import os.path as osp import numpy as np import torch from romatch.utils import * from PIL import Image from tqdm import tqdm class ScanNetBenchmark: def __init__(self, data_root="data/scannet") -> None: self.data_root = data_root def benchmark(self, model, model_name = None): model.train(False) with torch.no_grad(): data_root = self.data_root tmp = np.load(osp.join(data_root, "test.npz")) pairs, rel_pose = tmp["name"], tmp["rel_pose"] tot_e_t, tot_e_R, tot_e_pose = [], [], [] pair_inds = np.random.choice( range(len(pairs)), size=len(pairs), replace=False ) for pairind in tqdm(pair_inds, smoothing=0.9): scene = pairs[pairind] scene_name = f"scene0{scene[0]}_00" im_A_path = osp.join( self.data_root, "scans_test", scene_name, "color", f"{scene[2]}.jpg", ) im_A = Image.open(im_A_path) im_B_path = osp.join( self.data_root, "scans_test", scene_name, "color", f"{scene[3]}.jpg", ) im_B = Image.open(im_B_path) T_gt = rel_pose[pairind].reshape(3, 4) R, t = T_gt[:3, :3], T_gt[:3, 3] K = np.stack( [ np.array([float(i) for i in r.split()]) for r in open( osp.join( self.data_root, "scans_test", scene_name, "intrinsic", "intrinsic_color.txt", ), "r", ) .read() .split("\n") if r ] ) w1, h1 = im_A.size w2, h2 = im_B.size K1 = K.copy() K2 = K.copy() dense_matches, dense_certainty = model.match(im_A_path, im_B_path) sparse_matches, sparse_certainty = model.sample( dense_matches, dense_certainty, 5000 ) scale1 = 480 / min(w1, h1) scale2 = 480 / min(w2, h2) w1, h1 = scale1 * w1, scale1 * h1 w2, h2 = scale2 * w2, scale2 * h2 K1 = K1 * scale1 K2 = K2 * scale2 offset = 0.5 kpts1 = sparse_matches[:, :2] kpts1 = ( np.stack( ( w1 * (kpts1[:, 0] + 1) / 2 - offset, h1 * (kpts1[:, 1] + 1) / 2 - offset, ), axis=-1, ) ) kpts2 = sparse_matches[:, 2:] kpts2 = ( np.stack( ( w2 * (kpts2[:, 0] + 1) / 2 - offset, h2 * (kpts2[:, 1] + 1) / 2 - offset, ), axis=-1, ) ) for _ in range(5): shuffling = np.random.permutation(np.arange(len(kpts1))) kpts1 = kpts1[shuffling] kpts2 = kpts2[shuffling] try: norm_threshold = 0.5 / ( np.mean(np.abs(K1[:2, :2])) + np.mean(np.abs(K2[:2, :2]))) R_est, t_est, mask = estimate_pose( kpts1, kpts2, K1, K2, norm_threshold, conf=0.99999, ) T1_to_2_est = np.concatenate((R_est, t_est), axis=-1) # e_t, e_R = compute_pose_error(T1_to_2_est, R, t) e_pose = max(e_t, e_R) except Exception as e: print(repr(e)) e_t, e_R = 90, 90 e_pose = max(e_t, e_R) tot_e_t.append(e_t) tot_e_R.append(e_R) tot_e_pose.append(e_pose) tot_e_t.append(e_t) tot_e_R.append(e_R) tot_e_pose.append(e_pose) tot_e_pose = np.array(tot_e_pose) thresholds = [5, 10, 20] auc = pose_auc(tot_e_pose, thresholds) acc_5 = (tot_e_pose < 5).mean() acc_10 = (tot_e_pose < 10).mean() acc_15 = (tot_e_pose < 15).mean() acc_20 = (tot_e_pose < 20).mean() map_5 = acc_5 map_10 = np.mean([acc_5, acc_10]) map_20 = np.mean([acc_5, acc_10, acc_15, acc_20]) return { "auc_5": auc[0], "auc_10": auc[1], "auc_20": auc[2], "map_5": map_5, "map_10": map_10, "map_20": map_20, }