|
''' |
|
COTR two view reconstruction with known extrinsic/intrinsic demo |
|
''' |
|
import argparse |
|
import os |
|
import time |
|
|
|
import numpy as np |
|
import torch |
|
import imageio |
|
import open3d as o3d |
|
|
|
from COTR.utils import utils, debug_utils |
|
from COTR.models import build_model |
|
from COTR.options.options import * |
|
from COTR.options.options_utils import * |
|
from COTR.inference.sparse_engine import SparseEngine, FasterSparseEngine |
|
from COTR.projector import pcd_projector |
|
|
|
utils.fix_randomness(0) |
|
torch.set_grad_enabled(False) |
|
|
|
|
|
def triangulate_rays_to_pcd(center_a, dir_a, center_b, dir_b): |
|
A = center_a |
|
a = dir_a / np.linalg.norm(dir_a, axis=1, keepdims=True) |
|
B = center_b |
|
b = dir_b / np.linalg.norm(dir_b, axis=1, keepdims=True) |
|
c = B - A |
|
D = A + a * ((-np.sum(a * b, axis=1) * np.sum(b * c, axis=1) + np.sum(a * c, axis=1) * np.sum(b * b, axis=1)) / (np.sum(a * a, axis=1) * np.sum(b * b, axis=1) - np.sum(a * b, axis=1) * np.sum(a * b, axis=1)))[..., None] |
|
return D |
|
|
|
|
|
def main(opt): |
|
model = build_model(opt) |
|
model = model.cuda() |
|
weights = torch.load(opt.load_weights_path, map_location='cpu')['model_state_dict'] |
|
utils.safe_load_weights(model, weights) |
|
model = model.eval() |
|
|
|
img_a = imageio.imread('./sample_data/imgs/img_0.jpg', pilmode='RGB') |
|
img_b = imageio.imread('./sample_data/imgs/img_1.jpg', pilmode='RGB') |
|
|
|
if opt.faster_infer: |
|
engine = FasterSparseEngine(model, 32, mode='tile') |
|
else: |
|
engine = SparseEngine(model, 32, mode='tile') |
|
t0 = time.time() |
|
corrs = engine.cotr_corr_multiscale_with_cycle_consistency(img_a, img_b, np.linspace(0.5, 0.0625, 4), 1, max_corrs=opt.max_corrs, queries_a=None) |
|
t1 = time.time() |
|
print(f'spent {t1-t0} seconds for {opt.max_corrs} correspondences.') |
|
|
|
camera_a = np.load('./sample_data/camera_0.npy', allow_pickle=True).item() |
|
camera_b = np.load('./sample_data/camera_1.npy', allow_pickle=True).item() |
|
center_a = camera_a['cam_center'] |
|
center_b = camera_b['cam_center'] |
|
rays_a = pcd_projector.PointCloudProjector.pcd_2d_to_pcd_3d_np(corrs[:, :2], np.ones([corrs.shape[0], 1]) * 2, camera_a['intrinsic'], motion=camera_a['c2w']) |
|
rays_b = pcd_projector.PointCloudProjector.pcd_2d_to_pcd_3d_np(corrs[:, 2:], np.ones([corrs.shape[0], 1]) * 2, camera_b['intrinsic'], motion=camera_b['c2w']) |
|
dir_a = rays_a - center_a |
|
dir_b = rays_b - center_b |
|
center_a = np.array([center_a] * corrs.shape[0]) |
|
center_b = np.array([center_b] * corrs.shape[0]) |
|
points = triangulate_rays_to_pcd(center_a, dir_a, center_b, dir_b) |
|
colors = (img_a[tuple(np.floor(corrs[:, :2]).astype(int)[:, ::-1].T)] / 255 + img_b[tuple(np.floor(corrs[:, 2:]).astype(int)[:, ::-1].T)] / 255) / 2 |
|
colors = np.array(colors) |
|
|
|
pcd = o3d.geometry.PointCloud() |
|
pcd.points = o3d.utility.Vector3dVector(points) |
|
pcd.colors = o3d.utility.Vector3dVector(colors) |
|
o3d.visualization.draw_geometries([pcd]) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
set_COTR_arguments(parser) |
|
parser.add_argument('--out_dir', type=str, default=general_config['out'], help='out directory') |
|
parser.add_argument('--load_weights', type=str, default=None, help='load a pretrained set of weights, you need to provide the model id') |
|
parser.add_argument('--max_corrs', type=int, default=2048, help='number of correspondences') |
|
parser.add_argument('--faster_infer', type=str2bool, default=False, help='use fatser inference') |
|
|
|
opt = parser.parse_args() |
|
opt.command = ' '.join(sys.argv) |
|
|
|
layer_2_channels = {'layer1': 256, |
|
'layer2': 512, |
|
'layer3': 1024, |
|
'layer4': 2048, } |
|
opt.dim_feedforward = layer_2_channels[opt.layer] |
|
if opt.load_weights: |
|
opt.load_weights_path = os.path.join(opt.out_dir, opt.load_weights, 'checkpoint.pth.tar') |
|
print_opt(opt) |
|
main(opt) |
|
|