|
import pytorch_lightning as pl |
|
import argparse |
|
import pprint |
|
from loguru import logger as loguru_logger |
|
|
|
from src.config.default import get_cfg_defaults |
|
from src.utils.profiler import build_profiler |
|
|
|
from src.lightning.data import MultiSceneDataModule |
|
from src.lightning.lightning_loftr import PL_LoFTR |
|
|
|
import torch |
|
|
|
def parse_args(): |
|
|
|
|
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
parser.add_argument( |
|
'data_cfg_path', type=str, help='data config path') |
|
parser.add_argument( |
|
'main_cfg_path', type=str, help='main config path') |
|
parser.add_argument( |
|
'--ckpt_path', type=str, default="weights/indoor_ds.ckpt", help='path to the checkpoint') |
|
parser.add_argument( |
|
'--dump_dir', type=str, default=None, help="if set, the matching results will be dump to dump_dir") |
|
parser.add_argument( |
|
'--profiler_name', type=str, default=None, help='options: [inference, pytorch], or leave it unset') |
|
parser.add_argument( |
|
'--batch_size', type=int, default=1, help='batch_size per gpu') |
|
parser.add_argument( |
|
'--num_workers', type=int, default=2) |
|
parser.add_argument( |
|
'--thr', type=float, default=None, help='modify the coarse-level matching threshold.') |
|
parser.add_argument( |
|
'--pixel_thr', type=float, default=None, help='modify the RANSAC threshold.') |
|
parser.add_argument( |
|
'--ransac', type=str, default=None, help='modify the RANSAC method') |
|
parser.add_argument( |
|
'--scannetX', type=int, default=None, help='ScanNet resize X') |
|
parser.add_argument( |
|
'--scannetY', type=int, default=None, help='ScanNet resize Y') |
|
parser.add_argument( |
|
'--megasize', type=int, default=None, help='MegaDepth resize') |
|
parser.add_argument( |
|
'--npe', action='store_true', default=False, help='') |
|
parser.add_argument( |
|
'--fp32', action='store_true', default=False, help='') |
|
parser.add_argument( |
|
'--ransac_times', type=int, default=None, help='repeat ransac multiple times for more robust evaluation') |
|
parser.add_argument( |
|
'--rmbd', type=int, default=None, help='remove border matches') |
|
parser.add_argument( |
|
'--deter', action='store_true', default=False, help='use deterministic mode for testing') |
|
parser.add_argument( |
|
'--half', action='store_true', default=False, help='pure16') |
|
parser.add_argument( |
|
'--flash', action='store_true', default=False, help='flash') |
|
|
|
parser = pl.Trainer.add_argparse_args(parser) |
|
return parser.parse_args() |
|
|
|
def inplace_relu(m): |
|
classname = m.__class__.__name__ |
|
if classname.find('ReLU') != -1: |
|
m.inplace=True |
|
|
|
if __name__ == '__main__': |
|
|
|
args = parse_args() |
|
pprint.pprint(vars(args)) |
|
|
|
|
|
config = get_cfg_defaults() |
|
config.merge_from_file(args.main_cfg_path) |
|
config.merge_from_file(args.data_cfg_path) |
|
if args.deter: |
|
torch.backends.cudnn.deterministic = True |
|
pl.seed_everything(config.TRAINER.SEED) |
|
|
|
|
|
if args.thr is not None: |
|
config.LOFTR.MATCH_COARSE.THR = args.thr |
|
|
|
if args.scannetX is not None and args.scannetY is not None: |
|
config.DATASET.SCAN_IMG_RESIZEX = args.scannetX |
|
config.DATASET.SCAN_IMG_RESIZEY = args.scannetY |
|
if args.megasize is not None: |
|
config.DATASET.MGDPT_IMG_RESIZE = args.megasize |
|
|
|
if args.npe: |
|
if config.LOFTR.COARSE.ROPE: |
|
assert config.DATASET.NPE_NAME is not None |
|
if config.DATASET.NPE_NAME is not None: |
|
if config.DATASET.NPE_NAME == 'megadepth': |
|
config.LOFTR.COARSE.NPE = [832, 832, config.DATASET.MGDPT_IMG_RESIZE, config.DATASET.MGDPT_IMG_RESIZE] |
|
elif config.DATASET.NPE_NAME == 'scannet': |
|
config.LOFTR.COARSE.NPE = [832, 832, config.DATASET.SCAN_IMG_RESIZEX, config.DATASET.SCAN_IMG_RESIZEX] |
|
else: |
|
config.LOFTR.COARSE.NPE = [832, 832, 832, 832] |
|
|
|
if args.ransac_times is not None: |
|
config.LOFTR.EVAL_TIMES = args.ransac_times |
|
|
|
if args.rmbd is not None: |
|
config.LOFTR.MATCH_COARSE.BORDER_RM = args.rmbd |
|
|
|
if args.pixel_thr is not None: |
|
config.TRAINER.RANSAC_PIXEL_THR = args.pixel_thr |
|
|
|
if args.ransac is not None: |
|
config.TRAINER.POSE_ESTIMATION_METHOD = args.ransac |
|
if args.ransac == 'LO-RANSAC' and config.TRAINER.RANSAC_PIXEL_THR == 0.5: |
|
config.TRAINER.RANSAC_PIXEL_THR = 2.0 |
|
|
|
if args.fp32: |
|
config.LOFTR.MP = False |
|
|
|
if args.half: |
|
config.LOFTR.HALF = True |
|
config.DATASET.FP16 = True |
|
else: |
|
config.LOFTR.HALF = False |
|
config.DATASET.FP16 = False |
|
|
|
if args.flash: |
|
config.LOFTR.COARSE.NO_FLASH = False |
|
|
|
loguru_logger.info(f"Args and config initialized!") |
|
|
|
|
|
profiler = build_profiler(args.profiler_name) |
|
model = PL_LoFTR(config, pretrained_ckpt=args.ckpt_path, profiler=profiler, dump_dir=args.dump_dir) |
|
loguru_logger.info(f"LoFTR-lightning initialized!") |
|
|
|
|
|
data_module = MultiSceneDataModule(args, config) |
|
loguru_logger.info(f"DataModule initialized!") |
|
|
|
|
|
trainer = pl.Trainer.from_argparse_args(args, replace_sampler_ddp=False, logger=False) |
|
|
|
loguru_logger.info(f"Start testing!") |
|
trainer.test(model, datamodule=data_module, verbose=False) |