import torch import torch.nn.functional as F import numpy as np def fast_kde(x, std = 0.1, kernel_size = 9, dilation = 3, padding = 9//2, stride = 1): raise NotImplementedError("WIP, use at your own risk.") # Note: when doing symmetric matching this might not be very exact, since we only check neighbours on the grid x = x.permute(0,3,1,2) B,C,H,W = x.shape K = kernel_size ** 2 unfolded_x = F.unfold(x,kernel_size=kernel_size, dilation = dilation, padding = padding, stride = stride).reshape(B, C, K, H, W) scores = (-(unfolded_x - x[:,:,None]).sum(dim=1)**2/(2*std**2)).exp() density = scores.sum(dim=1) return density def kde(x, std = 0.1, device=None): if device is None: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if isinstance(x, np.ndarray): x = torch.from_numpy(x) # use a gaussian kernel to estimate density x = x.to(device) scores = (-torch.cdist(x,x)**2/(2*std**2)).exp() density = scores.sum(dim=-1) return density