# RoMa: Revisiting Robust Losses for Dense Feature Matching ### [Project Page (TODO)](https://parskatt.github.io/RoMa) | [Paper](https://arxiv.org/abs/2305.15404) <br/> > RoMa: Revisiting Robust Lossses for Dense Feature Matching > [Johan Edstedt](https://scholar.google.com/citations?user=Ul-vMR0AAAAJ), [Qiyu Sun](https://scholar.google.com/citations?user=HS2WuHkAAAAJ), [Georg Bökman](https://scholar.google.com/citations?user=FUE3Wd0AAAAJ), [Mårten Wadenbäck](https://scholar.google.com/citations?user=6WRQpCQAAAAJ), [Michael Felsberg](https://scholar.google.com/citations?&user=lkWfR08AAAAJ) > Arxiv 2023 **NOTE!!! Very early code, there might be bugs** The codebase is in the [roma folder](roma). ## Setup/Install In your python environment (tested on Linux python 3.10), run: ```bash pip install -e . ``` ## Demo / How to Use We provide two demos in the [demos folder](demo). Here's the gist of it: ```python from roma import roma_outdoor roma_model = roma_outdoor(device=device) # Match warp, certainty = roma_model.match(imA_path, imB_path, device=device) # Sample matches for estimation matches, certainty = roma_model.sample(warp, certainty) # Convert to pixel coordinates (RoMa produces matches in [-1,1]x[-1,1]) kptsA, kptsB = roma_model.to_pixel_coordinates(matches, H_A, W_A, H_B, W_B) # Find a fundamental matrix (or anything else of interest) F, mask = cv2.findFundamentalMat( kptsA.cpu().numpy(), kptsB.cpu().numpy(), ransacReprojThreshold=0.2, method=cv2.USAC_MAGSAC, confidence=0.999999, maxIters=10000 ) ``` ## Reproducing Results The experiments in the paper are provided in the [experiments folder](experiments). ### Training 1. First follow the instructions provided here: https://github.com/Parskatt/DKM for downloading and preprocessing datasets. 2. Run the relevant experiment, e.g., ```bash torchrun --nproc_per_node=4 --nnodes=1 --rdzv_backend=c10d experiments/roma_outdoor.py ``` ### Testing ```bash python experiments/roma_outdoor.py --only_test --benchmark mega-1500 ``` ## License Due to our dependency on [DINOv2](https://github.com/facebookresearch/dinov2/blob/main/LICENSE), the license is sadly non-commercial only for the moment. ## Acknowledgement Our codebase builds on the code in [DKM](https://github.com/Parskatt/DKM). ## BibTeX If you find our models useful, please consider citing our paper! ``` @article{edstedt2023roma, title={{RoMa}: Revisiting Robust Lossses for Dense Feature Matching}, author={Edstedt, Johan and Sun, Qiyu and Bökman, Georg and Wadenbäck, Mårten and Felsberg, Michael}, journal={arXiv preprint arXiv:2305.15404}, year={2023} } ```