import argparse
import logging
import shutil
import tarfile
from collections.abc import Iterable
from pathlib import Path

import h5py
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
import torch
from omegaconf import OmegaConf

from ..geometry.wrappers import Camera, Pose
from ..models.cache_loader import CacheLoader
from ..settings import DATA_PATH
from ..utils.image import ImagePreprocessor, load_image
from ..utils.tools import fork_rng
from ..visualization.viz2d import plot_heatmaps, plot_image_grid
from .base_dataset import BaseDataset
from .utils import rotate_intrinsics, rotate_pose_inplane, scale_intrinsics

logger = logging.getLogger(__name__)
scene_lists_path = Path(__file__).parent / "megadepth_scene_lists"


def sample_n(data, num, seed=None):
    if len(data) > num:
        selected = np.random.RandomState(seed).choice(len(data), num, replace=False)
        return data[selected]
    else:
        return data


class MegaDepth(BaseDataset):
    default_conf = {
        # paths
        "data_dir": "megadepth/",
        "depth_subpath": "depth_undistorted/",
        "image_subpath": "Undistorted_SfM/",
        "info_dir": "scene_info/",  # @TODO: intrinsics problem?
        # Training
        "train_split": "train_scenes_clean.txt",
        "train_num_per_scene": 500,
        # Validation
        "val_split": "valid_scenes_clean.txt",
        "val_num_per_scene": None,
        "val_pairs": None,
        # Test
        "test_split": "test_scenes_clean.txt",
        "test_num_per_scene": None,
        "test_pairs": None,
        # data sampling
        "views": 2,
        "min_overlap": 0.3,  # only with D2-Net format
        "max_overlap": 1.0,  # only with D2-Net format
        "num_overlap_bins": 1,
        "sort_by_overlap": False,
        "triplet_enforce_overlap": False,  # only with views==3
        # image options
        "read_depth": True,
        "read_image": True,
        "grayscale": False,
        "preprocessing": ImagePreprocessor.default_conf,
        "p_rotate": 0.0,  # probability to rotate image by +/- 90°
        "reseed": False,
        "seed": 0,
        # features from cache
        "load_features": {
            "do": False,
            **CacheLoader.default_conf,
            "collate": False,
        },
    }

    def _init(self, conf):
        if not (DATA_PATH / conf.data_dir).exists():
            logger.info("Downloading the MegaDepth dataset.")
            self.download()

    def download(self):
        data_dir = DATA_PATH / self.conf.data_dir
        tmp_dir = data_dir.parent / "megadepth_tmp"
        if tmp_dir.exists():  # The previous download failed.
            shutil.rmtree(tmp_dir)
        tmp_dir.mkdir(exist_ok=True, parents=True)
        url_base = "https://cvg-data.inf.ethz.ch/megadepth/"
        for tar_name, out_name in (
            ("Undistorted_SfM.tar.gz", self.conf.image_subpath),
            ("depth_undistorted.tar.gz", self.conf.depth_subpath),
            ("scene_info.tar.gz", self.conf.info_dir),
        ):
            tar_path = tmp_dir / tar_name
            torch.hub.download_url_to_file(url_base + tar_name, tar_path)
            with tarfile.open(tar_path) as tar:
                tar.extractall(path=tmp_dir)
            tar_path.unlink()
            shutil.move(tmp_dir / tar_name.split(".")[0], tmp_dir / out_name)
        shutil.move(tmp_dir, data_dir)

    def get_dataset(self, split):
        assert self.conf.views in [1, 2, 3]
        if self.conf.views == 3:
            return _TripletDataset(self.conf, split)
        else:
            return _PairDataset(self.conf, split)


class _PairDataset(torch.utils.data.Dataset):
    def __init__(self, conf, split, load_sample=True):
        self.root = DATA_PATH / conf.data_dir
        assert self.root.exists(), self.root
        self.split = split
        self.conf = conf

        split_conf = conf[split + "_split"]
        if isinstance(split_conf, (str, Path)):
            scenes_path = scene_lists_path / split_conf
            scenes = scenes_path.read_text().rstrip("\n").split("\n")
        elif isinstance(split_conf, Iterable):
            scenes = list(split_conf)
        else:
            raise ValueError(f"Unknown split configuration: {split_conf}.")
        scenes = sorted(set(scenes))

        if conf.load_features.do:
            self.feature_loader = CacheLoader(conf.load_features)

        self.preprocessor = ImagePreprocessor(conf.preprocessing)

        self.images = {}
        self.depths = {}
        self.poses = {}
        self.intrinsics = {}
        self.valid = {}

        # load metadata
        self.info_dir = self.root / self.conf.info_dir
        self.scenes = []
        for scene in scenes:
            path = self.info_dir / (scene + ".npz")
            try:
                info = np.load(str(path), allow_pickle=True)
            except Exception:
                logger.warning(
                    "Cannot load scene info for scene %s at %s.", scene, path
                )
                continue
            self.images[scene] = info["image_paths"]
            self.depths[scene] = info["depth_paths"]
            self.poses[scene] = info["poses"]
            self.intrinsics[scene] = info["intrinsics"]
            self.scenes.append(scene)

        if load_sample:
            self.sample_new_items(conf.seed)
            assert len(self.items) > 0

    def sample_new_items(self, seed):
        logger.info("Sampling new %s data with seed %d.", self.split, seed)
        self.items = []
        split = self.split
        num_per_scene = self.conf[self.split + "_num_per_scene"]
        if isinstance(num_per_scene, Iterable):
            num_pos, num_neg = num_per_scene
        else:
            num_pos = num_per_scene
            num_neg = None
        if split != "train" and self.conf[split + "_pairs"] is not None:
            # Fixed validation or test pairs
            assert num_pos is None
            assert num_neg is None
            assert self.conf.views == 2
            pairs_path = scene_lists_path / self.conf[split + "_pairs"]
            for line in pairs_path.read_text().rstrip("\n").split("\n"):
                im0, im1 = line.split(" ")
                scene = im0.split("/")[0]
                assert im1.split("/")[0] == scene
                im0, im1 = [self.conf.image_subpath + im for im in [im0, im1]]
                assert im0 in self.images[scene]
                assert im1 in self.images[scene]
                idx0 = np.where(self.images[scene] == im0)[0][0]
                idx1 = np.where(self.images[scene] == im1)[0][0]
                self.items.append((scene, idx0, idx1, 1.0))
        elif self.conf.views == 1:
            for scene in self.scenes:
                if scene not in self.images:
                    continue
                valid = (self.images[scene] != None) | (  # noqa: E711
                    self.depths[scene] != None  # noqa: E711
                )
                ids = np.where(valid)[0]
                if num_pos and len(ids) > num_pos:
                    ids = np.random.RandomState(seed).choice(
                        ids, num_pos, replace=False
                    )
                ids = [(scene, i) for i in ids]
                self.items.extend(ids)
        else:
            for scene in self.scenes:
                path = self.info_dir / (scene + ".npz")
                assert path.exists(), path
                info = np.load(str(path), allow_pickle=True)
                valid = (self.images[scene] != None) & (  # noqa: E711
                    self.depths[scene] != None  # noqa: E711
                )
                ind = np.where(valid)[0]
                mat = info["overlap_matrix"][valid][:, valid]

                if num_pos is not None:
                    # Sample a subset of pairs, binned by overlap.
                    num_bins = self.conf.num_overlap_bins
                    assert num_bins > 0
                    bin_width = (
                        self.conf.max_overlap - self.conf.min_overlap
                    ) / num_bins
                    num_per_bin = num_pos // num_bins
                    pairs_all = []
                    for k in range(num_bins):
                        bin_min = self.conf.min_overlap + k * bin_width
                        bin_max = bin_min + bin_width
                        pairs_bin = (mat > bin_min) & (mat <= bin_max)
                        pairs_bin = np.stack(np.where(pairs_bin), -1)
                        pairs_all.append(pairs_bin)
                    # Skip bins with too few samples
                    has_enough_samples = [len(p) >= num_per_bin * 2 for p in pairs_all]
                    num_per_bin_2 = num_pos // max(1, sum(has_enough_samples))
                    pairs = []
                    for pairs_bin, keep in zip(pairs_all, has_enough_samples):
                        if keep:
                            pairs.append(sample_n(pairs_bin, num_per_bin_2, seed))
                    pairs = np.concatenate(pairs, 0)
                else:
                    pairs = (mat > self.conf.min_overlap) & (
                        mat <= self.conf.max_overlap
                    )
                    pairs = np.stack(np.where(pairs), -1)

                pairs = [(scene, ind[i], ind[j], mat[i, j]) for i, j in pairs]
                if num_neg is not None:
                    neg_pairs = np.stack(np.where(mat <= 0.0), -1)
                    neg_pairs = sample_n(neg_pairs, num_neg, seed)
                    pairs += [(scene, ind[i], ind[j], mat[i, j]) for i, j in neg_pairs]
                self.items.extend(pairs)
        if self.conf.views == 2 and self.conf.sort_by_overlap:
            self.items.sort(key=lambda i: i[-1], reverse=True)
        else:
            np.random.RandomState(seed).shuffle(self.items)

    def _read_view(self, scene, idx):
        path = self.root / self.images[scene][idx]

        # read pose data
        K = self.intrinsics[scene][idx].astype(np.float32, copy=False)
        T = self.poses[scene][idx].astype(np.float32, copy=False)

        # read image
        if self.conf.read_image:
            img = load_image(self.root / self.images[scene][idx], self.conf.grayscale)
        else:
            size = PIL.Image.open(path).size[::-1]
            img = torch.zeros(
                [3 - 2 * int(self.conf.grayscale), size[0], size[1]]
            ).float()

        # read depth
        if self.conf.read_depth:
            # depth_path = (
            #     self.root / self.conf.depth_subpath / scene / (path.stem + ".h5")
            # )
            depth_subpath = self.depths[scene][idx]
            depth_id = depth_subpath.split('/')[-1][:-3]
            assert depth_id == path.stem
            depth_path = self.root / depth_subpath
            with h5py.File(str(depth_path), "r") as f:
                depth = f["/depth"].__array__().astype(np.float32, copy=False)
                depth = torch.Tensor(depth)[None]
            assert depth.shape[-2:] == img.shape[-2:]
        else:
            depth = None

        # add random rotations
        do_rotate = self.conf.p_rotate > 0.0 and self.split == "train"
        if do_rotate:
            p = self.conf.p_rotate
            k = 0
            if np.random.rand() < p:
                k = np.random.choice(2, 1, replace=False)[0] * 2 - 1
                img = np.rot90(img, k=-k, axes=(-2, -1))
                if self.conf.read_depth:
                    depth = np.rot90(depth, k=-k, axes=(-2, -1)).copy()
                K = rotate_intrinsics(K, img.shape, k + 2)
                T = rotate_pose_inplane(T, k + 2)

        name = path.name

        data = self.preprocessor(img)
        if depth is not None:
            data["depth"] = self.preprocessor(depth, interpolation="nearest")["image"][
                0
            ]
        K = scale_intrinsics(K, data["scales"])

        data = {
            "name": name,
            "scene": scene,
            "T_w2cam": Pose.from_4x4mat(T),
            "depth": depth,
            "camera": Camera.from_calibration_matrix(K).float(),
            **data,
        }

        if self.conf.load_features.do:
            features = self.feature_loader({k: [v] for k, v in data.items()})
            if do_rotate and k != 0:
                # ang = np.deg2rad(k * 90.)
                kpts = features["keypoints"].copy()
                x, y = kpts[:, 0].copy(), kpts[:, 1].copy()
                w, h = data["image_size"]
                if k == 1:
                    kpts[:, 0] = w - y
                    kpts[:, 1] = x
                elif k == -1:
                    kpts[:, 0] = y
                    kpts[:, 1] = h - x

                else:
                    raise ValueError
                features["keypoints"] = kpts

            data = {"cache": features, **data}
        return data

    def __getitem__(self, idx):
        if self.conf.reseed:
            with fork_rng(self.conf.seed + idx, False):
                return self.getitem(idx)
        else:
            return self.getitem(idx)

    def getitem(self, idx):
        if self.conf.views == 2:
            if isinstance(idx, list):
                scene, idx0, idx1, overlap = idx
            else:
                scene, idx0, idx1, overlap = self.items[idx]
            data0 = self._read_view(scene, idx0)
            data1 = self._read_view(scene, idx1)
            data = {
                "view0": data0,
                "view1": data1,
            }
            data["T_0to1"] = data1["T_w2cam"] @ data0["T_w2cam"].inv()
            data["T_1to0"] = data0["T_w2cam"] @ data1["T_w2cam"].inv()
            data["overlap_0to1"] = overlap
            data["name"] = f"{scene}/{data0['name']}_{data1['name']}"
        else:
            assert self.conf.views == 1
            scene, idx0 = self.items[idx]
            data = self._read_view(scene, idx0)
        data["scene"] = scene
        data["idx"] = idx
        return data

    def __len__(self):
        return len(self.items)


class _TripletDataset(_PairDataset):
    def sample_new_items(self, seed):
        logging.info("Sampling new triplets with seed %d", seed)
        self.items = []
        split = self.split
        num = self.conf[self.split + "_num_per_scene"]
        if split != "train" and self.conf[split + "_pairs"] is not None:
            if Path(self.conf[split + "_pairs"]).exists():
                pairs_path = Path(self.conf[split + "_pairs"])
            else:
                pairs_path = DATA_PATH / "configs" / self.conf[split + "_pairs"]
            for line in pairs_path.read_text().rstrip("\n").split("\n"):
                im0, im1, im2 = line.split(" ")
                assert im0[:4] == im1[:4]
                scene = im1[:4]
                idx0 = np.where(self.images[scene] == im0)
                idx1 = np.where(self.images[scene] == im1)
                idx2 = np.where(self.images[scene] == im2)
                self.items.append((scene, idx0, idx1, idx2, 1.0, 1.0, 1.0))
        else:
            for scene in self.scenes:
                path = self.info_dir / (scene + ".npz")
                assert path.exists(), path
                info = np.load(str(path), allow_pickle=True)
                if self.conf.num_overlap_bins > 1:
                    raise NotImplementedError("TODO")
                valid = (self.images[scene] != None) & (  # noqa: E711
                    self.depth[scene] != None  # noqa: E711
                )
                ind = np.where(valid)[0]
                mat = info["overlap_matrix"][valid][:, valid]
                good = (mat > self.conf.min_overlap) & (mat <= self.conf.max_overlap)
                triplets = []
                if self.conf.triplet_enforce_overlap:
                    pairs = np.stack(np.where(good), -1)
                    for i0, i1 in pairs:
                        for i2 in pairs[pairs[:, 0] == i0, 1]:
                            if good[i1, i2]:
                                triplets.append((i0, i1, i2))
                    if len(triplets) > num:
                        selected = np.random.RandomState(seed).choice(
                            len(triplets), num, replace=False
                        )
                        selected = range(num)
                        triplets = np.array(triplets)[selected]
                else:
                    # we first enforce that each row has >1 pairs
                    non_unique = good.sum(-1) > 1
                    ind_r = np.where(non_unique)[0]
                    good = good[non_unique]
                    pairs = np.stack(np.where(good), -1)
                    if len(pairs) > num:
                        selected = np.random.RandomState(seed).choice(
                            len(pairs), num, replace=False
                        )
                        pairs = pairs[selected]
                    for idx, (k, i) in enumerate(pairs):
                        # We now sample a j from row k s.t. i != j
                        possible_j = np.where(good[k])[0]
                        possible_j = possible_j[possible_j != i]
                        selected = np.random.RandomState(seed + idx).choice(
                            len(possible_j), 1, replace=False
                        )[0]
                        triplets.append((ind_r[k], i, possible_j[selected]))
                    triplets = [
                        (scene, ind[k], ind[i], ind[j], mat[k, i], mat[k, j], mat[i, j])
                        for k, i, j in triplets
                    ]
                    self.items.extend(triplets)
        np.random.RandomState(seed).shuffle(self.items)

    def __getitem__(self, idx):
        scene, idx0, idx1, idx2, overlap01, overlap02, overlap12 = self.items[idx]
        data0 = self._read_view(scene, idx0)
        data1 = self._read_view(scene, idx1)
        data2 = self._read_view(scene, idx2)
        data = {
            "view0": data0,
            "view1": data1,
            "view2": data2,
        }
        data["T_0to1"] = data1["T_w2cam"] @ data0["T_w2cam"].inv()
        data["T_0to2"] = data2["T_w2cam"] @ data0["T_w2cam"].inv()
        data["T_1to2"] = data2["T_w2cam"] @ data1["T_w2cam"].inv()
        data["T_1to0"] = data0["T_w2cam"] @ data1["T_w2cam"].inv()
        data["T_2to0"] = data0["T_w2cam"] @ data2["T_w2cam"].inv()
        data["T_2to1"] = data1["T_w2cam"] @ data2["T_w2cam"].inv()

        data["overlap_0to1"] = overlap01
        data["overlap_0to2"] = overlap02
        data["overlap_1to2"] = overlap12
        data["scene"] = scene
        data["name"] = f"{scene}/{data0['name']}_{data1['name']}_{data2['name']}"
        return data

    def __len__(self):
        return len(self.items)


def visualize(args):
    conf = {
        "min_overlap": 0.1,
        "max_overlap": 0.7,
        "num_overlap_bins": 3,
        "sort_by_overlap": False,
        "train_num_per_scene": 5,
        "batch_size": 1,
        "num_workers": 0,
        "prefetch_factor": None,
        "val_num_per_scene": None,
    }
    conf = OmegaConf.merge(conf, OmegaConf.from_cli(args.dotlist))
    dataset = MegaDepth(conf)
    loader = dataset.get_data_loader(args.split)
    logger.info("The dataset has elements.", len(loader))

    with fork_rng(seed=dataset.conf.seed):
        images, depths = [], []
        for _, data in zip(range(args.num_items), loader):
            images.append(
                [
                    data[f"view{i}"]["image"][0].permute(1, 2, 0)
                    for i in range(dataset.conf.views)
                ]
            )
            depths.append(
                [data[f"view{i}"]["depth"][0] for i in range(dataset.conf.views)]
            )

    axes = plot_image_grid(images, dpi=args.dpi)
    for i in range(len(images)):
        plot_heatmaps(depths[i], axes=axes[i])
    plt.show()


if __name__ == "__main__":
    from .. import logger  # overwrite the logger

    parser = argparse.ArgumentParser()
    parser.add_argument("--split", type=str, default="val")
    parser.add_argument("--num_items", type=int, default=4)
    parser.add_argument("--dpi", type=int, default=100)
    parser.add_argument("dotlist", nargs="*")
    args = parser.parse_intermixed_args()
    visualize(args)