|
''' |
|
COTR demo for a single image pair |
|
''' |
|
import argparse |
|
import os |
|
import time |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import imageio |
|
import matplotlib.pyplot as plt |
|
|
|
from COTR.utils import utils, debug_utils |
|
from COTR.models import build_model |
|
from COTR.options.options import * |
|
from COTR.options.options_utils import * |
|
from COTR.inference.inference_helper import triangulate_corr |
|
from COTR.inference.sparse_engine import SparseEngine |
|
|
|
utils.fix_randomness(0) |
|
torch.set_grad_enabled(False) |
|
|
|
|
|
def main(opt): |
|
model = build_model(opt) |
|
model = model.cuda() |
|
weights = torch.load(opt.load_weights_path, map_location='cpu')['model_state_dict'] |
|
utils.safe_load_weights(model, weights) |
|
model = model.eval() |
|
|
|
img_a = imageio.imread('./sample_data/imgs/cathedral_1.jpg', pilmode='RGB') |
|
img_b = imageio.imread('./sample_data/imgs/cathedral_2.jpg', pilmode='RGB') |
|
|
|
engine = SparseEngine(model, 32, mode='tile') |
|
t0 = time.time() |
|
corrs = engine.cotr_corr_multiscale_with_cycle_consistency(img_a, img_b, np.linspace(0.5, 0.0625, 4), 1, max_corrs=opt.max_corrs, queries_a=None) |
|
t1 = time.time() |
|
|
|
utils.visualize_corrs(img_a, img_b, corrs) |
|
print(f'spent {t1-t0} seconds for {opt.max_corrs} correspondences.') |
|
dense = triangulate_corr(corrs, img_a.shape, img_b.shape) |
|
warped = cv2.remap(img_b, dense[..., 0].astype(np.float32), dense[..., 1].astype(np.float32), interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT) |
|
plt.imshow(warped / 255 * 0.5 + img_a / 255 * 0.5) |
|
plt.show() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
set_COTR_arguments(parser) |
|
parser.add_argument('--out_dir', type=str, default=general_config['out'], help='out directory') |
|
parser.add_argument('--load_weights', type=str, default=None, help='load a pretrained set of weights, you need to provide the model id') |
|
parser.add_argument('--max_corrs', type=int, default=100, help='number of correspondences') |
|
|
|
opt = parser.parse_args() |
|
opt.command = ' '.join(sys.argv) |
|
|
|
layer_2_channels = {'layer1': 256, |
|
'layer2': 512, |
|
'layer3': 1024, |
|
'layer4': 2048, } |
|
opt.dim_feedforward = layer_2_channels[opt.layer] |
|
if opt.load_weights: |
|
opt.load_weights_path = os.path.join(opt.out_dir, opt.load_weights, 'checkpoint.pth.tar') |
|
print_opt(opt) |
|
main(opt) |
|
|