""" Base class for trainable models. """ from abc import ABCMeta, abstractmethod import omegaconf from omegaconf import OmegaConf from torch import nn from copy import copy class MetaModel(ABCMeta): def __prepare__(name, bases, **kwds): total_conf = OmegaConf.create() for base in bases: for key in ('base_default_conf', 'default_conf'): update = getattr(base, key, {}) if isinstance(update, dict): update = OmegaConf.create(update) total_conf = OmegaConf.merge(total_conf, update) return dict(base_default_conf=total_conf) class BaseModel(nn.Module, metaclass=MetaModel): """ What the child model is expect to declare: default_conf: dictionary of the default configuration of the model. It recursively updates the default_conf of all parent classes, and it is updated by the user-provided configuration passed to __init__. Configurations can be nested. required_data_keys: list of expected keys in the input data dictionary. strict_conf (optional): boolean. If false, BaseModel does not raise an error when the user provides an unknown configuration entry. _init(self, conf): initialization method, where conf is the final configuration object (also accessible with `self.conf`). Accessing unknown configuration entries will raise an error. _forward(self, data): method that returns a dictionary of batched prediction tensors based on a dictionary of batched input data tensors. loss(self, pred, data): method that returns a dictionary of losses, computed from model predictions and input data. Each loss is a batch of scalars, i.e. a torch.Tensor of shape (B,). The total loss to be optimized has the key `'total'`. metrics(self, pred, data): method that returns a dictionary of metrics, each as a batch of scalars. """ default_conf = { 'name': None, 'trainable': True, # if false: do not optimize this model parameters 'freeze_batch_normalization': False, # use test-time statistics } required_data_keys = [] strict_conf = True def __init__(self, conf): """Perform some logic and call the _init method of the child model.""" super().__init__() default_conf = OmegaConf.merge( self.base_default_conf, OmegaConf.create(self.default_conf)) if self.strict_conf: OmegaConf.set_struct(default_conf, True) # fixme: backward compatibility if 'pad' in conf and 'pad' not in default_conf: # backward compat. with omegaconf.read_write(conf): with omegaconf.open_dict(conf): conf['interpolation'] = {'pad': conf.pop('pad')} if isinstance(conf, dict): conf = OmegaConf.create(conf) self.conf = conf = OmegaConf.merge(default_conf, conf) OmegaConf.set_readonly(conf, True) OmegaConf.set_struct(conf, True) self.required_data_keys = copy(self.required_data_keys) self._init(conf) if not conf.trainable: for p in self.parameters(): p.requires_grad = False def train(self, mode=True): super().train(mode) def freeze_bn(module): if isinstance(module, nn.modules.batchnorm._BatchNorm): module.eval() if self.conf.freeze_batch_normalization: self.apply(freeze_bn) return self def forward(self, data): """Check the data and call the _forward method of the child model.""" def recursive_key_check(expected, given): for key in expected: assert key in given, f'Missing key {key} in data' if isinstance(expected, dict): recursive_key_check(expected[key], given[key]) recursive_key_check(self.required_data_keys, data) return self._forward(data) @abstractmethod def _init(self, conf): """To be implemented by the child class.""" raise NotImplementedError @abstractmethod def _forward(self, data): """To be implemented by the child class.""" raise NotImplementedError @abstractmethod def loss(self, pred, data): """To be implemented by the child class.""" raise NotImplementedError @abstractmethod def metrics(self, pred, data): """To be implemented by the child class.""" raise NotImplementedError