# XoFTR: Cross-modal Feature Matching Transformer ### [Paper (arXiv)](https://arxiv.org/pdf/2404.09692) | [Paper (CVF)](https://openaccess.thecvf.com/content/CVPR2024W/IMW/papers/Tuzcuoglu_XoFTR_Cross-modal_Feature_Matching_Transformer_CVPRW_2024_paper.pdf)
This is Pytorch implementation of XoFTR: Cross-modal Feature Matching Transformer [CVPR 2024 Image Matching Workshop](https://image-matching-workshop.github.io/) paper. XoFTR is a cross-modal cross-view method for local feature matching between thermal infrared (TIR) and visible images.

teaser

## Colab demo To run XoFTR with custom image pairs without configuring your own GPU environment, you can use the Colab demo: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1T495vybejujZjJlPY-sHm8YwV5Ss86AM?usp=sharing) ## Installation ```shell conda env create -f environment.yaml conda activate xoftr ``` Download links for - [Pretrained models weights](https://drive.google.com/drive/folders/1RAI243OHuyZ4Weo1NiTy280bCE_82s4q?usp=drive_link): Two versions available, trained at 640 and 840 resolutions. - [METU-VisTIR dataset](https://drive.google.com/file/d/1Sj_vxj-GXvDQIMSg-ZUJR0vHBLIeDrLg/view?usp=sharing) ## METU-VisTIR Dataset

dataset

This dataset includes thermal and visible images captured across six diverse scenes with ground-truth camera poses. Four of the scenes encompass images captured under both cloudy and sunny conditions, while the remaining two scenes exclusively feature cloudy conditions. Since the cameras are auto-focus, there may be result in slight imperfections in the ground truth camera parameters. For more information about the dataset, please refer to our [paper](https://arxiv.org/pdf/2404.09692). **License of the dataset:** The METU-VisTIR dataset is licensed under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en). ### Data format The dataset is organized into folders according to scenarios. The organization format is as follows: ``` METU-VisTIR/ ├── index/ │ ├── scene_info_test/ │ │ ├── cloudy_cloudy_scene_1.npz # scene info with test pairs │ │ └── ... │ ├── scene_info_val/ │ │ ├── cloudy_cloudy_scene_1.npz # scene info with val pairs │ │ └── ... │ └── val_test_list/ │ ├── test_list.txt # test scenes list │ └── val_list.txt # val scenes list ├── cloudy/ # cloudy scenes │ ├── scene_1/ │ │ ├── thermal/ │ │ │ └── images/ # thermal images │ │ └── visible/ │ │ └── images/ # visible images │ └── ... └── sunny/ # sunny scenes └── ... ``` cloudy_cloudy_scene_\*.npz and cloudy_sunny_scene_\*.npz files contain GT camera poses and image pairs ## Runing XoFTR ### Demo to match image pairs with XoFTR A demo notebook for XoFTR on a single pair of images is given in [notebooks/xoftr_demo.ipynb](notebooks/xoftr_demo.ipynb). ### Reproduce the testing results for relative pose estimation You need to download METU-VisTIR dataset. After downloading, unzip the required files. Then, symlinks need to be created for the `data` folder. ```shell unzip downloaded-file.zip # set up symlinks ln -s /path/to/METU_VisTIR/ /path/to/XoFTR/data/ ``` ```shell conda activate xoftr python test_relative_pose.py xoftr --ckpt weights/weights_xoftr_640.ckpt # with visualization python test_relative_pose.py xoftr --ckpt weights/weights_xoftr_640.ckpt --save_figs ``` The results and figures are saved to `results_relative_pose/`.
## Training See [Training XoFTR](./docs/TRAINING.md) for more details. ## Citation If you find this code useful for your research, please use the following BibTeX entry. ```bibtex @inproceedings{tuzcuouglu2024xoftr, title={XoFTR: Cross-modal Feature Matching Transformer}, author={Tuzcuo{\u{g}}lu, {\"O}nder and K{\"o}ksal, Aybora and Sofu, Bu{\u{g}}ra and Kalkan, Sinan and Alatan, A Aydin}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={4275--4286}, year={2024} } ``` ## Acknowledgement This code is derived from [LoFTR](https://github.com/zju3dv/LoFTR). We are grateful to the authors for their contribution of the source code.