# -*- coding: UTF-8 -*- '''================================================= @Project -> File pram -> inference @IDE PyCharm @Author fx221@cam.ac.uk @Date 03/04/2024 16:06 ==================================================''' import argparse import torch import torchvision.transforms.transforms as tvt import yaml from nets.load_segnet import load_segnet from nets.sfd2 import load_sfd2 from dataset.get_dataset import compose_datasets parser = argparse.ArgumentParser(description='PRAM', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--config', type=str, required=True, help='config of specifications') parser.add_argument('--landmark_path', type=str, required=True, help='path of landmarks') parser.add_argument('--feat_weight_path', type=str, default='weights/sfd2_20230511_210205_resnet4x.79.pth') parser.add_argument('--rec_weight_path', type=str, required=True, help='recognition weight') parser.add_argument('--online', action='store_true', help='online visualization with pangolin') if __name__ == '__main__': args = parser.parse_args() with open(args.config, 'rt') as f: config = yaml.load(f, Loader=yaml.Loader) config['landmark_path'] = args.landmark_path feat_model = load_sfd2(weight_path=args.feat_weight_path).cuda().eval() print('Load SFD2 weight from {:s}'.format(args.feat_weight_path)) # rec_model = get_model(config=config) rec_model = load_segnet(network=config['network'], n_class=config['n_class'], desc_dim=256 if config['use_mid_feature'] else 128, n_layers=config['layers'], output_dim=config['output_dim']) state_dict = torch.load(args.rec_weight_path, map_location='cpu')['model'] rec_model.load_state_dict(state_dict, strict=True) print('Load recognition weight from {:s}'.format(args.rec_weight_path)) img_transforms = [] img_transforms.append(tvt.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])) img_transforms = tvt.Compose(img_transforms) dataset = config['dataset'] if not args.online: from localization.loc_by_rec_eval import loc_by_rec_eval test_set = compose_datasets(datasets=dataset, config=config, train=False, sample_ratio=1) config['n_class'] = test_set.n_class loc_by_rec_eval(rec_model=rec_model.cuda().eval(), loader=test_set, local_feat=feat_model.cuda().eval(), config=config, img_transforms=img_transforms) else: from localization.loc_by_rec_online import loc_by_rec_online loc_by_rec_online(rec_model=rec_model.cuda().eval(), local_feat=feat_model.cuda().eval(), config=config, img_transforms=img_transforms)