# Copyright 2019-present NAVER Corp. # CC BY-NC-SA 3.0 # Available only for non-commercial use import pdb import numpy as np from PIL import Image, ImageOps import torchvision.transforms as tvf import random from math import ceil from . import transforms_tools as F ''' Example command to try out some transformation chain: python -m tools.transforms --trfs "Scale(384), ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1), RandomRotation(10), RandomTilting(0.5, 'all'), RandomScale(240,320), RandomCrop(224)" ''' def instanciate_transformation(cmd_line): ''' Create a sequence of transformations. cmd_line: (str) Comma-separated list of transformations. Ex: "Rotate(10), Scale(256)" ''' if not isinstance(cmd_line, str): return cmd_line # already instanciated cmd_line = "tvf.Compose([%s])" % cmd_line try: return eval(cmd_line) except Exception as e: print("Cannot interpret this transform list: %s\nReason: %s" % (cmd_line, e)) class Scale (object): """ Rescale the input PIL.Image to a given size. Copied from https://github.com/pytorch in torchvision/transforms/transforms.py The smallest dimension of the resulting image will be = size. if largest == True: same behaviour for the largest dimension. if not can_upscale: don't upscale if not can_downscale: don't downscale """ def __init__(self, size, interpolation=Image.BILINEAR, largest=False, can_upscale=True, can_downscale=True): assert isinstance(size, int) or (len(size) == 2) self.size = size self.interpolation = interpolation self.largest = largest self.can_upscale = can_upscale self.can_downscale = can_downscale def __repr__(self): fmt_str = "RandomScale(%s" % str(self.size) if self.largest: fmt_str += ', largest=True' if not self.can_upscale: fmt_str += ', can_upscale=False' if not self.can_downscale: fmt_str += ', can_downscale=False' return fmt_str+')' def get_params(self, imsize): w,h = imsize if isinstance(self.size, int): cmp = lambda a,b: (a>=b) if self.largest else (a<=b) if (cmp(w, h) and w == self.size) or (cmp(h, w) and h == self.size): ow, oh = w, h elif cmp(w, h): ow = self.size oh = int(self.size * h / w) else: oh = self.size ow = int(self.size * w / h) else: ow, oh = self.size return ow, oh def __call__(self, inp): img = F.grab_img(inp) w, h = img.size size2 = ow, oh = self.get_params(img.size) if size2 != img.size: a1, a2 = img.size, size2 if (self.can_upscale and min(a1) < min(a2)) or (self.can_downscale and min(a1) > min(a2)): img = img.resize(size2, self.interpolation) return F.update_img_and_labels(inp, img, persp=(ow/w,0,0,0,oh/h,0,0,0)) class RandomScale (Scale): """Rescale the input PIL.Image to a random size. Copied from https://github.com/pytorch in torchvision/transforms/transforms.py Args: min_size (int): min size of the smaller edge of the picture. max_size (int): max size of the smaller edge of the picture. ar (float or tuple): max change of aspect ratio (width/height). interpolation (int, optional): Desired interpolation. Default is ``PIL.Image.BILINEAR`` """ def __init__(self, min_size, max_size, ar=1, can_upscale=False, can_downscale=True, interpolation=Image.BILINEAR): Scale.__init__(self, 0, can_upscale=can_upscale, can_downscale=can_downscale, interpolation=interpolation) assert type(min_size) == type(max_size), 'min_size and max_size can only be 2 ints or 2 floats' assert isinstance(min_size, int) and min_size >= 1 or isinstance(min_size, float) and min_size>0 assert isinstance(max_size, (int,float)) and min_size <= max_size self.min_size = min_size self.max_size = max_size if type(ar) in (float,int): ar = (min(1/ar,ar),max(1/ar,ar)) assert 0.2 < ar[0] <= ar[1] < 5 self.ar = ar def get_params(self, imsize): w,h = imsize if isinstance(self.min_size, float): min_size = int(self.min_size*min(w,h) + 0.5) if isinstance(self.max_size, float): max_size = int(self.max_size*min(w,h) + 0.5) if isinstance(self.min_size, int): min_size = self.min_size if isinstance(self.max_size, int): max_size = self.max_size if not self.can_upscale: max_size = min(max_size,min(w,h)) size = int(0.5 + F.rand_log_uniform(min_size,max_size)) ar = F.rand_log_uniform(*self.ar) # change of aspect ratio if w < h: # image is taller ow = size oh = int(0.5 + size * h / w / ar) if oh < min_size: ow,oh = int(0.5 + ow*float(min_size)/oh),min_size else: # image is wider oh = size ow = int(0.5 + size * w / h * ar) if ow < min_size: ow,oh = min_size,int(0.5 + oh*float(min_size)/ow) assert ow >= min_size, 'image too small (width=%d < min_size=%d)' % (ow, min_size) assert oh >= min_size, 'image too small (height=%d < min_size=%d)' % (oh, min_size) return ow, oh class RandomCrop (object): """Crop the given PIL Image at a random location. Copied from https://github.com/pytorch in torchvision/transforms/transforms.py Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. padding (int or sequence, optional): Optional padding on each border of the image. Default is 0, i.e no padding. If a sequence of length 4 is provided, it is used to pad left, top, right, bottom borders respectively. """ def __init__(self, size, padding=0): if isinstance(size, int): self.size = (int(size), int(size)) else: self.size = size self.padding = padding def __repr__(self): return "RandomCrop(%s)" % str(self.size) @staticmethod def get_params(img, output_size): w, h = img.size th, tw = output_size assert h >= th and w >= tw, "Image of %dx%d is too small for crop %dx%d" % (w,h,tw,th) y = np.random.randint(0, h - th) if h > th else 0 x = np.random.randint(0, w - tw) if w > tw else 0 return x, y, tw, th def __call__(self, inp): img = F.grab_img(inp) padl = padt = 0 if self.padding: if F.is_pil_image(img): img = ImageOps.expand(img, border=self.padding, fill=0) else: assert isinstance(img, F.DummyImg) img = img.expand(border=self.padding) if isinstance(self.padding, int): padl = padt = self.padding else: padl, padt = self.padding[0:2] i, j, tw, th = self.get_params(img, self.size) img = img.crop((i, j, i+tw, j+th)) return F.update_img_and_labels(inp, img, persp=(1,0,padl-i,0,1,padt-j,0,0)) class CenterCrop (RandomCrop): """Crops the given PIL Image at the center. Copied from https://github.com/pytorch in torchvision/transforms/transforms.py Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. """ @staticmethod def get_params(img, output_size): w, h = img.size th, tw = output_size y = int(0.5 +((h - th) / 2.)) x = int(0.5 +((w - tw) / 2.)) return x, y, tw, th class RandomRotation(object): """Rescale the input PIL.Image to a random size. Copied from https://github.com/pytorch in torchvision/transforms/transforms.py Args: degrees (float): rotation angle. interpolation (int, optional): Desired interpolation. Default is ``PIL.Image.BILINEAR`` """ def __init__(self, degrees, interpolation=Image.BILINEAR): self.degrees = degrees self.interpolation = interpolation def __call__(self, inp): img = F.grab_img(inp) w, h = img.size angle = np.random.uniform(-self.degrees, self.degrees) img = img.rotate(angle, resample=self.interpolation) w2, h2 = img.size trf = F.translate(-w/2,-h/2) trf = F.persp_mul(trf, F.rotate(-angle * np.pi/180)) trf = F.persp_mul(trf, F.translate(w2/2,h2/2)) return F.update_img_and_labels(inp, img, persp=trf) class RandomTilting(object): """Apply a random tilting (left, right, up, down) to the input PIL.Image Copied from https://github.com/pytorch in torchvision/transforms/transforms.py Args: maginitude (float): maximum magnitude of the random skew (value between 0 and 1) directions (string): tilting directions allowed (all, left, right, up, down) examples: "all", "left,right", "up-down-right" """ def __init__(self, magnitude, directions='all'): self.magnitude = magnitude self.directions = directions.lower().replace(',',' ').replace('-',' ') def __repr__(self): return "RandomTilt(%g, '%s')" % (self.magnitude,self.directions) def __call__(self, inp): img = F.grab_img(inp) w, h = img.size x1,y1,x2,y2 = 0,0,h,w original_plane = [(y1, x1), (y2, x1), (y2, x2), (y1, x2)] max_skew_amount = max(w, h) max_skew_amount = int(ceil(max_skew_amount * self.magnitude)) skew_amount = random.randint(1, max_skew_amount) if self.directions == 'all': choices = [0,1,2,3] else: dirs = ['left', 'right', 'up', 'down'] choices = [] for d in self.directions.split(): try: choices.append(dirs.index(d)) except: raise ValueError('Tilting direction %s not recognized' % d) skew_direction = random.choice(choices) # print('randomtitlting: ', skew_amount, skew_direction) # to debug random if skew_direction == 0: # Left Tilt new_plane = [(y1, x1 - skew_amount), # Top Left (y2, x1), # Top Right (y2, x2), # Bottom Right (y1, x2 + skew_amount)] # Bottom Left elif skew_direction == 1: # Right Tilt new_plane = [(y1, x1), # Top Left (y2, x1 - skew_amount), # Top Right (y2, x2 + skew_amount), # Bottom Right (y1, x2)] # Bottom Left elif skew_direction == 2: # Forward Tilt new_plane = [(y1 - skew_amount, x1), # Top Left (y2 + skew_amount, x1), # Top Right (y2, x2), # Bottom Right (y1, x2)] # Bottom Left elif skew_direction == 3: # Backward Tilt new_plane = [(y1, x1), # Top Left (y2, x1), # Top Right (y2 + skew_amount, x2), # Bottom Right (y1 - skew_amount, x2)] # Bottom Left # To calculate the coefficients required by PIL for the perspective skew, # see the following Stack Overflow discussion: https://goo.gl/sSgJdj matrix = [] for p1, p2 in zip(new_plane, original_plane): matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]]) matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]]) A = np.matrix(matrix, dtype=np.float) B = np.array(original_plane).reshape(8) homography = np.dot(np.linalg.pinv(A), B) homography = tuple(np.array(homography).reshape(8)) #print(homography) img = img.transform(img.size, Image.PERSPECTIVE, homography, resample=Image.BICUBIC) homography = np.linalg.pinv(np.float32(homography+(1,)).reshape(3,3)).ravel()[:8] return F.update_img_and_labels(inp, img, persp=tuple(homography)) RandomTilt = RandomTilting # redefinition class Tilt(object): """Apply a known tilting to an image """ def __init__(self, *homography): assert len(homography) == 8 self.homography = homography def __call__(self, inp): img = F.grab_img(inp) homography = self.homography #print(homography) img = img.transform(img.size, Image.PERSPECTIVE, homography, resample=Image.BICUBIC) homography = np.linalg.pinv(np.float32(homography+(1,)).reshape(3,3)).ravel()[:8] return F.update_img_and_labels(inp, img, persp=tuple(homography)) class StillTransform (object): """ Takes and return an image, without changing its shape or geometry. """ def _transform(self, img): raise NotImplementedError() def __call__(self, inp): img = F.grab_img(inp) # transform the image (size should not change) try: img = self._transform(img) except TypeError: pass return F.update_img_and_labels(inp, img, persp=(1,0,0,0,1,0,0,0)) class PixelNoise (StillTransform): """ Takes an image, and add random white noise. """ def __init__(self, ampl=20): StillTransform.__init__(self) assert 0 <= ampl < 255 self.ampl = ampl def __repr__(self): return "PixelNoise(%g)" % self.ampl def _transform(self, img): img = np.float32(img) img += np.random.uniform(0.5-self.ampl/2, 0.5+self.ampl/2, size=img.shape) return Image.fromarray(np.uint8(img.clip(0,255))) class ColorJitter (StillTransform): """Randomly change the brightness, contrast and saturation of an image. Copied from https://github.com/pytorch in torchvision/transforms/transforms.py Args: brightness (float): How much to jitter brightness. brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. contrast (float): How much to jitter contrast. contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. saturation (float): How much to jitter saturation. saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. hue(float): How much to jitter hue. hue_factor is chosen uniformly from [-hue, hue]. Should be >=0 and <= 0.5. """ def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue def __repr__(self): return "ColorJitter(%g,%g,%g,%g)" % ( self.brightness, self.contrast, self.saturation, self.hue) @staticmethod def get_params(brightness, contrast, saturation, hue): """Get a randomized transform to be applied on image. Arguments are same as that of __init__. Returns: Transform which randomly adjusts brightness, contrast and saturation in a random order. """ transforms = [] if brightness > 0: brightness_factor = np.random.uniform(max(0, 1 - brightness), 1 + brightness) transforms.append(tvf.Lambda(lambda img: F.adjust_brightness(img, brightness_factor))) if contrast > 0: contrast_factor = np.random.uniform(max(0, 1 - contrast), 1 + contrast) transforms.append(tvf.Lambda(lambda img: F.adjust_contrast(img, contrast_factor))) if saturation > 0: saturation_factor = np.random.uniform(max(0, 1 - saturation), 1 + saturation) transforms.append(tvf.Lambda(lambda img: F.adjust_saturation(img, saturation_factor))) if hue > 0: hue_factor = np.random.uniform(-hue, hue) transforms.append(tvf.Lambda(lambda img: F.adjust_hue(img, hue_factor))) # print('colorjitter: ', brightness_factor, contrast_factor, saturation_factor, hue_factor) # to debug random seed np.random.shuffle(transforms) transform = tvf.Compose(transforms) return transform def _transform(self, img): transform = self.get_params(self.brightness, self.contrast, self.saturation, self.hue) return transform(img) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser("Script to try out and visualize transformations") parser.add_argument('--img', type=str, default='imgs/test.png', help='input image') parser.add_argument('--trfs', type=str, required=True, help='list of transformations') parser.add_argument('--layout', type=int, nargs=2, default=(3,3), help='nb of rows,cols') args = parser.parse_args() import os args.img = args.img.replace('$HERE',os.path.dirname(__file__)) img = Image.open(args.img) img = dict(img=img) trfs = instanciate_transformation(args.trfs) from matplotlib import pyplot as pl pl.ion() pl.subplots_adjust(0,0,1,1) nr,nc = args.layout while True: for j in range(nr): for i in range(nc): pl.subplot(nr,nc,i+j*nc+1) if i==j==0: img2 = img else: img2 = trfs(img.copy()) if isinstance(img2, dict): img2 = img2['img'] pl.imshow(img2) pl.xlabel("%d x %d" % img2.size) pl.xticks(()) pl.yticks(()) pdb.set_trace()