.linalg.norm( line_segments_new[:, :2] - line_segments_new[:, 2:], axis=-1) seg_mask = segment_lens != 0 line_segments_new = line_segments_new[seg_mask, :] # Convert back to junctions and line_map junctions_new = np.concatenate( (line_segments_new[:, :2], line_segments_new[:, 2:]), axis=0) if junctions_new.shape[0] == 0: junctions_new = np.zeros([0, 2]) line_map = np.zeros([0, 0]) else: junctions_new = np.unique(junctions_new, axis=0) # Generate line map from points and segments line_map = get_line_map(junctions_new, line_segments_new).astype(np.int) junctions_new[:, 0] -= h_start junctions_new[:, 1] -= w_start junctions = junctions_new elif mode == "zoom-out": # Process the junctions junctions[:, 0] = (junctions[:, 0] * H_scale / H) + h_start junctions[:, 1] = (junctions[:, 1] * W_scale / W) + w_start else: raise ValueError("[Error] unknown mode...") return junctions, line_map