from collections import defaultdict import pprint from loguru import logger from pathlib import Path import torch import numpy as np import pytorch_lightning as pl from matplotlib import pyplot as plt from src.ASpanFormer.aspanformer import ASpanFormer from src.ASpanFormer.utils.supervision import compute_supervision_coarse, compute_supervision_fine from src.losses.aspan_loss import ASpanLoss from src.optimizers import build_optimizer, build_scheduler from src.utils.metrics import ( compute_symmetrical_epipolar_errors,compute_symmetrical_epipolar_errors_offset_bidirectional, compute_pose_errors, aggregate_metrics ) from src.utils.plotting import make_matching_figures,make_matching_figures_offset from src.utils.comm import gather, all_gather from src.utils.misc import lower_config, flattenList from src.utils.profiler import PassThroughProfiler class PL_ASpanFormer(pl.LightningModule): def __init__(self, config, pretrained_ckpt=None, profiler=None, dump_dir=None): """ TODO: - use the new version of PL logging API. """ super().__init__() # Misc self.config = config # full config _config = lower_config(self.config) self.loftr_cfg = lower_config(_config['aspan']) self.profiler = profiler or PassThroughProfiler() self.n_vals_plot = max(config.TRAINER.N_VAL_PAIRS_TO_PLOT // config.TRAINER.WORLD_SIZE, 1) # Matcher: LoFTR self.matcher = ASpanFormer(config=_config['aspan']) self.loss = ASpanLoss(_config) # Pretrained weights print(pretrained_ckpt) if pretrained_ckpt: print('load') state_dict = torch.load(pretrained_ckpt, map_location='cpu')['state_dict'] msg=self.matcher.load_state_dict(state_dict, strict=False) print(msg) logger.info(f"Load \'{pretrained_ckpt}\' as pretrained checkpoint") # Testing self.dump_dir = dump_dir def configure_optimizers(self): # FIXME: The scheduler did not work properly when `--resume_from_checkpoint` optimizer = build_optimizer(self, self.config) scheduler = build_scheduler(self.config, optimizer) return [optimizer], [scheduler] def optimizer_step( self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_native_amp, using_lbfgs): # learning rate warm up warmup_step = self.config.TRAINER.WARMUP_STEP if self.trainer.global_step < warmup_step: if self.config.TRAINER.WARMUP_TYPE == 'linear': base_lr = self.config.TRAINER.WARMUP_RATIO * self.config.TRAINER.TRUE_LR lr = base_lr + \ (self.trainer.global_step / self.config.TRAINER.WARMUP_STEP) * \ abs(self.config.TRAINER.TRUE_LR - base_lr) for pg in optimizer.param_groups: pg['lr'] = lr elif self.config.TRAINER.WARMUP_TYPE == 'constant': pass else: raise ValueError(f'Unknown lr warm-up strategy: {self.config.TRAINER.WARMUP_TYPE}') # update params optimizer.step(closure=optimizer_closure) optimizer.zero_grad() def _trainval_inference(self, batch): with self.profiler.profile("Compute coarse supervision"): compute_supervision_coarse(batch, self.config) with self.profiler.profile("LoFTR"): self.matcher(batch) with self.profiler.profile("Compute fine supervision"): compute_supervision_fine(batch, self.config) with self.profiler.profile("Compute losses"): self.loss(batch) def _compute_metrics(self, batch): with self.profiler.profile("Copmute metrics"): compute_symmetrical_epipolar_errors(batch) # compute epi_errs for each match compute_symmetrical_epipolar_errors_offset_bidirectional(batch) # compute epi_errs for offset match compute_pose_errors(batch, self.config) # compute R_errs, t_errs, pose_errs for each pair rel_pair_names = list(zip(*batch['pair_names'])) bs = batch['image0'].size(0) metrics = { # to filter duplicate pairs caused by DistributedSampler 'identifiers': ['#'.join(rel_pair_names[b]) for b in range(bs)], 'epi_errs': [batch['epi_errs'][batch['m_bids'] == b].cpu().numpy() for b in range(bs)], 'epi_errs_offset': [batch['epi_errs_offset_left'][batch['offset_bids_left'] == b].cpu().numpy() for b in range(bs)], #only consider left side 'R_errs': batch['R_errs'], 't_errs': batch['t_errs'], 'inliers': batch['inliers']} ret_dict = {'metrics': metrics} return ret_dict, rel_pair_names def training_step(self, batch, batch_idx): self._trainval_inference(batch) # logging if self.trainer.global_rank == 0 and self.global_step % self.trainer.log_every_n_steps == 0: # scalars for k, v in batch['loss_scalars'].items(): if not k.startswith('loss_flow') and not k.startswith('conf_'): self.logger.experiment.add_scalar(f'train/{k}', v, self.global_step) #log offset_loss and conf for each layer and level layer_num=self.loftr_cfg['coarse']['layer_num'] for layer_index in range(layer_num): log_title='layer_'+str(layer_index) self.logger.experiment.add_scalar(log_title+'/offset_loss', batch['loss_scalars']['loss_flow_'+str(layer_index)], self.global_step) self.logger.experiment.add_scalar(log_title+'/conf_', batch['loss_scalars']['conf_'+str(layer_index)],self.global_step) # net-params if self.config.ASPAN.MATCH_COARSE.MATCH_TYPE == 'sinkhorn': self.logger.experiment.add_scalar( f'skh_bin_score', self.matcher.coarse_matching.bin_score.clone().detach().cpu().data, self.global_step) # figures if self.config.TRAINER.ENABLE_PLOTTING: compute_symmetrical_epipolar_errors(batch) # compute epi_errs for each match figures = make_matching_figures(batch, self.config, self.config.TRAINER.PLOT_MODE) for k, v in figures.items(): self.logger.experiment.add_figure(f'train_match/{k}', v, self.global_step) #plot offset if self.global_step%200==0: compute_symmetrical_epipolar_errors_offset_bidirectional(batch) figures_left = make_matching_figures_offset(batch, self.config, self.config.TRAINER.PLOT_MODE,side='_left') figures_right = make_matching_figures_offset(batch, self.config, self.config.TRAINER.PLOT_MODE,side='_right') for k, v in figures_left.items(): self.logger.experiment.add_figure(f'train_offset/{k}'+'_left', v, self.global_step) figures = make_matching_figures_offset(batch, self.config, self.config.TRAINER.PLOT_MODE,side='_right') for k, v in figures_right.items(): self.logger.experiment.add_figure(f'train_offset/{k}'+'_right', v, self.global_step) return {'loss': batch['loss']} def training_epoch_end(self, outputs): avg_loss = torch.stack([x['loss'] for x in outputs]).mean() if self.trainer.global_rank == 0: self.logger.experiment.add_scalar( 'train/avg_loss_on_epoch', avg_loss, global_step=self.current_epoch) def validation_step(self, batch, batch_idx): self._trainval_inference(batch) ret_dict, _ = self._compute_metrics(batch) #this func also compute the epi_errors val_plot_interval = max(self.trainer.num_val_batches[0] // self.n_vals_plot, 1) figures = {self.config.TRAINER.PLOT_MODE: []} figures_offset = {self.config.TRAINER.PLOT_MODE: []} if batch_idx % val_plot_interval == 0: figures = make_matching_figures(batch, self.config, mode=self.config.TRAINER.PLOT_MODE) figures_offset=make_matching_figures_offset(batch, self.config, self.config.TRAINER.PLOT_MODE,'_left') return { **ret_dict, 'loss_scalars': batch['loss_scalars'], 'figures': figures, 'figures_offset_left':figures_offset } def validation_epoch_end(self, outputs): # handle multiple validation sets multi_outputs = [outputs] if not isinstance(outputs[0], (list, tuple)) else outputs multi_val_metrics = defaultdict(list) for valset_idx, outputs in enumerate(multi_outputs): # since pl performs sanity_check at the very begining of the training cur_epoch = self.trainer.current_epoch if not self.trainer.resume_from_checkpoint and self.trainer.running_sanity_check: cur_epoch = -1 # 1. loss_scalars: dict of list, on cpu _loss_scalars = [o['loss_scalars'] for o in outputs] loss_scalars = {k: flattenList(all_gather([_ls[k] for _ls in _loss_scalars])) for k in _loss_scalars[0]} # 2. val metrics: dict of list, numpy _metrics = [o['metrics'] for o in outputs] metrics = {k: flattenList(all_gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]} # NOTE: all ranks need to `aggregate_merics`, but only log at rank-0 val_metrics_4tb = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR) for thr in [5, 10, 20]: multi_val_metrics[f'auc@{thr}'].append(val_metrics_4tb[f'auc@{thr}']) # 3. figures _figures = [o['figures'] for o in outputs] figures = {k: flattenList(gather(flattenList([_me[k] for _me in _figures]))) for k in _figures[0]} # tensorboard records only on rank 0 if self.trainer.global_rank == 0: for k, v in loss_scalars.items(): mean_v = torch.stack(v).mean() self.logger.experiment.add_scalar(f'val_{valset_idx}/avg_{k}', mean_v, global_step=cur_epoch) for k, v in val_metrics_4tb.items(): self.logger.experiment.add_scalar(f"metrics_{valset_idx}/{k}", v, global_step=cur_epoch) for k, v in figures.items(): if self.trainer.global_rank == 0: for plot_idx, fig in enumerate(v): self.logger.experiment.add_figure( f'val_match_{valset_idx}/{k}/pair-{plot_idx}', fig, cur_epoch, close=True) plt.close('all') for thr in [5, 10, 20]: # log on all ranks for ModelCheckpoint callback to work properly self.log(f'auc@{thr}', torch.tensor(np.mean(multi_val_metrics[f'auc@{thr}']))) # ckpt monitors on this def test_step(self, batch, batch_idx): with self.profiler.profile("LoFTR"): self.matcher(batch) ret_dict, rel_pair_names = self._compute_metrics(batch) with self.profiler.profile("dump_results"): if self.dump_dir is not None: # dump results for further analysis keys_to_save = {'mkpts0_f', 'mkpts1_f', 'mconf', 'epi_errs'} pair_names = list(zip(*batch['pair_names'])) bs = batch['image0'].shape[0] dumps = [] for b_id in range(bs): item = {} mask = batch['m_bids'] == b_id item['pair_names'] = pair_names[b_id] item['identifier'] = '#'.join(rel_pair_names[b_id]) for key in keys_to_save: item[key] = batch[key][mask].cpu().numpy() for key in ['R_errs', 't_errs', 'inliers']: item[key] = batch[key][b_id] dumps.append(item) ret_dict['dumps'] = dumps return ret_dict def test_epoch_end(self, outputs): # metrics: dict of list, numpy _metrics = [o['metrics'] for o in outputs] metrics = {k: flattenList(gather(flattenList([_me[k] for _me in _metrics]))) for k in _metrics[0]} # [{key: [{...}, *#bs]}, *#batch] if self.dump_dir is not None: Path(self.dump_dir).mkdir(parents=True, exist_ok=True) _dumps = flattenList([o['dumps'] for o in outputs]) # [{...}, #bs*#batch] dumps = flattenList(gather(_dumps)) # [{...}, #proc*#bs*#batch] logger.info(f'Prediction and evaluation results will be saved to: {self.dump_dir}') if self.trainer.global_rank == 0: print(self.profiler.summary()) val_metrics_4tb = aggregate_metrics(metrics, self.config.TRAINER.EPI_ERR_THR) logger.info('\n' + pprint.pformat(val_metrics_4tb)) if self.dump_dir is not None: np.save(Path(self.dump_dir) / 'LoFTR_pred_eval', dumps)