import os import cv2 import argparse import numpy as np import torch import torchvision from torchvision import datasets, transforms from torch.autograd import Variable from network_v0.model import PointModel from datasets.hp_loader import PatchesDataset from torch.utils.data import DataLoader from evaluation.evaluate import evaluate_keypoint_net def main(): parser = argparse.ArgumentParser(description='Testing') parser.add_argument('--device', default=0, type=int, help='which gpu to run on.') parser.add_argument('--test_dir', required=True, type=str, help='Test data path.') opt = parser.parse_args() torch.manual_seed(0) use_gpu = torch.cuda.is_available() if use_gpu: torch.cuda.set_device(opt.device) # Load data in 320x240 hp_dataset_320x240 = PatchesDataset(root_dir=opt.test_dir, use_color=True, output_shape=(320, 240), type='all') data_loader_320x240 = DataLoader(hp_dataset_320x240, batch_size=1, pin_memory=False, shuffle=False, num_workers=4, worker_init_fn=None, sampler=None) # Load data in 640x480 hp_dataset_640x480 = PatchesDataset(root_dir=opt.test_dir, use_color=True, output_shape=(640, 480), type='all') data_loader_640x480 = DataLoader(hp_dataset_640x480, batch_size=1, pin_memory=False, shuffle=False, num_workers=4, worker_init_fn=None, sampler=None) # Load model model = PointModel(is_test=True) ckpt = torch.load('./checkpoints/PointModel_v0.pth') model.load_state_dict(ckpt['model_state']) model = model.eval() if use_gpu: model = model.cuda() print('Evaluating in 320x240, 300 points') rep, loc, c1, c3, c5, mscore = evaluate_keypoint_net( data_loader_320x240, model, output_shape=(320, 240), top_k=300) print('Repeatability: {0:.3f}'.format(rep)) print('Localization Error: {0:.3f}'.format(loc)) print('H-1 Accuracy: {:.3f}'.format(c1)) print('H-3 Accuracy: {:.3f}'.format(c3)) print('H-5 Accuracy: {:.3f}'.format(c5)) print('Matching Score: {:.3f}'.format(mscore)) print('\n') print('Evaluating in 640x480, 1000 points') rep, loc, c1, c3, c5, mscore = evaluate_keypoint_net( data_loader_640x480, model, output_shape=(640, 480), top_k=1000) print('Repeatability: {0:.3f}'.format(rep)) print('Localization Error: {0:.3f}'.format(loc)) print('H-1 Accuracy: {:.3f}'.format(c1)) print('H-3 Accuracy: {:.3f}'.format(c3)) print('H-5 Accuracy: {:.3f}'.format(c5)) print('Matching Score: {:.3f}'.format(mscore)) print('\n') if __name__ == '__main__': main()