# DKM: Dense Kernelized Feature Matching for Geometry Estimation ### [Project Page](https://parskatt.github.io/DKM) | [Paper](https://arxiv.org/abs/2202.00667) <br/> > DKM: Dense Kernelized Feature Matching for Geometry Estimation > [Johan Edstedt](https://scholar.google.com/citations?user=Ul-vMR0AAAAJ), [Ioannis Athanasiadis](https://scholar.google.com/citations?user=RCAtJgUAAAAJ), [Mårten Wadenbäck](https://scholar.google.com/citations?user=6WRQpCQAAAAJ), [Michael Felsberg](https://scholar.google.com/citations?&user=lkWfR08AAAAJ) > CVPR 2023 ## How to Use? <details> Our model produces a dense (for all pixels) warp and certainty. Warp: [B,H,W,4] for all images in batch of size B, for each pixel HxW, we ouput the input and matching coordinate in the normalized grids [-1,1]x[-1,1]. Certainty: [B,H,W] a number in each pixel indicating the matchability of the pixel. See [demo](dkm/demo/) for two demos of DKM. See [api.md](docs/api.md) for API. </details> ## Qualitative Results <details> https://user-images.githubusercontent.com/22053118/223748279-0f0c21b4-376a-440a-81f5-7f9a5d87483f.mp4 https://user-images.githubusercontent.com/22053118/223748512-1bca4a17-cffa-491d-a448-96aac1353ce9.mp4 https://user-images.githubusercontent.com/22053118/223748518-4d475d9f-a933-4581-97ed-6e9413c4caca.mp4 https://user-images.githubusercontent.com/22053118/223748522-39c20631-aa16-4954-9c27-95763b38f2ce.mp4 </details> ## Benchmark Results <details> ### Megadepth1500 | | @5 | @10 | @20 | |-------|-------|------|------| | DKMv1 | 54.5 | 70.7 | 82.3 | | DKMv2 | *56.8* | *72.3* | *83.2* | | DKMv3 (paper) | **60.5** | **74.9** | **85.1** | | DKMv3 (this repo) | **60.0** | **74.6** | **84.9** | ### Megadepth 8 Scenes | | @5 | @10 | @20 | |-------|-------|------|------| | DKMv3 (paper) | **60.5** | **74.5** | **84.2** | | DKMv3 (this repo) | **60.4** | **74.6** | **84.3** | ### ScanNet1500 | | @5 | @10 | @20 | |-------|-------|------|------| | DKMv1 | 24.8 | 44.4 | 61.9 | | DKMv2 | *28.2* | *49.2* | *66.6* | | DKMv3 (paper) | **29.4** | **50.7** | **68.3** | | DKMv3 (this repo) | **29.8** | **50.8** | **68.3** | </details> ## Navigating the Code * Code for models can be found in [dkm/models](dkm/models/) * Code for benchmarks can be found in [dkm/benchmarks](dkm/benchmarks/) * Code for reproducing experiments from our paper can be found in [experiments/](experiments/) ## Install Run ``pip install -e .`` ## Demo A demonstration of our method can be run by: ``` bash python demo_match.py ``` This runs our model trained on mega on two images taken from Sacre Coeur. ## Benchmarks See [Benchmarks](docs/benchmarks.md) for details. ## Training See [Training](docs/training.md) for details. ## Reproducing Results Given that the required benchmark or training dataset has been downloaded and unpacked, results can be reproduced by running the experiments in the experiments folder. ## Using DKM matches for estimation We recommend using the excellent Graph-Cut RANSAC algorithm: https://github.com/danini/graph-cut-ransac | | @5 | @10 | @20 | |-------|-------|------|------| | DKMv3 (RANSAC) | *60.5* | *74.9* | *85.1* | | DKMv3 (GC-RANSAC) | **65.5** | **78.0** | **86.7** | ## Acknowledgements We have used code and been inspired by https://github.com/PruneTruong/DenseMatching, https://github.com/zju3dv/LoFTR, and https://github.com/GrumpyZhou/patch2pix. We additionally thank the authors of ECO-TR for providing their benchmark. ## BibTeX If you find our models useful, please consider citing our paper! ``` @inproceedings{edstedt2023dkm, title={{DKM}: Dense Kernelized Feature Matching for Geometry Estimation}, author={Edstedt, Johan and Athanasiadis, Ioannis and Wadenbäck, Mårten and Felsberg, Michael}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, year={2023} } ```