import os import contextlib import joblib from typing import Union from loguru import _Logger, logger from itertools import chain import torch from yacs.config import CfgNode as CN from pytorch_lightning.utilities import rank_zero_only import cv2 import numpy as np def lower_config(yacs_cfg): if not isinstance(yacs_cfg, CN): return yacs_cfg return {k.lower(): lower_config(v) for k, v in yacs_cfg.items()} def upper_config(dict_cfg): if not isinstance(dict_cfg, dict): return dict_cfg return {k.upper(): upper_config(v) for k, v in dict_cfg.items()} def log_on(condition, message, level): if condition: assert level in ['INFO', 'DEBUG', 'WARNING', 'ERROR', 'CRITICAL'] logger.log(level, message) def get_rank_zero_only_logger(logger: _Logger): if rank_zero_only.rank == 0: return logger else: for _level in logger._core.levels.keys(): level = _level.lower() setattr(logger, level, lambda x: None) logger._log = lambda x: None return logger def setup_gpus(gpus: Union[str, int]) -> int: """ A temporary fix for pytorch-lighting 1.3.x """ gpus = str(gpus) gpu_ids = [] if ',' not in gpus: n_gpus = int(gpus) return n_gpus if n_gpus != -1 else torch.cuda.device_count() else: gpu_ids = [i.strip() for i in gpus.split(',') if i != ''] # setup environment variables visible_devices = os.getenv('CUDA_VISIBLE_DEVICES') if visible_devices is None: os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(i) for i in gpu_ids) visible_devices = os.getenv('CUDA_VISIBLE_DEVICES') logger.warning(f'[Temporary Fix] manually set CUDA_VISIBLE_DEVICES when specifying gpus to use: {visible_devices}') else: logger.warning('[Temporary Fix] CUDA_VISIBLE_DEVICES already set by user or the main process.') return len(gpu_ids) def flattenList(x): return list(chain(*x)) @contextlib.contextmanager def tqdm_joblib(tqdm_object): """Context manager to patch joblib to report into tqdm progress bar given as argument Usage: with tqdm_joblib(tqdm(desc="My calculation", total=10)) as progress_bar: Parallel(n_jobs=16)(delayed(sqrt)(i**2) for i in range(10)) When iterating over a generator, directly use of tqdm is also a solutin (but monitor the task queuing, instead of finishing) ret_vals = Parallel(n_jobs=args.world_size)( delayed(lambda x: _compute_cov_score(pid, *x))(param) for param in tqdm(combinations(image_ids, 2), desc=f'Computing cov_score of [{pid}]', total=len(image_ids)*(len(image_ids)-1)/2)) Src: https://stackoverflow.com/a/58936697 """ class TqdmBatchCompletionCallback(joblib.parallel.BatchCompletionCallBack): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __call__(self, *args, **kwargs): tqdm_object.update(n=self.batch_size) return super().__call__(*args, **kwargs) old_batch_callback = joblib.parallel.BatchCompletionCallBack joblib.parallel.BatchCompletionCallBack = TqdmBatchCompletionCallback try: yield tqdm_object finally: joblib.parallel.BatchCompletionCallBack = old_batch_callback tqdm_object.close() def draw_points(img,points,color=(0,255,0),radius=3): dp = [(int(points[i, 0]), int(points[i, 1])) for i in range(points.shape[0])] for i in range(points.shape[0]): cv2.circle(img, dp[i],radius=radius,color=color) return img def draw_match(img1, img2, corr1, corr2,inlier=[True],color=None,radius1=1,radius2=1,resize=None): if resize is not None: scale1,scale2=[img1.shape[1]/resize[0],img1.shape[0]/resize[1]],[img2.shape[1]/resize[0],img2.shape[0]/resize[1]] img1,img2=cv2.resize(img1, resize, interpolation=cv2.INTER_AREA),cv2.resize(img2, resize, interpolation=cv2.INTER_AREA) corr1,corr2=corr1/np.asarray(scale1)[np.newaxis],corr2/np.asarray(scale2)[np.newaxis] corr1_key = [cv2.KeyPoint(corr1[i, 0], corr1[i, 1], radius1) for i in range(corr1.shape[0])] corr2_key = [cv2.KeyPoint(corr2[i, 0], corr2[i, 1], radius2) for i in range(corr2.shape[0])] assert len(corr1) == len(corr2) draw_matches = [cv2.DMatch(i, i, 0) for i in range(len(corr1))] if color is None: color = [(0, 255, 0) if cur_inlier else (0,0,255) for cur_inlier in inlier] if len(color)==1: display = cv2.drawMatches(img1, corr1_key, img2, corr2_key, draw_matches, None, matchColor=color[0], singlePointColor=color[0], flags=4 ) else: height,width=max(img1.shape[0],img2.shape[0]),img1.shape[1]+img2.shape[1] display=np.zeros([height,width,3],np.uint8) display[:img1.shape[0],:img1.shape[1]]=img1 display[:img2.shape[0],img1.shape[1]:]=img2 for i in range(len(corr1)): left_x,left_y,right_x,right_y=int(corr1[i][0]),int(corr1[i][1]),int(corr2[i][0]+img1.shape[1]),int(corr2[i][1]) cur_color=(int(color[i][0]),int(color[i][1]),int(color[i][2])) cv2.line(display, (left_x,left_y), (right_x,right_y),cur_color,1,lineType=cv2.LINE_AA) return display