# Copyright 2019-present NAVER Corp. # CC BY-NC-SA 3.0 # Available only for non-commercial use import pdb import numpy as np import matplotlib.pyplot as pl def make_colorwheel(): ''' Generates a color wheel for optical flow visualization as presented in: Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py Copyright (c) 2018 Tom Runia ''' RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros((ncols, 3)) col = 0 # RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) col = col+RY # YG colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) colorwheel[col:col+YG, 1] = 255 col = col+YG # GC colorwheel[col:col+GC, 1] = 255 colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) col = col+GC # CB colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) colorwheel[col:col+CB, 2] = 255 col = col+CB # BM colorwheel[col:col+BM, 2] = 255 colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) col = col+BM # MR colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) colorwheel[col:col+MR, 0] = 255 return colorwheel def flow_compute_color(u, v, convert_to_bgr=False): ''' Applies the flow color wheel to (possibly clipped) flow components u and v. According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun :param u: np.ndarray, input horizontal flow :param v: np.ndarray, input vertical flow :param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB :return: Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py Copyright (c) 2018 Tom Runia ''' flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) colorwheel = make_colorwheel() # shape [55x3] ncols = colorwheel.shape[0] rad = np.sqrt(np.square(u) + np.square(v)) a = np.arctan2(-v, -u)/np.pi fk = (a+1) / 2*(ncols-1) k0 = np.floor(fk).astype(np.int32) k1 = k0 + 1 k1[k1 == ncols] = 0 f = fk - k0 for i in range(colorwheel.shape[1]): tmp = colorwheel[:,i] col0 = tmp[k0] / 255.0 col1 = tmp[k1] / 255.0 col = (1-f)*col0 + f*col1 idx = (rad <= 1) col[idx] = 1 - rad[idx] * (1-col[idx]) col[~idx] = col[~idx] * 0.75 # out of range? # Note the 2-i => BGR instead of RGB ch_idx = 2-i if convert_to_bgr else i flow_image[:,:,ch_idx] = np.floor(255 * col) return flow_image def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False): ''' Expects a two dimensional flow image of shape [H,W,2] According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun :param flow_uv: np.ndarray of shape [H,W,2] :param clip_flow: float, maximum clipping value for flow :return: Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py Copyright (c) 2018 Tom Runia ''' assert flow_uv.ndim == 3, 'input flow must have three dimensions' assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' if clip_flow is not None: flow_uv = np.clip(flow_uv, 0, clip_flow) u = flow_uv[:,:,0] v = flow_uv[:,:,1] rad = np.sqrt(np.square(u) + np.square(v)) rad_max = np.max(rad) epsilon = 1e-5 u = u / (rad_max + epsilon) v = v / (rad_max + epsilon) return flow_compute_color(u, v, convert_to_bgr) def show_flow( img0, img1, flow, mask=None ): img0 = np.asarray(img0) img1 = np.asarray(img1) if mask is None: mask = 1 mask = np.asarray(mask) if mask.ndim == 2: mask = mask[:,:,None] assert flow.ndim == 3 assert flow.shape[:2] == img0.shape[:2] and flow.shape[2] == 2 def noticks(): pl.xticks([]) pl.yticks([]) fig = pl.figure("showing correspondences") ax1 = pl.subplot(221) ax1.numaxis = 0 pl.imshow(img0*mask) noticks() ax2 = pl.subplot(222) ax2.numaxis = 1 pl.imshow(img1) noticks() ax = pl.subplot(212) ax.numaxis = 0 flow_img = flow_to_color(np.where(np.isnan(flow), 0, flow)) pl.imshow(flow_img * mask) noticks() pl.subplots_adjust(0.01, 0.01, 0.99, 0.99, wspace=0.02, hspace=0.02) def motion_notify_callback(event): if event.inaxes is None: return x,y = event.xdata, event.ydata ax1.lines = [] ax2.lines = [] try: x,y = int(x+0.5), int(y+0.5) ax1.plot(x,y,'+',ms=10,mew=2,color='blue',scalex=False,scaley=False) x,y = flow[y,x] + (x,y) ax2.plot(x,y,'+',ms=10,mew=2,color='red',scalex=False,scaley=False) # we redraw only the concerned axes renderer = fig.canvas.get_renderer() ax1.draw(renderer) ax2.draw(renderer) fig.canvas.blit(ax1.bbox) fig.canvas.blit(ax2.bbox) except IndexError: return cid_move = fig.canvas.mpl_connect('motion_notify_event',motion_notify_callback) print("Move your mouse over the images to show matches (ctrl-C to quit)") pl.show()