import torch import numpy as np import cv2 import os from loss import batch_episym from tqdm import tqdm import sys ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.insert(0, ROOT_DIR) from utils import evaluation_utils,train_utils def valid(valid_loader, model,match_loss, config,model_config): model.eval() loader_iter = iter(valid_loader) num_pair = 0 total_loss,total_acc_corr,total_acc_incorr=0,0,0 total_precision,total_recall=torch.zeros(model_config.layer_num ,device='cuda'),\ torch.zeros(model_config.layer_num ,device='cuda') total_acc_mid=torch.zeros(len(model_config.seedlayer)-1,device='cuda') with torch.no_grad(): if config.local_rank==0: loader_iter=tqdm(loader_iter) print('validating...') for test_data in loader_iter: num_pair+= 1 test_data = train_utils.tocuda(test_data) res= model(test_data) loss_res=match_loss.run(test_data,res) total_acc_corr+=loss_res['acc_corr'] total_acc_incorr+=loss_res['acc_incorr'] total_loss+=loss_res['total_loss'] if config.model_name=='SGM': total_acc_mid+=loss_res['mid_acc_corr'] total_precision,total_recall=total_precision+loss_res['pre_seed_conf'],total_recall+loss_res['recall_seed_conf'] total_acc_corr/=num_pair total_acc_incorr /= num_pair total_precision/=num_pair total_recall/=num_pair total_acc_mid/=num_pair #apply tensor reduction total_loss,total_acc_corr,total_acc_incorr,total_precision,total_recall,total_acc_mid=train_utils.reduce_tensor(total_loss,'sum'),\ train_utils.reduce_tensor(total_acc_corr,'mean'),train_utils.reduce_tensor(total_acc_incorr,'mean'),\ train_utils.reduce_tensor(total_precision,'mean'),train_utils.reduce_tensor(total_recall,'mean'),train_utils.reduce_tensor(total_acc_mid,'mean') model.train() return total_loss,total_acc_corr,total_acc_incorr,total_precision,total_recall,total_acc_mid def dump_train_vis(res,data,step,config): #batch matching p=res['p'][:,:-1,:-1] score,index1=torch.max(p,dim=-1) _,index2=torch.max(p,dim=-2) mask_th=score>0.2 mask_mc=index2.gather(index=index1,dim=1) == torch.arange(len(p[0])).cuda()[None] mask_p=mask_th&mask_mc#B*N corr1,corr2=data['x1'],data['x2'].gather(index=index1[:,:,None].expand(-1,-1,2),dim=1) corr1_kpt,corr2_kpt=data['kpt1'],data['kpt2'].gather(index=index1[:,:,None].expand(-1,-1,2),dim=1) epi_dis=batch_episym(corr1,corr2,data['e_gt']) mask_inlier=epi_dis<config.inlier_th#B*N #dump vis for cur_mask_p,cur_mask_inlier,cur_corr1,cur_corr2,img_path1,img_path2 in zip(mask_p,mask_inlier,corr1_kpt,corr2_kpt,data['img_path1'],data['img_path2']): img1,img2=cv2.imread(img_path1),cv2.imread(img_path2) dis_play=evaluation_utils.draw_match(img1,img2,cur_corr1[cur_mask_p].cpu().numpy(),cur_corr2[cur_mask_p].cpu().numpy(),inlier=cur_mask_inlier) base_name_seq=os.path.join(img_path1.split('/')[-1]+'_'+img_path2.split('/')[-1]+'_'+img_path1.split('/')[-2]) save_path=os.path.join(config.train_vis_folder,'train_vis',config.log_base,str(step),base_name_seq+'.png') cv2.imwrite(save_path,dis_play)