|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import random |
|
import argparse |
|
from tqdm import tqdm |
|
import math |
|
|
|
from dust3r.inference import inference |
|
from dust3r.model import AsymmetricCroCo3DStereo |
|
from dust3r.utils.geometry import find_reciprocal_matches, xy_grid, geotrf |
|
|
|
from dust3r_visloc.datasets import * |
|
from dust3r_visloc.localization import run_pnp |
|
from dust3r_visloc.evaluation import get_pose_error, aggregate_stats, export_results |
|
|
|
|
|
def get_args_parser(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--dataset", type=str, required=True, help="visloc dataset to eval") |
|
parser_weights = parser.add_mutually_exclusive_group(required=True) |
|
parser_weights.add_argument("--weights", type=str, help="path to the model weights", default=None) |
|
parser_weights.add_argument("--model_name", type=str, help="name of the model weights", |
|
choices=["DUSt3R_ViTLarge_BaseDecoder_512_dpt", |
|
"DUSt3R_ViTLarge_BaseDecoder_512_linear", |
|
"DUSt3R_ViTLarge_BaseDecoder_224_linear"]) |
|
parser.add_argument("--confidence_threshold", type=float, default=3.0, |
|
help="confidence values higher than threshold are invalid") |
|
parser.add_argument("--device", type=str, default='cuda', help="pytorch device") |
|
parser.add_argument("--pnp_mode", type=str, default="cv2", choices=['cv2', 'poselib', 'pycolmap'], |
|
help="pnp lib to use") |
|
parser_reproj = parser.add_mutually_exclusive_group() |
|
parser_reproj.add_argument("--reprojection_error", type=float, default=5.0, help="pnp reprojection error") |
|
parser_reproj.add_argument("--reprojection_error_diag_ratio", type=float, default=None, |
|
help="pnp reprojection error as a ratio of the diagonal of the image") |
|
|
|
parser.add_argument("--pnp_max_points", type=int, default=100_000, help="pnp maximum number of points kept") |
|
parser.add_argument("--viz_matches", type=int, default=0, help="debug matches") |
|
|
|
parser.add_argument("--output_dir", type=str, default=None, help="output path") |
|
parser.add_argument("--output_label", type=str, default='', help="prefix for results files") |
|
return parser |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = get_args_parser() |
|
args = parser.parse_args() |
|
conf_thr = args.confidence_threshold |
|
device = args.device |
|
pnp_mode = args.pnp_mode |
|
reprojection_error = args.reprojection_error |
|
reprojection_error_diag_ratio = args.reprojection_error_diag_ratio |
|
pnp_max_points = args.pnp_max_points |
|
viz_matches = args.viz_matches |
|
|
|
if args.weights is not None: |
|
weights_path = args.weights |
|
else: |
|
weights_path = "naver/" + args.model_name |
|
model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(args.device) |
|
|
|
dataset = eval(args.dataset) |
|
dataset.set_resolution(model) |
|
|
|
query_names = [] |
|
poses_pred = [] |
|
pose_errors = [] |
|
angular_errors = [] |
|
for idx in tqdm(range(len(dataset))): |
|
views = dataset[(idx)] |
|
query_view = views[0] |
|
map_views = views[1:] |
|
query_names.append(query_view['image_name']) |
|
|
|
query_pts2d = [] |
|
query_pts3d = [] |
|
for map_view in map_views: |
|
|
|
imgs = [] |
|
for idx, img in enumerate([query_view['rgb_rescaled'], map_view['rgb_rescaled']]): |
|
imgs.append(dict(img=img.unsqueeze(0), true_shape=np.int32([img.shape[1:]]), |
|
idx=idx, instance=str(idx))) |
|
output = inference([tuple(imgs)], model, device, batch_size=1, verbose=False) |
|
pred1, pred2 = output['pred1'], output['pred2'] |
|
confidence_masks = [pred1['conf'].squeeze(0) >= conf_thr, |
|
(pred2['conf'].squeeze(0) >= conf_thr) & map_view['valid_rescaled']] |
|
pts3d = [pred1['pts3d'].squeeze(0), pred2['pts3d_in_other_view'].squeeze(0)] |
|
|
|
|
|
pts2d_list, pts3d_list = [], [] |
|
for i in range(2): |
|
conf_i = confidence_masks[i].cpu().numpy() |
|
true_shape_i = imgs[i]['true_shape'][0] |
|
pts2d_list.append(xy_grid(true_shape_i[1], true_shape_i[0])[conf_i]) |
|
pts3d_list.append(pts3d[i].detach().cpu().numpy()[conf_i]) |
|
|
|
PQ, PM = pts3d_list[0], pts3d_list[1] |
|
if len(PQ) == 0 or len(PM) == 0: |
|
continue |
|
reciprocal_in_PM, nnM_in_PQ, num_matches = find_reciprocal_matches(PQ, PM) |
|
if viz_matches > 0: |
|
print(f'found {num_matches} matches') |
|
matches_im1 = pts2d_list[1][reciprocal_in_PM] |
|
matches_im0 = pts2d_list[0][nnM_in_PQ][reciprocal_in_PM] |
|
valid_pts3d = map_view['pts3d_rescaled'][matches_im1[:, 1], matches_im1[:, 0]] |
|
|
|
|
|
matches_im0 = matches_im0.astype(np.float64) |
|
matches_im1 = matches_im1.astype(np.float64) |
|
matches_im0[:, 0] += 0.5 |
|
matches_im0[:, 1] += 0.5 |
|
matches_im1[:, 0] += 0.5 |
|
matches_im1[:, 1] += 0.5 |
|
|
|
matches_im0 = geotrf(query_view['to_orig'], matches_im0, norm=True) |
|
matches_im1 = geotrf(query_view['to_orig'], matches_im1, norm=True) |
|
|
|
matches_im0[:, 0] -= 0.5 |
|
matches_im0[:, 1] -= 0.5 |
|
matches_im1[:, 0] -= 0.5 |
|
matches_im1[:, 1] -= 0.5 |
|
|
|
|
|
if viz_matches > 0: |
|
viz_imgs = [np.array(query_view['rgb']), np.array(map_view['rgb'])] |
|
from matplotlib import pyplot as pl |
|
n_viz = viz_matches |
|
match_idx_to_viz = np.round(np.linspace(0, num_matches - 1, n_viz)).astype(int) |
|
viz_matches_im0, viz_matches_im1 = matches_im0[match_idx_to_viz], matches_im1[match_idx_to_viz] |
|
|
|
H0, W0, H1, W1 = *viz_imgs[0].shape[:2], *viz_imgs[1].shape[:2] |
|
img0 = np.pad(viz_imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), 'constant', constant_values=0) |
|
img1 = np.pad(viz_imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), 'constant', constant_values=0) |
|
img = np.concatenate((img0, img1), axis=1) |
|
pl.figure() |
|
pl.imshow(img) |
|
cmap = pl.get_cmap('jet') |
|
for i in range(n_viz): |
|
(x0, y0), (x1, y1) = viz_matches_im0[i].T, viz_matches_im1[i].T |
|
pl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(i / (n_viz - 1)), scalex=False, scaley=False) |
|
pl.show(block=True) |
|
|
|
if len(valid_pts3d) == 0: |
|
pass |
|
else: |
|
query_pts3d.append(valid_pts3d.cpu().numpy()) |
|
query_pts2d.append(matches_im0) |
|
|
|
if len(query_pts2d) == 0: |
|
success = False |
|
pr_querycam_to_world = None |
|
else: |
|
query_pts2d = np.concatenate(query_pts2d, axis=0).astype(np.float32) |
|
query_pts3d = np.concatenate(query_pts3d, axis=0) |
|
if len(query_pts2d) > pnp_max_points: |
|
idxs = random.sample(range(len(query_pts2d)), pnp_max_points) |
|
query_pts3d = query_pts3d[idxs] |
|
query_pts2d = query_pts2d[idxs] |
|
|
|
W, H = query_view['rgb'].size |
|
if reprojection_error_diag_ratio is not None: |
|
reprojection_error_img = reprojection_error_diag_ratio * math.sqrt(W**2 + H**2) |
|
else: |
|
reprojection_error_img = reprojection_error |
|
success, pr_querycam_to_world = run_pnp(query_pts2d, query_pts3d, |
|
query_view['intrinsics'], query_view['distortion'], |
|
pnp_mode, reprojection_error_img, img_size=[W, H]) |
|
|
|
if not success: |
|
abs_transl_error = float('inf') |
|
abs_angular_error = float('inf') |
|
else: |
|
abs_transl_error, abs_angular_error = get_pose_error(pr_querycam_to_world, query_view['cam_to_world']) |
|
|
|
pose_errors.append(abs_transl_error) |
|
angular_errors.append(abs_angular_error) |
|
poses_pred.append(pr_querycam_to_world) |
|
|
|
xp_label = f'tol_conf_{conf_thr}' |
|
if args.output_label: |
|
xp_label = args.output_label + '_' + xp_label |
|
if reprojection_error_diag_ratio is not None: |
|
xp_label = xp_label + f'_reproj_diag_{reprojection_error_diag_ratio}' |
|
else: |
|
xp_label = xp_label + f'_reproj_err_{reprojection_error}' |
|
export_results(args.output_dir, xp_label, query_names, poses_pred) |
|
out_string = aggregate_stats(f'{args.dataset}', pose_errors, angular_errors) |
|
print(out_string) |
|
|