from loguru import logger import torch import torch.nn as nn def sample_non_matches(pos_mask, match_ids=None, sampling_ratio=10): # assert (pos_mask.shape == mask.shape) # [B, H*W, H*W] if match_ids is not None: HW = pos_mask.shape[1] b_ids, i_ids, j_ids = match_ids if len(b_ids) == 0: return ~pos_mask neg_mask = torch.zeros_like(pos_mask) probs = torch.ones((HW - 1)//3, device=pos_mask.device) for _ in range(sampling_ratio): d = torch.multinomial(probs, len(j_ids), replacement=True) sampled_j_ids = (j_ids + d*3 + 1) % HW neg_mask[b_ids, i_ids, sampled_j_ids] = True # neg_mask = neg_matrix == 1 else: neg_mask = ~pos_mask return neg_mask class TopicFMLoss(nn.Module): def __init__(self, config): super().__init__() self.config = config # config under the global namespace self.loss_config = config['model']['loss'] self.match_type = self.config['model']['match_coarse']['match_type'] # coarse-level self.correct_thr = self.loss_config['fine_correct_thr'] self.c_pos_w = self.loss_config['pos_weight'] self.c_neg_w = self.loss_config['neg_weight'] # fine-level self.fine_type = self.loss_config['fine_type'] def compute_coarse_loss(self, conf, topic_mat, conf_gt, match_ids=None, weight=None): """ Point-wise CE / Focal Loss with 0 / 1 confidence as gt. Args: conf (torch.Tensor): (N, HW0, HW1) / (N, HW0+1, HW1+1) conf_gt (torch.Tensor): (N, HW0, HW1) weight (torch.Tensor): (N, HW0, HW1) """ pos_mask = conf_gt == 1 neg_mask = sample_non_matches(pos_mask, match_ids=match_ids) c_pos_w, c_neg_w = self.c_pos_w, self.c_neg_w # corner case: no gt coarse-level match at all if not pos_mask.any(): # assign a wrong gt pos_mask[0, 0, 0] = True if weight is not None: weight[0, 0, 0] = 0. c_pos_w = 0. if not neg_mask.any(): neg_mask[0, 0, 0] = True if weight is not None: weight[0, 0, 0] = 0. c_neg_w = 0. conf = torch.clamp(conf, 1e-6, 1 - 1e-6) alpha = self.loss_config['focal_alpha'] loss = 0.0 if isinstance(topic_mat, torch.Tensor): pos_topic = topic_mat[pos_mask] loss_pos_topic = - alpha * (pos_topic + 1e-6).log() neg_topic = topic_mat[neg_mask] loss_neg_topic = - alpha * (1 - neg_topic + 1e-6).log() if weight is not None: loss_pos_topic = loss_pos_topic * weight[pos_mask] loss_neg_topic = loss_neg_topic * weight[neg_mask] loss = loss_pos_topic.mean() + loss_neg_topic.mean() pos_conf = conf[pos_mask] loss_pos = - alpha * pos_conf.log() # handle loss weights if weight is not None: # Different from dense-spvs, the loss w.r.t. padded regions aren't directly zeroed out, # but only through manually setting corresponding regions in sim_matrix to '-inf'. loss_pos = loss_pos * weight[pos_mask] loss = loss + c_pos_w * loss_pos.mean() return loss def compute_fine_loss(self, expec_f, expec_f_gt): if self.fine_type == 'l2_with_std': return self._compute_fine_loss_l2_std(expec_f, expec_f_gt) elif self.fine_type == 'l2': return self._compute_fine_loss_l2(expec_f, expec_f_gt) else: raise NotImplementedError() def _compute_fine_loss_l2(self, expec_f, expec_f_gt): """ Args: expec_f (torch.Tensor): [M, 2] expec_f_gt (torch.Tensor): [M, 2] """ correct_mask = torch.linalg.norm(expec_f_gt, ord=float('inf'), dim=1) < self.correct_thr if correct_mask.sum() == 0: if self.training: # this seldomly happen when training, since we pad prediction with gt logger.warning("assign a false supervision to avoid ddp deadlock") correct_mask[0] = True else: return None offset_l2 = ((expec_f_gt[correct_mask] - expec_f[correct_mask]) ** 2).sum(-1) return offset_l2.mean() def _compute_fine_loss_l2_std(self, expec_f, expec_f_gt): """ Args: expec_f (torch.Tensor): [M, 3] expec_f_gt (torch.Tensor): [M, 2] """ # correct_mask tells you which pair to compute fine-loss correct_mask = torch.linalg.norm(expec_f_gt, ord=float('inf'), dim=1) < self.correct_thr # use std as weight that measures uncertainty std = expec_f[:, 2] inverse_std = 1. / torch.clamp(std, min=1e-10) weight = (inverse_std / torch.mean(inverse_std)).detach() # avoid minizing loss through increase std # corner case: no correct coarse match found if not correct_mask.any(): if self.training: # this seldomly happen during training, since we pad prediction with gt # sometimes there is not coarse-level gt at all. logger.warning("assign a false supervision to avoid ddp deadlock") correct_mask[0] = True weight[0] = 0. else: return None # l2 loss with std offset_l2 = ((expec_f_gt[correct_mask] - expec_f[correct_mask, :2]) ** 2).sum(-1) loss = (offset_l2 * weight[correct_mask]).mean() return loss @torch.no_grad() def compute_c_weight(self, data): """ compute element-wise weights for computing coarse-level loss. """ if 'mask0' in data: c_weight = (data['mask0'].flatten(-2)[..., None] * data['mask1'].flatten(-2)[:, None]).float() else: c_weight = None return c_weight def forward(self, data): """ Update: data (dict): update{ 'loss': [1] the reduced loss across a batch, 'loss_scalars' (dict): loss scalars for tensorboard_record } """ loss_scalars = {} # 0. compute element-wise loss weight c_weight = self.compute_c_weight(data) # 1. coarse-level loss loss_c = self.compute_coarse_loss(data['conf_matrix'], data['topic_matrix'], data['conf_matrix_gt'], match_ids=(data['spv_b_ids'], data['spv_i_ids'], data['spv_j_ids']), weight=c_weight) loss = loss_c * self.loss_config['coarse_weight'] loss_scalars.update({"loss_c": loss_c.clone().detach().cpu()}) # 2. fine-level loss loss_f = self.compute_fine_loss(data['expec_f'], data['expec_f_gt']) if loss_f is not None: loss += loss_f * self.loss_config['fine_weight'] loss_scalars.update({"loss_f": loss_f.clone().detach().cpu()}) else: assert self.training is False loss_scalars.update({'loss_f': torch.tensor(1.)}) # 1 is the upper bound loss_scalars.update({'loss': loss.clone().detach().cpu()}) data.update({"loss": loss, "loss_scalars": loss_scalars})