import subprocess import sys from pathlib import Path import numpy as np import torch from .. import MODEL_REPO_ID, logger from ..utils.base_model import BaseModel thirdparty_path = Path(__file__).parent / "../../third_party" sys.path.append(str(thirdparty_path)) from omniglue.src import omniglue omniglue_path = thirdparty_path / "omniglue" class OmniGlue(BaseModel): default_conf = { "match_threshold": 0.02, "max_keypoints": 2048, } required_inputs = ["image0", "image1"] dino_v2_link_dict = { "dinov2_vitb14_pretrain.pth": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_pretrain.pth" } def _init(self, conf): logger.info("Loading OmniGlue model") og_model_path = self._download_model( repo_id=MODEL_REPO_ID, filename="{}/{}".format(Path(__file__).stem, "omniglue.onnx"), ) sp_model_path = self._download_model( repo_id=MODEL_REPO_ID, filename="{}/{}".format(Path(__file__).stem, "sp_v6.onnx"), ) dino_model_path = self._download_model( repo_id=MODEL_REPO_ID, filename="{}/{}".format( Path(__file__).stem, "dinov2_vitb14_pretrain.pth" ), ) self.net = omniglue.OmniGlue( og_export=str(og_model_path), sp_export=str(sp_model_path), dino_export=str(dino_model_path), max_keypoints=self.conf["max_keypoints"], ) logger.info("Loaded OmniGlue model done!") def _forward(self, data): image0_rgb_np = data["image0"][0].permute(1, 2, 0).cpu().numpy() * 255 image1_rgb_np = data["image1"][0].permute(1, 2, 0).cpu().numpy() * 255 image0_rgb_np = image0_rgb_np.astype(np.uint8) # RGB, 0-255 image1_rgb_np = image1_rgb_np.astype(np.uint8) # RGB, 0-255 match_kp0, match_kp1, match_confidences = self.net.FindMatches( image0_rgb_np, image1_rgb_np, self.conf["max_keypoints"] ) # filter matches match_threshold = self.conf["match_threshold"] keep_idx = [] for i in range(match_kp0.shape[0]): if match_confidences[i] > match_threshold: keep_idx.append(i) scores = torch.from_numpy(match_confidences[keep_idx]).reshape(-1, 1) pred = { "keypoints0": torch.from_numpy(match_kp0[keep_idx]), "keypoints1": torch.from_numpy(match_kp1[keep_idx]), "mconf": scores, } top_k = self.conf["max_keypoints"] if top_k is not None and len(scores) > top_k: keep = torch.argsort(scores, descending=True)[:top_k] scores = scores[keep] pred["keypoints0"], pred["keypoints1"], pred["mconf"] = ( pred["keypoints0"][keep], pred["keypoints1"][keep], scores, ) return pred