import os.path as osp import numpy as np import torch import torch.nn.functional as F from torch.utils.data import Dataset from loguru import logger from src.utils.dataset import read_megadepth_gray, read_megadepth_depth class MegaDepthDataset(Dataset): def __init__(self, root_dir, npz_path, mode='train', min_overlap_score=0.4, img_resize=None, df=None, img_padding=False, depth_padding=False, augment_fn=None, **kwargs): """ Manage one scene(npz_path) of MegaDepth dataset. Args: root_dir (str): megadepth root directory that has `phoenix`. npz_path (str): {scene_id}.npz path. This contains image pair information of a scene. mode (str): options are ['train', 'val', 'test'] min_overlap_score (float): how much a pair should have in common. In range of [0, 1]. Set to 0 when testing. img_resize (int, optional): the longer edge of resized images. None for no resize. 640 is recommended. This is useful during training with batches and testing with memory intensive algorithms. df (int, optional): image size division factor. NOTE: this will change the final image size after img_resize. img_padding (bool): If set to 'True', zero-pad the image to squared size. This is useful during training. depth_padding (bool): If set to 'True', zero-pad depthmap to (2000, 2000). This is useful during training. augment_fn (callable, optional): augments images with pre-defined visual effects. """ super().__init__() self.root_dir = root_dir self.mode = mode self.scene_id = npz_path.split('.')[0] # prepare scene_info and pair_info if mode == 'test' and min_overlap_score != 0: logger.warning("You are using `min_overlap_score`!=0 in test mode. Set to 0.") min_overlap_score = 0 self.scene_info = np.load(npz_path, allow_pickle=True) self.pair_infos = self.scene_info['pair_infos'].copy() del self.scene_info['pair_infos'] self.pair_infos = [pair_info for pair_info in self.pair_infos if pair_info[1] > min_overlap_score] # parameters for image resizing, padding and depthmap padding if mode == 'train': assert img_resize is not None and img_padding and depth_padding self.img_resize = img_resize self.df = df self.img_padding = img_padding self.depth_max_size = 2000 if depth_padding else None # the upperbound of depthmaps size in megadepth. # for training LoFTR self.augment_fn = augment_fn if mode == 'train' else None self.coarse_scale = getattr(kwargs, 'coarse_scale', 0.125) def __len__(self): return len(self.pair_infos) def __getitem__(self, idx): (idx0, idx1), overlap_score, central_matches = self.pair_infos[idx] # read grayscale image and mask. (1, h, w) and (h, w) img_name0 = osp.join(self.root_dir, self.scene_info['image_paths'][idx0]) img_name1 = osp.join(self.root_dir, self.scene_info['image_paths'][idx1]) # TODO: Support augmentation & handle seeds for each worker correctly. image0, mask0, scale0 = read_megadepth_gray( img_name0, self.img_resize, self.df, self.img_padding, None) # np.random.choice([self.augment_fn, None], p=[0.5, 0.5])) image1, mask1, scale1 = read_megadepth_gray( img_name1, self.img_resize, self.df, self.img_padding, None) # np.random.choice([self.augment_fn, None], p=[0.5, 0.5])) # read depth. shape: (h, w) if self.mode in ['train', 'val']: depth0 = read_megadepth_depth( osp.join(self.root_dir, self.scene_info['depth_paths'][idx0]), pad_to=self.depth_max_size) depth1 = read_megadepth_depth( osp.join(self.root_dir, self.scene_info['depth_paths'][idx1]), pad_to=self.depth_max_size) else: depth0 = depth1 = torch.tensor([]) # read intrinsics of original size K_0 = torch.tensor(self.scene_info['intrinsics'][idx0].copy(), dtype=torch.float).reshape(3, 3) K_1 = torch.tensor(self.scene_info['intrinsics'][idx1].copy(), dtype=torch.float).reshape(3, 3) # read and compute relative poses T0 = self.scene_info['poses'][idx0] T1 = self.scene_info['poses'][idx1] T_0to1 = torch.tensor(np.matmul(T1, np.linalg.inv(T0)), dtype=torch.float)[:4, :4] # (4, 4) T_1to0 = T_0to1.inverse() data = { 'image0': image0, # (1, h, w) 'depth0': depth0, # (h, w) 'image1': image1, 'depth1': depth1, 'T_0to1': T_0to1, # (4, 4) 'T_1to0': T_1to0, 'K0': K_0, # (3, 3) 'K1': K_1, 'scale0': scale0, # [scale_w, scale_h] 'scale1': scale1, 'dataset_name': 'MegaDepth', 'scene_id': self.scene_id, 'pair_id': idx, 'pair_names': (self.scene_info['image_paths'][idx0], self.scene_info['image_paths'][idx1]), } # for LoFTR training if mask0 is not None: # img_padding is True if self.coarse_scale: [ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(), scale_factor=self.coarse_scale, mode='nearest', recompute_scale_factor=False)[0].bool() data.update({'mask0': ts_mask_0, 'mask1': ts_mask_1}) return data