|
''' |
|
Feature-free COTR guided matching for keypoints. |
|
We use DISK(https://github.com/cvlab-epfl/disk) keypoints location. |
|
We apply RANSAC + F matrix to further prune outliers. |
|
Note: This script doesn't use descriptors. |
|
''' |
|
import argparse |
|
import os |
|
import time |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import imageio |
|
from scipy.spatial import distance_matrix |
|
|
|
from COTR.utils import utils, debug_utils |
|
from COTR.models import build_model |
|
from COTR.options.options import * |
|
from COTR.options.options_utils import * |
|
from COTR.inference.sparse_engine import SparseEngine, FasterSparseEngine |
|
|
|
utils.fix_randomness(0) |
|
torch.set_grad_enabled(False) |
|
|
|
|
|
def main(opt): |
|
model = build_model(opt) |
|
model = model.cuda() |
|
weights = torch.load(opt.load_weights_path)['model_state_dict'] |
|
utils.safe_load_weights(model, weights) |
|
model = model.eval() |
|
|
|
img_a = imageio.imread('./sample_data/imgs/21526113_4379776807.jpg') |
|
img_b = imageio.imread('./sample_data/imgs/21126421_4537535153.jpg') |
|
kp_a = np.load('./sample_data/21526113_4379776807.jpg.disk.kpts.npy') |
|
kp_b = np.load('./sample_data/21126421_4537535153.jpg.disk.kpts.npy') |
|
|
|
if opt.faster_infer: |
|
engine = FasterSparseEngine(model, 32, mode='tile') |
|
else: |
|
engine = SparseEngine(model, 32, mode='tile') |
|
t0 = time.time() |
|
corrs_a_b = engine.cotr_corr_multiscale(img_a, img_b, np.linspace(0.5, 0.0625, 4), 1, max_corrs=kp_a.shape[0], queries_a=kp_a, force=True) |
|
corrs_b_a = engine.cotr_corr_multiscale(img_b, img_a, np.linspace(0.5, 0.0625, 4), 1, max_corrs=kp_b.shape[0], queries_a=kp_b, force=True) |
|
t1 = time.time() |
|
print(f'COTR spent {t1-t0} seconds.') |
|
inds_a_b = np.argmin(distance_matrix(corrs_a_b[:, 2:], kp_b), axis=1) |
|
matched_a_b = np.stack([np.arange(kp_a.shape[0]), inds_a_b]).T |
|
inds_b_a = np.argmin(distance_matrix(corrs_b_a[:, 2:], kp_a), axis=1) |
|
matched_b_a = np.stack([np.arange(kp_b.shape[0]), inds_b_a]).T |
|
|
|
good = 0 |
|
final_matches = [] |
|
for m_ab in matched_a_b: |
|
for m_ba in matched_b_a: |
|
if (m_ab == m_ba[::-1]).all(): |
|
good += 1 |
|
final_matches.append(m_ab) |
|
break |
|
final_matches = np.array(final_matches) |
|
final_corrs = np.concatenate([kp_a[final_matches[:, 0]], kp_b[final_matches[:, 1]]], axis=1) |
|
_, mask = cv2.findFundamentalMat(final_corrs[:, :2], final_corrs[:, 2:], cv2.FM_RANSAC, ransacReprojThreshold=5, confidence=0.999999) |
|
utils.visualize_corrs(img_a, img_b, final_corrs[np.where(mask[:, 0])]) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
set_COTR_arguments(parser) |
|
parser.add_argument('--out_dir', type=str, default=general_config['out'], help='out directory') |
|
parser.add_argument('--load_weights', type=str, default=None, help='load a pretrained set of weights, you need to provide the model id') |
|
parser.add_argument('--faster_infer', type=str2bool, default=False, help='use fatser inference') |
|
|
|
opt = parser.parse_args() |
|
opt.command = ' '.join(sys.argv) |
|
|
|
layer_2_channels = {'layer1': 256, |
|
'layer2': 512, |
|
'layer3': 1024, |
|
'layer4': 2048, } |
|
opt.dim_feedforward = layer_2_channels[opt.layer] |
|
if opt.load_weights: |
|
opt.load_weights_path = os.path.join(opt.out_dir, opt.load_weights, 'checkpoint.pth.tar') |
|
print_opt(opt) |
|
main(opt) |
|
|