|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import quaternion |
|
import cv2 |
|
from packaging import version |
|
|
|
from dust3r.utils.geometry import opencv_to_colmap_intrinsics |
|
|
|
try: |
|
import poselib |
|
HAS_POSELIB = True |
|
except Exception as e: |
|
HAS_POSELIB = False |
|
|
|
try: |
|
import pycolmap |
|
version_number = pycolmap.__version__ |
|
if version.parse(version_number) < version.parse("0.5.0"): |
|
HAS_PYCOLMAP = False |
|
else: |
|
HAS_PYCOLMAP = True |
|
except Exception as e: |
|
HAS_PYCOLMAP = False |
|
|
|
def run_pnp(pts2D, pts3D, K, distortion = None, mode='cv2', reprojectionError=5, img_size = None): |
|
""" |
|
use OPENCV model for distortion (4 values) |
|
""" |
|
assert mode in ['cv2', 'poselib', 'pycolmap'] |
|
try: |
|
if len(pts2D) > 4 and mode == "cv2": |
|
confidence = 0.9999 |
|
iterationsCount = 10_000 |
|
if distortion is not None: |
|
cv2_pts2ds = np.copy(pts2D) |
|
cv2_pts2ds = cv2.undistortPoints(cv2_pts2ds, K, np.array(distortion), R=None, P=K) |
|
pts2D = cv2_pts2ds.reshape((-1, 2)) |
|
|
|
success, r_pose, t_pose, _ = cv2.solvePnPRansac(pts3D, pts2D, K, None, flags=cv2.SOLVEPNP_SQPNP, |
|
iterationsCount=iterationsCount, |
|
reprojectionError=reprojectionError, |
|
confidence=confidence) |
|
if not success: |
|
return False, None |
|
r_pose = cv2.Rodrigues(r_pose)[0] |
|
RT = np.r_[np.c_[r_pose, t_pose], [(0,0,0,1)]] |
|
return True, np.linalg.inv(RT) |
|
elif len(pts2D) > 4 and mode == "poselib": |
|
assert HAS_POSELIB |
|
confidence = 0.9999 |
|
iterationsCount = 10_000 |
|
|
|
|
|
|
|
colmap_intrinsics = opencv_to_colmap_intrinsics(K) |
|
fx = colmap_intrinsics[0, 0] |
|
fy = colmap_intrinsics[1, 1] |
|
cx = colmap_intrinsics[0, 2] |
|
cy = colmap_intrinsics[1, 2] |
|
width = img_size[0] if img_size is not None else int(cx*2) |
|
height = img_size[1] if img_size is not None else int(cy*2) |
|
|
|
if distortion is None: |
|
camera = {'model': 'PINHOLE', 'width': width, 'height': height, 'params': [fx, fy, cx, cy]} |
|
else: |
|
camera = {'model': 'OPENCV', 'width': width, 'height': height, |
|
'params': [fx, fy, cx, cy] + distortion} |
|
|
|
pts2D = np.copy(pts2D) |
|
pts2D[:, 0] += 0.5 |
|
pts2D[:, 1] += 0.5 |
|
pose, _ = poselib.estimate_absolute_pose(pts2D, pts3D, camera, |
|
{'max_reproj_error': reprojectionError, |
|
'max_iterations': iterationsCount, |
|
'success_prob': confidence}, {}) |
|
if pose is None: |
|
return False, None |
|
RT = pose.Rt |
|
RT = np.r_[RT, [(0,0,0,1)]] |
|
return True, np.linalg.inv(RT) |
|
elif len(pts2D) > 4 and mode == "pycolmap": |
|
assert HAS_PYCOLMAP |
|
assert img_size is not None |
|
|
|
pts2D = np.copy(pts2D) |
|
pts2D[:, 0] += 0.5 |
|
pts2D[:, 1] += 0.5 |
|
colmap_intrinsics = opencv_to_colmap_intrinsics(K) |
|
fx = colmap_intrinsics[0, 0] |
|
fy = colmap_intrinsics[1, 1] |
|
cx = colmap_intrinsics[0, 2] |
|
cy = colmap_intrinsics[1, 2] |
|
width = img_size[0] |
|
height = img_size[1] |
|
if distortion is None: |
|
camera_dict = {'model': 'PINHOLE', 'width': width, 'height': height, 'params': [fx, fy, cx, cy]} |
|
else: |
|
camera_dict = {'model': 'OPENCV', 'width': width, 'height': height, |
|
'params': [fx, fy, cx, cy] + distortion} |
|
|
|
pycolmap_camera = pycolmap.Camera( |
|
model=camera_dict['model'], width=camera_dict['width'], height=camera_dict['height'], |
|
params=camera_dict['params']) |
|
|
|
pycolmap_estimation_options = dict(ransac=dict(max_error=reprojectionError, min_inlier_ratio=0.01, |
|
min_num_trials=1000, max_num_trials=100000, |
|
confidence=0.9999)) |
|
pycolmap_refinement_options=dict(refine_focal_length=False, refine_extra_params=False) |
|
ret = pycolmap.absolute_pose_estimation(pts2D, pts3D, pycolmap_camera, |
|
estimation_options=pycolmap_estimation_options, |
|
refinement_options=pycolmap_refinement_options) |
|
if ret is None: |
|
ret = {'success': False} |
|
else: |
|
ret['success'] = True |
|
if callable(ret['cam_from_world'].matrix): |
|
retmat = ret['cam_from_world'].matrix() |
|
else: |
|
retmat = ret['cam_from_world'].matrix |
|
ret['qvec'] = quaternion.from_rotation_matrix(retmat[:3, :3]) |
|
ret['tvec'] = retmat[:3, 3] |
|
|
|
if not (ret['success'] and ret['num_inliers'] > 0): |
|
success = False |
|
pose = None |
|
else: |
|
success = True |
|
pr_world_to_querycam = np.r_[ret['cam_from_world'].matrix(), [(0,0,0,1)]] |
|
pose = np.linalg.inv(pr_world_to_querycam) |
|
return success, pose |
|
else: |
|
return False, None |
|
except Exception as e: |
|
print(f'error during pnp: {e}') |
|
return False, None |