Realcat
commited on
Commit
·
4bde5d3
1
Parent(s):
de498de
init: files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +28 -0
- Dockerfile +27 -0
- LICENSE +201 -0
- README.md +147 -4
- api/__init__.py +0 -0
- api/client.py +225 -0
- api/server.py +499 -0
- api/test/CMakeLists.txt +16 -0
- api/test/build_and_run.sh +16 -0
- api/test/client.cpp +84 -0
- api/test/helper.h +410 -0
- api/types.py +16 -0
- app.py +28 -0
- build_docker.sh +3 -0
- docker/Dockerfile +27 -0
- docker/build_docker.bat +3 -0
- docker/run_docker.bat +1 -0
- docker/run_docker.sh +1 -0
- format.sh +3 -0
- hloc/__init__.py +63 -0
- hloc/colmap_from_nvm.py +220 -0
- hloc/extract_features.py +618 -0
- hloc/extractors/__init__.py +0 -0
- hloc/extractors/alike.py +55 -0
- hloc/extractors/cosplace.py +44 -0
- hloc/extractors/d2net.py +68 -0
- hloc/extractors/darkfeat.py +64 -0
- hloc/extractors/dedode.py +111 -0
- hloc/extractors/dir.py +81 -0
- hloc/extractors/disk.py +35 -0
- hloc/extractors/dog.py +135 -0
- hloc/extractors/eigenplaces.py +57 -0
- hloc/extractors/example.py +56 -0
- hloc/extractors/fire.py +72 -0
- hloc/extractors/fire_local.py +84 -0
- hloc/extractors/lanet.py +66 -0
- hloc/extractors/netvlad.py +152 -0
- hloc/extractors/openibl.py +26 -0
- hloc/extractors/r2d2.py +65 -0
- hloc/extractors/rekd.py +72 -0
- hloc/extractors/rord.py +76 -0
- hloc/extractors/sfd2.py +41 -0
- hloc/extractors/sift.py +225 -0
- hloc/extractors/superpoint.py +51 -0
- hloc/extractors/xfeat.py +33 -0
- hloc/localize_inloc.py +183 -0
- hloc/localize_sfm.py +247 -0
- hloc/match_dense.py +1121 -0
- hloc/match_features.py +441 -0
- hloc/matchers/__init__.py +3 -0
.gitignore
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
build/
|
2 |
+
# lib
|
3 |
+
bin/
|
4 |
+
cmake_modules/
|
5 |
+
cmake-build-debug/
|
6 |
+
.idea/
|
7 |
+
.vscode/
|
8 |
+
*.pyc
|
9 |
+
flagged
|
10 |
+
.ipynb_checkpoints
|
11 |
+
__pycache__
|
12 |
+
Untitled*
|
13 |
+
experiments
|
14 |
+
third_party/REKD
|
15 |
+
hloc/matchers/dedode.py
|
16 |
+
gradio_cached_examples
|
17 |
+
*.mp4
|
18 |
+
hloc/matchers/quadtree.py
|
19 |
+
third_party/QuadTreeAttention
|
20 |
+
desktop.ini
|
21 |
+
*.egg-info
|
22 |
+
output.pkl
|
23 |
+
log.txt
|
24 |
+
experiments*
|
25 |
+
gen_example.py
|
26 |
+
datasets/lines/terrace0.JPG
|
27 |
+
datasets/lines/terrace1.JPG
|
28 |
+
datasets/South-Building*
|
Dockerfile
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official conda-based Python image as a parent image
|
2 |
+
FROM pytorch/pytorch:2.4.0-cuda12.1-cudnn9-runtime
|
3 |
+
LABEL maintainer vincentqyw
|
4 |
+
ARG PYTHON_VERSION=3.10.10
|
5 |
+
|
6 |
+
# Set the working directory to /code
|
7 |
+
WORKDIR /code
|
8 |
+
|
9 |
+
# Install Git and Git LFS
|
10 |
+
RUN apt-get update && apt-get install -y git-lfs
|
11 |
+
RUN git lfs install
|
12 |
+
|
13 |
+
# Clone the Git repository
|
14 |
+
RUN git clone https://huggingface.co/spaces/Realcat/image-matching-webui /code
|
15 |
+
|
16 |
+
RUN conda create -n imw python=${PYTHON_VERSION}
|
17 |
+
RUN echo "source activate imw" > ~/.bashrc
|
18 |
+
ENV PATH /opt/conda/envs/imw/bin:$PATH
|
19 |
+
|
20 |
+
# Make RUN commands use the new environment
|
21 |
+
SHELL ["conda", "run", "-n", "imw", "/bin/bash", "-c"]
|
22 |
+
RUN pip install --upgrade pip
|
23 |
+
RUN pip install -r requirements.txt
|
24 |
+
RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
|
25 |
+
|
26 |
+
# Export port
|
27 |
+
EXPOSE 7860
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,12 +1,155 @@
|
|
1 |
---
|
2 |
title: Imatchui
|
3 |
-
emoji:
|
4 |
colorFrom: red
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.4.0
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: Imatchui
|
3 |
+
emoji: 🤗
|
4 |
colorFrom: red
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.4.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
[![Contributors][contributors-shield]][contributors-url]
|
14 |
+
[![Forks][forks-shield]][forks-url]
|
15 |
+
[![Stargazers][stars-shield]][stars-url]
|
16 |
+
[![Issues][issues-shield]][issues-url]
|
17 |
+
|
18 |
+
<p align="center">
|
19 |
+
<h1 align="center"><br><ins>Image Matching WebUI</ins><br>Identify matching points between two images</h1>
|
20 |
+
</p>
|
21 |
+
|
22 |
+
## Description
|
23 |
+
|
24 |
+
This simple tool efficiently matches image pairs using multiple famous image matching algorithms. The tool features a Graphical User Interface (GUI) designed using [gradio](https://gradio.app/). You can effortlessly select two images and a matching algorithm and obtain a precise matching result.
|
25 |
+
**Note**: the images source can be either local images or webcam images.
|
26 |
+
|
27 |
+
Try it on <a href='https://huggingface.co/spaces/Realcat/image-matching-webui'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
|
28 |
+
<a target="_blank" href="https://lightning.ai/realcat/studios/image-matching-webui">
|
29 |
+
<img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/>
|
30 |
+
</a>
|
31 |
+
|
32 |
+
Here is a demo of the tool:
|
33 |
+
|
34 |
+
![demo](assets/demo.gif)
|
35 |
+
|
36 |
+
The tool currently supports various popular image matching algorithms, namely:
|
37 |
+
- [x] [EfficientLoFTR](https://github.com/zju3dv/EfficientLoFTR), CVPR 2024
|
38 |
+
- [x] [MASt3R](https://github.com/naver/mast3r), CVPR 2024
|
39 |
+
- [x] [DUSt3R](https://github.com/naver/dust3r), CVPR 2024
|
40 |
+
- [x] [OmniGlue](https://github.com/Vincentqyw/omniglue-onnx), CVPR 2024
|
41 |
+
- [x] [XFeat](https://github.com/verlab/accelerated_features), CVPR 2024
|
42 |
+
- [x] [RoMa](https://github.com/Vincentqyw/RoMa), CVPR 2024
|
43 |
+
- [x] [DeDoDe](https://github.com/Parskatt/DeDoDe), 3DV 2024
|
44 |
+
- [ ] [Mickey](https://github.com/nianticlabs/mickey), CVPR 2024
|
45 |
+
- [x] [GIM](https://github.com/xuelunshen/gim), ICLR 2024
|
46 |
+
- [ ] [DUSt3R](https://github.com/naver/dust3r), arXiv 2023
|
47 |
+
- [x] [LightGlue](https://github.com/cvg/LightGlue), ICCV 2023
|
48 |
+
- [x] [DarkFeat](https://github.com/THU-LYJ-Lab/DarkFeat), AAAI 2023
|
49 |
+
- [x] [SFD2](https://github.com/feixue94/sfd2), CVPR 2023
|
50 |
+
- [x] [IMP](https://github.com/feixue94/imp-release), CVPR 2023
|
51 |
+
- [ ] [ASTR](https://github.com/ASTR2023/ASTR), CVPR 2023
|
52 |
+
- [ ] [SEM](https://github.com/SEM2023/SEM), CVPR 2023
|
53 |
+
- [ ] [DeepLSD](https://github.com/cvg/DeepLSD), CVPR 2023
|
54 |
+
- [x] [GlueStick](https://github.com/cvg/GlueStick), ICCV 2023
|
55 |
+
- [ ] [ConvMatch](https://github.com/SuhZhang/ConvMatch), AAAI 2023
|
56 |
+
- [x] [LoFTR](https://github.com/zju3dv/LoFTR), CVPR 2021
|
57 |
+
- [x] [SOLD2](https://github.com/cvg/SOLD2), CVPR 2021
|
58 |
+
- [ ] [LineTR](https://github.com/yosungho/LineTR), RA-L 2021
|
59 |
+
- [x] [DKM](https://github.com/Parskatt/DKM), CVPR 2023
|
60 |
+
- [ ] [NCMNet](https://github.com/xinliu29/NCMNet), CVPR 2023
|
61 |
+
- [x] [TopicFM](https://github.com/Vincentqyw/TopicFM), AAAI 2023
|
62 |
+
- [x] [AspanFormer](https://github.com/Vincentqyw/ml-aspanformer), ECCV 2022
|
63 |
+
- [x] [LANet](https://github.com/wangch-g/lanet), ACCV 2022
|
64 |
+
- [ ] [LISRD](https://github.com/rpautrat/LISRD), ECCV 2022
|
65 |
+
- [ ] [REKD](https://github.com/bluedream1121/REKD), CVPR 2022
|
66 |
+
- [x] [CoTR](https://github.com/ubc-vision/COTR), ICCV 2021
|
67 |
+
- [x] [ALIKE](https://github.com/Shiaoming/ALIKE), TMM 2022
|
68 |
+
- [x] [RoRD](https://github.com/UditSinghParihar/RoRD), IROS 2021
|
69 |
+
- [x] [SGMNet](https://github.com/vdvchen/SGMNet), ICCV 2021
|
70 |
+
- [x] [SuperPoint](https://github.com/magicleap/SuperPointPretrainedNetwork), CVPRW 2018
|
71 |
+
- [x] [SuperGlue](https://github.com/magicleap/SuperGluePretrainedNetwork), CVPR 2020
|
72 |
+
- [x] [D2Net](https://github.com/Vincentqyw/d2-net), CVPR 2019
|
73 |
+
- [x] [R2D2](https://github.com/naver/r2d2), NeurIPS 2019
|
74 |
+
- [x] [DISK](https://github.com/cvlab-epfl/disk), NeurIPS 2020
|
75 |
+
- [ ] [Key.Net](https://github.com/axelBarroso/Key.Net), ICCV 2019
|
76 |
+
- [ ] [OANet](https://github.com/zjhthu/OANet), ICCV 2019
|
77 |
+
- [x] [SOSNet](https://github.com/scape-research/SOSNet), CVPR 2019
|
78 |
+
- [x] [HardNet](https://github.com/DagnyT/hardnet), NeurIPS 2017
|
79 |
+
- [x] [SIFT](https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html), IJCV 2004
|
80 |
+
|
81 |
+
## How to use
|
82 |
+
|
83 |
+
### HuggingFace / Lightning AI
|
84 |
+
|
85 |
+
Just try it on <a href='https://huggingface.co/spaces/Realcat/image-matching-webui'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
|
86 |
+
<a target="_blank" href="https://lightning.ai/realcat/studios/image-matching-webui">
|
87 |
+
<img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/>
|
88 |
+
</a>
|
89 |
+
|
90 |
+
or deploy it locally following the instructions below.
|
91 |
+
|
92 |
+
### Requirements
|
93 |
+
``` bash
|
94 |
+
git clone --recursive https://github.com/Vincentqyw/image-matching-webui.git
|
95 |
+
cd image-matching-webui
|
96 |
+
conda env create -f environment.yaml
|
97 |
+
conda activate imw
|
98 |
+
```
|
99 |
+
|
100 |
+
or using [docker](https://hub.docker.com/r/vincentqin/image-matching-webui):
|
101 |
+
|
102 |
+
``` bash
|
103 |
+
docker pull vincentqin/image-matching-webui:latest
|
104 |
+
docker run -it -p 7860:7860 vincentqin/image-matching-webui:latest python app.py --server_name "0.0.0.0" --server_port=7860
|
105 |
+
```
|
106 |
+
|
107 |
+
### Run demo
|
108 |
+
``` bash
|
109 |
+
python3 ./app.py
|
110 |
+
```
|
111 |
+
then open http://localhost:7860 in your browser.
|
112 |
+
|
113 |
+
![](assets/gui.jpg)
|
114 |
+
|
115 |
+
### Add your own feature / matcher
|
116 |
+
|
117 |
+
I provide an example to add local feature in [hloc/extractors/example.py](hloc/extractors/example.py). Then add feature settings in `confs` in file [hloc/extract_features.py](hloc/extract_features.py). Last step is adding some settings to `model_zoo` in file [ui/config.yaml](ui/config.yaml).
|
118 |
+
|
119 |
+
## Contributions welcome!
|
120 |
+
|
121 |
+
External contributions are very much welcome. Please follow the [PEP8 style guidelines](https://www.python.org/dev/peps/pep-0008/) using a linter like flake8 (reformat using command `python -m black .`). This is a non-exhaustive list of features that might be valuable additions:
|
122 |
+
|
123 |
+
- [x] add webcam support
|
124 |
+
- [x] add [line feature matching](https://github.com/Vincentqyw/LineSegmentsDetection) algorithms
|
125 |
+
- [x] example to add a new feature extractor / matcher
|
126 |
+
- [x] ransac to filter outliers
|
127 |
+
- [ ] add [rotation images](https://github.com/pidahbus/deep-image-orientation-angle-detection) options before matching
|
128 |
+
- [ ] support export matches to colmap ([#issue 6](https://github.com/Vincentqyw/image-matching-webui/issues/6))
|
129 |
+
- [ ] add config file to set default parameters
|
130 |
+
- [ ] dynamically load models and reduce GPU overload
|
131 |
+
|
132 |
+
Adding local features / matchers as submodules is very easy. For example, to add the [GlueStick](https://github.com/cvg/GlueStick):
|
133 |
+
|
134 |
+
``` bash
|
135 |
+
git submodule add https://github.com/cvg/GlueStick.git third_party/GlueStick
|
136 |
+
```
|
137 |
+
|
138 |
+
If remote submodule repositories are updated, don't forget to pull submodules with `git submodule update --remote`, if you only want to update one submodule, use `git submodule update --remote third_party/GlueStick`.
|
139 |
+
|
140 |
+
## Resources
|
141 |
+
- [Image Matching: Local Features & Beyond](https://image-matching-workshop.github.io)
|
142 |
+
- [Long-term Visual Localization](https://www.visuallocalization.net)
|
143 |
+
|
144 |
+
## Acknowledgement
|
145 |
+
|
146 |
+
This code is built based on [Hierarchical-Localization](https://github.com/cvg/Hierarchical-Localization). We express our gratitude to the authors for their valuable source code.
|
147 |
+
|
148 |
+
[contributors-shield]: https://img.shields.io/github/contributors/Vincentqyw/image-matching-webui.svg?style=for-the-badge
|
149 |
+
[contributors-url]: https://github.com/Vincentqyw/image-matching-webui/graphs/contributors
|
150 |
+
[forks-shield]: https://img.shields.io/github/forks/Vincentqyw/image-matching-webui.svg?style=for-the-badge
|
151 |
+
[forks-url]: https://github.com/Vincentqyw/image-matching-webui/network/members
|
152 |
+
[stars-shield]: https://img.shields.io/github/stars/Vincentqyw/image-matching-webui.svg?style=for-the-badge
|
153 |
+
[stars-url]: https://github.com/Vincentqyw/image-matching-webui/stargazers
|
154 |
+
[issues-shield]: https://img.shields.io/github/issues/Vincentqyw/image-matching-webui.svg?style=for-the-badge
|
155 |
+
[issues-url]: https://github.com/Vincentqyw/image-matching-webui/issues
|
api/__init__.py
ADDED
File without changes
|
api/client.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import base64
|
3 |
+
import os
|
4 |
+
import pickle
|
5 |
+
import time
|
6 |
+
from typing import Dict, List
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import requests
|
11 |
+
|
12 |
+
ENDPOINT = "http://127.0.0.1:8001"
|
13 |
+
if "REMOTE_URL_RAILWAY" in os.environ:
|
14 |
+
ENDPOINT = os.environ["REMOTE_URL_RAILWAY"]
|
15 |
+
|
16 |
+
print(f"API ENDPOINT: {ENDPOINT}")
|
17 |
+
|
18 |
+
API_VERSION = f"{ENDPOINT}/version"
|
19 |
+
API_URL_MATCH = f"{ENDPOINT}/v1/match"
|
20 |
+
API_URL_EXTRACT = f"{ENDPOINT}/v1/extract"
|
21 |
+
|
22 |
+
|
23 |
+
def read_image(path: str) -> str:
|
24 |
+
"""
|
25 |
+
Read an image from a file, encode it as a JPEG and then as a base64 string.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
path (str): The path to the image to read.
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
str: The base64 encoded image.
|
32 |
+
"""
|
33 |
+
# Read the image from the file
|
34 |
+
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
|
35 |
+
|
36 |
+
# Encode the image as a png, NO COMPRESSION!!!
|
37 |
+
retval, buffer = cv2.imencode(".png", img)
|
38 |
+
|
39 |
+
# Encode the JPEG as a base64 string
|
40 |
+
b64img = base64.b64encode(buffer).decode("utf-8")
|
41 |
+
|
42 |
+
return b64img
|
43 |
+
|
44 |
+
|
45 |
+
def do_api_requests(url=API_URL_EXTRACT, **kwargs):
|
46 |
+
"""
|
47 |
+
Helper function to send an API request to the image matching service.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
url (str): The URL of the API endpoint to use. Defaults to the
|
51 |
+
feature extraction endpoint.
|
52 |
+
**kwargs: Additional keyword arguments to pass to the API.
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
List[Dict[str, np.ndarray]]: A list of dictionaries containing the
|
56 |
+
extracted features. The keys are "keypoints", "descriptors", and
|
57 |
+
"scores", and the values are ndarrays of shape (N, 2), (N, ?),
|
58 |
+
and (N,), respectively.
|
59 |
+
"""
|
60 |
+
# Set up the request body
|
61 |
+
reqbody = {
|
62 |
+
# List of image data base64 encoded
|
63 |
+
"data": [],
|
64 |
+
# List of maximum number of keypoints to extract from each image
|
65 |
+
"max_keypoints": [100, 100],
|
66 |
+
# List of timestamps for each image (not used?)
|
67 |
+
"timestamps": ["0", "1"],
|
68 |
+
# Whether to convert the images to grayscale
|
69 |
+
"grayscale": 0,
|
70 |
+
# List of image height and width
|
71 |
+
"image_hw": [[640, 480], [320, 240]],
|
72 |
+
# Type of feature to extract
|
73 |
+
"feature_type": 0,
|
74 |
+
# List of rotation angles for each image
|
75 |
+
"rotates": [0.0, 0.0],
|
76 |
+
# List of scale factors for each image
|
77 |
+
"scales": [1.0, 1.0],
|
78 |
+
# List of reference points for each image (not used)
|
79 |
+
"reference_points": [[640, 480], [320, 240]],
|
80 |
+
# Whether to binarize the descriptors
|
81 |
+
"binarize": True,
|
82 |
+
}
|
83 |
+
# Update the request body with the additional keyword arguments
|
84 |
+
reqbody.update(kwargs)
|
85 |
+
try:
|
86 |
+
# Send the request
|
87 |
+
r = requests.post(url, json=reqbody)
|
88 |
+
if r.status_code == 200:
|
89 |
+
# Return the response
|
90 |
+
return r.json()
|
91 |
+
else:
|
92 |
+
# Print an error message if the response code is not 200
|
93 |
+
print(f"Error: Response code {r.status_code} - {r.text}")
|
94 |
+
except Exception as e:
|
95 |
+
# Print an error message if an exception occurs
|
96 |
+
print(f"An error occurred: {e}")
|
97 |
+
|
98 |
+
|
99 |
+
def send_request_match(path0: str, path1: str) -> Dict[str, np.ndarray]:
|
100 |
+
"""
|
101 |
+
Send a request to the API to generate a match between two images.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
path0 (str): The path to the first image.
|
105 |
+
path1 (str): The path to the second image.
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
Dict[str, np.ndarray]: A dictionary containing the generated matches.
|
109 |
+
The keys are "keypoints0", "keypoints1", "matches0", and "matches1",
|
110 |
+
and the values are ndarrays of shape (N, 2), (N, 2), (N, 2), and
|
111 |
+
(N, 2), respectively.
|
112 |
+
"""
|
113 |
+
files = {"image0": open(path0, "rb"), "image1": open(path1, "rb")}
|
114 |
+
try:
|
115 |
+
# TODO: replace files with post json
|
116 |
+
response = requests.post(API_URL_MATCH, files=files)
|
117 |
+
pred = {}
|
118 |
+
if response.status_code == 200:
|
119 |
+
pred = response.json()
|
120 |
+
for key in list(pred.keys()):
|
121 |
+
pred[key] = np.array(pred[key])
|
122 |
+
else:
|
123 |
+
print(
|
124 |
+
f"Error: Response code {response.status_code} - {response.text}"
|
125 |
+
)
|
126 |
+
finally:
|
127 |
+
files["image0"].close()
|
128 |
+
files["image1"].close()
|
129 |
+
return pred
|
130 |
+
|
131 |
+
|
132 |
+
def send_request_extract(
|
133 |
+
input_images: str, viz: bool = False
|
134 |
+
) -> List[Dict[str, np.ndarray]]:
|
135 |
+
"""
|
136 |
+
Send a request to the API to extract features from an image.
|
137 |
+
|
138 |
+
Args:
|
139 |
+
input_images (str): The path to the image.
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
List[Dict[str, np.ndarray]]: A list of dictionaries containing the
|
143 |
+
extracted features. The keys are "keypoints", "descriptors", and
|
144 |
+
"scores", and the values are ndarrays of shape (N, 2), (N, 128),
|
145 |
+
and (N,), respectively.
|
146 |
+
"""
|
147 |
+
image_data = read_image(input_images)
|
148 |
+
inputs = {
|
149 |
+
"data": [image_data],
|
150 |
+
}
|
151 |
+
response = do_api_requests(
|
152 |
+
url=API_URL_EXTRACT,
|
153 |
+
**inputs,
|
154 |
+
)
|
155 |
+
print("Keypoints detected: {}".format(len(response[0]["keypoints"])))
|
156 |
+
|
157 |
+
# draw matching, debug only
|
158 |
+
if viz:
|
159 |
+
from hloc.utils.viz import plot_keypoints
|
160 |
+
from ui.viz import fig2im, plot_images
|
161 |
+
|
162 |
+
kpts = np.array(response[0]["keypoints_orig"])
|
163 |
+
if "image_orig" in response[0].keys():
|
164 |
+
img_orig = np.array(["image_orig"])
|
165 |
+
|
166 |
+
output_keypoints = plot_images([img_orig], titles="titles", dpi=300)
|
167 |
+
plot_keypoints([kpts])
|
168 |
+
output_keypoints = fig2im(output_keypoints)
|
169 |
+
cv2.imwrite(
|
170 |
+
"demo_match.jpg",
|
171 |
+
output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
|
172 |
+
)
|
173 |
+
return response
|
174 |
+
|
175 |
+
|
176 |
+
def get_api_version():
|
177 |
+
try:
|
178 |
+
response = requests.get(API_VERSION).json()
|
179 |
+
print("API VERSION: {}".format(response["version"]))
|
180 |
+
except Exception as e:
|
181 |
+
print(f"An error occurred: {e}")
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
parser = argparse.ArgumentParser(
|
186 |
+
description="Send text to stable audio server and receive generated audio."
|
187 |
+
)
|
188 |
+
parser.add_argument(
|
189 |
+
"--image0",
|
190 |
+
required=False,
|
191 |
+
help="Path for the file's melody",
|
192 |
+
default="datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg",
|
193 |
+
)
|
194 |
+
parser.add_argument(
|
195 |
+
"--image1",
|
196 |
+
required=False,
|
197 |
+
help="Path for the file's melody",
|
198 |
+
default="datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot90.jpg",
|
199 |
+
)
|
200 |
+
args = parser.parse_args()
|
201 |
+
|
202 |
+
# get api version
|
203 |
+
get_api_version()
|
204 |
+
|
205 |
+
# request match
|
206 |
+
# for i in range(10):
|
207 |
+
# t1 = time.time()
|
208 |
+
# preds = send_request_match(args.image0, args.image1)
|
209 |
+
# t2 = time.time()
|
210 |
+
# print(
|
211 |
+
# "Time cost1: {} seconds, matched: {}".format(
|
212 |
+
# (t2 - t1), len(preds["mmkeypoints0_orig"])
|
213 |
+
# )
|
214 |
+
# )
|
215 |
+
|
216 |
+
# request extract
|
217 |
+
for i in range(10):
|
218 |
+
t1 = time.time()
|
219 |
+
preds = send_request_extract(args.image0)
|
220 |
+
t2 = time.time()
|
221 |
+
print(f"Time cost2: {(t2 - t1)} seconds")
|
222 |
+
|
223 |
+
# dump preds
|
224 |
+
with open("preds.pkl", "wb") as f:
|
225 |
+
pickle.dump(preds, f)
|
api/server.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# server.py
|
2 |
+
import base64
|
3 |
+
import io
|
4 |
+
import sys
|
5 |
+
import warnings
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import Any, Dict, Optional, Union
|
8 |
+
|
9 |
+
import cv2
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import uvicorn
|
14 |
+
from fastapi import FastAPI, File, UploadFile
|
15 |
+
from fastapi.exceptions import HTTPException
|
16 |
+
from fastapi.responses import JSONResponse
|
17 |
+
from PIL import Image
|
18 |
+
|
19 |
+
sys.path.append(str(Path(__file__).parents[1]))
|
20 |
+
|
21 |
+
from api.types import ImagesInput
|
22 |
+
from hloc import DEVICE, extract_features, logger, match_dense, match_features
|
23 |
+
from hloc.utils.viz import add_text, plot_keypoints
|
24 |
+
from ui import get_version
|
25 |
+
from ui.utils import filter_matches, get_feature_model, get_model
|
26 |
+
from ui.viz import display_matches, fig2im, plot_images
|
27 |
+
|
28 |
+
warnings.simplefilter("ignore")
|
29 |
+
|
30 |
+
|
31 |
+
def decode_base64_to_image(encoding):
|
32 |
+
if encoding.startswith("data:image/"):
|
33 |
+
encoding = encoding.split(";")[1].split(",")[1]
|
34 |
+
try:
|
35 |
+
image = Image.open(io.BytesIO(base64.b64decode(encoding)))
|
36 |
+
return image
|
37 |
+
except Exception as e:
|
38 |
+
logger.warning(f"API cannot decode image: {e}")
|
39 |
+
raise HTTPException(
|
40 |
+
status_code=500, detail="Invalid encoded image"
|
41 |
+
) from e
|
42 |
+
|
43 |
+
|
44 |
+
def to_base64_nparray(encoding: str) -> np.ndarray:
|
45 |
+
return np.array(decode_base64_to_image(encoding)).astype("uint8")
|
46 |
+
|
47 |
+
|
48 |
+
class ImageMatchingAPI(torch.nn.Module):
|
49 |
+
default_conf = {
|
50 |
+
"ransac": {
|
51 |
+
"enable": True,
|
52 |
+
"estimator": "poselib",
|
53 |
+
"geometry": "homography",
|
54 |
+
"method": "RANSAC",
|
55 |
+
"reproj_threshold": 3,
|
56 |
+
"confidence": 0.9999,
|
57 |
+
"max_iter": 10000,
|
58 |
+
},
|
59 |
+
}
|
60 |
+
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
conf: dict = {},
|
64 |
+
device: str = "cpu",
|
65 |
+
detect_threshold: float = 0.015,
|
66 |
+
max_keypoints: int = 1024,
|
67 |
+
match_threshold: float = 0.2,
|
68 |
+
) -> None:
|
69 |
+
"""
|
70 |
+
Initializes an instance of the ImageMatchingAPI class.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
conf (dict): A dictionary containing the configuration parameters.
|
74 |
+
device (str, optional): The device to use for computation. Defaults to "cpu".
|
75 |
+
detect_threshold (float, optional): The threshold for detecting keypoints. Defaults to 0.015.
|
76 |
+
max_keypoints (int, optional): The maximum number of keypoints to extract. Defaults to 1024.
|
77 |
+
match_threshold (float, optional): The threshold for matching keypoints. Defaults to 0.2.
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
None
|
81 |
+
"""
|
82 |
+
super().__init__()
|
83 |
+
self.device = device
|
84 |
+
self.conf = {**self.default_conf, **conf}
|
85 |
+
self._updata_config(detect_threshold, max_keypoints, match_threshold)
|
86 |
+
self._init_models()
|
87 |
+
if device == "cuda":
|
88 |
+
memory_allocated = torch.cuda.memory_allocated(device)
|
89 |
+
memory_reserved = torch.cuda.memory_reserved(device)
|
90 |
+
logger.info(
|
91 |
+
f"GPU memory allocated: {memory_allocated / 1024**2:.3f} MB"
|
92 |
+
)
|
93 |
+
logger.info(
|
94 |
+
f"GPU memory reserved: {memory_reserved / 1024**2:.3f} MB"
|
95 |
+
)
|
96 |
+
self.pred = None
|
97 |
+
|
98 |
+
def parse_match_config(self, conf):
|
99 |
+
if conf["dense"]:
|
100 |
+
return {
|
101 |
+
**conf,
|
102 |
+
"matcher": match_dense.confs.get(
|
103 |
+
conf["matcher"]["model"]["name"]
|
104 |
+
),
|
105 |
+
"dense": True,
|
106 |
+
}
|
107 |
+
else:
|
108 |
+
return {
|
109 |
+
**conf,
|
110 |
+
"feature": extract_features.confs.get(
|
111 |
+
conf["feature"]["model"]["name"]
|
112 |
+
),
|
113 |
+
"matcher": match_features.confs.get(
|
114 |
+
conf["matcher"]["model"]["name"]
|
115 |
+
),
|
116 |
+
"dense": False,
|
117 |
+
}
|
118 |
+
|
119 |
+
def _updata_config(
|
120 |
+
self,
|
121 |
+
detect_threshold: float = 0.015,
|
122 |
+
max_keypoints: int = 1024,
|
123 |
+
match_threshold: float = 0.2,
|
124 |
+
):
|
125 |
+
self.dense = self.conf["dense"]
|
126 |
+
if self.conf["dense"]:
|
127 |
+
try:
|
128 |
+
self.conf["matcher"]["model"][
|
129 |
+
"match_threshold"
|
130 |
+
] = match_threshold
|
131 |
+
except TypeError as e:
|
132 |
+
logger.error(e)
|
133 |
+
else:
|
134 |
+
self.conf["feature"]["model"]["max_keypoints"] = max_keypoints
|
135 |
+
self.conf["feature"]["model"][
|
136 |
+
"keypoint_threshold"
|
137 |
+
] = detect_threshold
|
138 |
+
self.extract_conf = self.conf["feature"]
|
139 |
+
|
140 |
+
self.match_conf = self.conf["matcher"]
|
141 |
+
|
142 |
+
def _init_models(self):
|
143 |
+
# initialize matcher
|
144 |
+
self.matcher = get_model(self.match_conf)
|
145 |
+
# initialize extractor
|
146 |
+
if self.dense:
|
147 |
+
self.extractor = None
|
148 |
+
else:
|
149 |
+
self.extractor = get_feature_model(self.conf["feature"])
|
150 |
+
|
151 |
+
def _forward(self, img0, img1):
|
152 |
+
if self.dense:
|
153 |
+
pred = match_dense.match_images(
|
154 |
+
self.matcher,
|
155 |
+
img0,
|
156 |
+
img1,
|
157 |
+
self.match_conf["preprocessing"],
|
158 |
+
device=self.device,
|
159 |
+
)
|
160 |
+
last_fixed = "{}".format( # noqa: F841
|
161 |
+
self.match_conf["model"]["name"]
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
pred0 = extract_features.extract(
|
165 |
+
self.extractor, img0, self.extract_conf["preprocessing"]
|
166 |
+
)
|
167 |
+
pred1 = extract_features.extract(
|
168 |
+
self.extractor, img1, self.extract_conf["preprocessing"]
|
169 |
+
)
|
170 |
+
pred = match_features.match_images(self.matcher, pred0, pred1)
|
171 |
+
return pred
|
172 |
+
|
173 |
+
@torch.inference_mode()
|
174 |
+
def extract(self, img0: np.ndarray, **kwargs) -> Dict[str, np.ndarray]:
|
175 |
+
"""Extract features from a single image.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
img0 (np.ndarray): image
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
Dict[str, np.ndarray]: feature dict
|
182 |
+
"""
|
183 |
+
|
184 |
+
# setting prams
|
185 |
+
self.extractor.conf["max_keypoints"] = kwargs.get("max_keypoints", 512)
|
186 |
+
self.extractor.conf["keypoint_threshold"] = kwargs.get(
|
187 |
+
"keypoint_threshold", 0.0
|
188 |
+
)
|
189 |
+
|
190 |
+
pred = extract_features.extract(
|
191 |
+
self.extractor, img0, self.extract_conf["preprocessing"]
|
192 |
+
)
|
193 |
+
pred = {
|
194 |
+
k: v.cpu().detach()[0].numpy() if isinstance(v, torch.Tensor) else v
|
195 |
+
for k, v in pred.items()
|
196 |
+
}
|
197 |
+
# back to origin scale
|
198 |
+
s0 = pred["original_size"] / pred["size"]
|
199 |
+
pred["keypoints_orig"] = (
|
200 |
+
match_features.scale_keypoints(pred["keypoints"] + 0.5, s0) - 0.5
|
201 |
+
)
|
202 |
+
# TODO: rotate back
|
203 |
+
|
204 |
+
binarize = kwargs.get("binarize", False)
|
205 |
+
if binarize:
|
206 |
+
assert "descriptors" in pred
|
207 |
+
pred["descriptors"] = (pred["descriptors"] > 0).astype(np.uint8)
|
208 |
+
pred["descriptors"] = pred["descriptors"].T # N x DIM
|
209 |
+
return pred
|
210 |
+
|
211 |
+
@torch.inference_mode()
|
212 |
+
def forward(
|
213 |
+
self,
|
214 |
+
img0: np.ndarray,
|
215 |
+
img1: np.ndarray,
|
216 |
+
) -> Dict[str, np.ndarray]:
|
217 |
+
"""
|
218 |
+
Forward pass of the image matching API.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
img0: A 3D NumPy array of shape (H, W, C) representing the first image.
|
222 |
+
Values are in the range [0, 1] and are in RGB mode.
|
223 |
+
img1: A 3D NumPy array of shape (H, W, C) representing the second image.
|
224 |
+
Values are in the range [0, 1] and are in RGB mode.
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
A dictionary containing the following keys:
|
228 |
+
- image0_orig: The original image 0.
|
229 |
+
- image1_orig: The original image 1.
|
230 |
+
- keypoints0_orig: The keypoints detected in image 0.
|
231 |
+
- keypoints1_orig: The keypoints detected in image 1.
|
232 |
+
- mkeypoints0_orig: The raw matches between image 0 and image 1.
|
233 |
+
- mkeypoints1_orig: The raw matches between image 1 and image 0.
|
234 |
+
- mmkeypoints0_orig: The RANSAC inliers in image 0.
|
235 |
+
- mmkeypoints1_orig: The RANSAC inliers in image 1.
|
236 |
+
- mconf: The confidence scores for the raw matches.
|
237 |
+
- mmconf: The confidence scores for the RANSAC inliers.
|
238 |
+
"""
|
239 |
+
# Take as input a pair of images (not a batch)
|
240 |
+
assert isinstance(img0, np.ndarray)
|
241 |
+
assert isinstance(img1, np.ndarray)
|
242 |
+
self.pred = self._forward(img0, img1)
|
243 |
+
if self.conf["ransac"]["enable"]:
|
244 |
+
self.pred = self._geometry_check(self.pred)
|
245 |
+
return self.pred
|
246 |
+
|
247 |
+
def _geometry_check(
|
248 |
+
self,
|
249 |
+
pred: Dict[str, Any],
|
250 |
+
) -> Dict[str, Any]:
|
251 |
+
"""
|
252 |
+
Filter matches using RANSAC. If keypoints are available, filter by keypoints.
|
253 |
+
If lines are available, filter by lines. If both keypoints and lines are
|
254 |
+
available, filter by keypoints.
|
255 |
+
|
256 |
+
Args:
|
257 |
+
pred (Dict[str, Any]): dict of matches, including original keypoints.
|
258 |
+
See :func:`filter_matches` for the expected keys.
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
Dict[str, Any]: filtered matches
|
262 |
+
"""
|
263 |
+
pred = filter_matches(
|
264 |
+
pred,
|
265 |
+
ransac_method=self.conf["ransac"]["method"],
|
266 |
+
ransac_reproj_threshold=self.conf["ransac"]["reproj_threshold"],
|
267 |
+
ransac_confidence=self.conf["ransac"]["confidence"],
|
268 |
+
ransac_max_iter=self.conf["ransac"]["max_iter"],
|
269 |
+
)
|
270 |
+
return pred
|
271 |
+
|
272 |
+
def visualize(
|
273 |
+
self,
|
274 |
+
log_path: Optional[Path] = None,
|
275 |
+
) -> None:
|
276 |
+
"""
|
277 |
+
Visualize the matches.
|
278 |
+
|
279 |
+
Args:
|
280 |
+
log_path (Path, optional): The directory to save the images. Defaults to None.
|
281 |
+
|
282 |
+
Returns:
|
283 |
+
None
|
284 |
+
"""
|
285 |
+
if self.conf["dense"]:
|
286 |
+
postfix = str(self.conf["matcher"]["model"]["name"])
|
287 |
+
else:
|
288 |
+
postfix = "{}_{}".format(
|
289 |
+
str(self.conf["feature"]["model"]["name"]),
|
290 |
+
str(self.conf["matcher"]["model"]["name"]),
|
291 |
+
)
|
292 |
+
titles = [
|
293 |
+
"Image 0 - Keypoints",
|
294 |
+
"Image 1 - Keypoints",
|
295 |
+
]
|
296 |
+
pred: Dict[str, Any] = self.pred
|
297 |
+
image0: np.ndarray = pred["image0_orig"]
|
298 |
+
image1: np.ndarray = pred["image1_orig"]
|
299 |
+
output_keypoints: np.ndarray = plot_images(
|
300 |
+
[image0, image1], titles=titles, dpi=300
|
301 |
+
)
|
302 |
+
if (
|
303 |
+
"keypoints0_orig" in pred.keys()
|
304 |
+
and "keypoints1_orig" in pred.keys()
|
305 |
+
):
|
306 |
+
plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]])
|
307 |
+
text: str = (
|
308 |
+
f"# keypoints0: {len(pred['keypoints0_orig'])} \n"
|
309 |
+
+ f"# keypoints1: {len(pred['keypoints1_orig'])}"
|
310 |
+
)
|
311 |
+
add_text(0, text, fs=15)
|
312 |
+
output_keypoints = fig2im(output_keypoints)
|
313 |
+
# plot images with raw matches
|
314 |
+
titles = [
|
315 |
+
"Image 0 - Raw matched keypoints",
|
316 |
+
"Image 1 - Raw matched keypoints",
|
317 |
+
]
|
318 |
+
output_matches_raw, num_matches_raw = display_matches(
|
319 |
+
pred, titles=titles, tag="KPTS_RAW"
|
320 |
+
)
|
321 |
+
# plot images with ransac matches
|
322 |
+
titles = [
|
323 |
+
"Image 0 - Ransac matched keypoints",
|
324 |
+
"Image 1 - Ransac matched keypoints",
|
325 |
+
]
|
326 |
+
output_matches_ransac, num_matches_ransac = display_matches(
|
327 |
+
pred, titles=titles, tag="KPTS_RANSAC"
|
328 |
+
)
|
329 |
+
if log_path is not None:
|
330 |
+
img_keypoints_path: Path = log_path / f"img_keypoints_{postfix}.png"
|
331 |
+
img_matches_raw_path: Path = (
|
332 |
+
log_path / f"img_matches_raw_{postfix}.png"
|
333 |
+
)
|
334 |
+
img_matches_ransac_path: Path = (
|
335 |
+
log_path / f"img_matches_ransac_{postfix}.png"
|
336 |
+
)
|
337 |
+
cv2.imwrite(
|
338 |
+
str(img_keypoints_path),
|
339 |
+
output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
|
340 |
+
)
|
341 |
+
cv2.imwrite(
|
342 |
+
str(img_matches_raw_path),
|
343 |
+
output_matches_raw[:, :, ::-1].copy(), # RGB -> BGR
|
344 |
+
)
|
345 |
+
cv2.imwrite(
|
346 |
+
str(img_matches_ransac_path),
|
347 |
+
output_matches_ransac[:, :, ::-1].copy(), # RGB -> BGR
|
348 |
+
)
|
349 |
+
plt.close("all")
|
350 |
+
|
351 |
+
|
352 |
+
class ImageMatchingService:
|
353 |
+
def __init__(self, conf: dict, device: str):
|
354 |
+
self.conf = conf
|
355 |
+
self.api = ImageMatchingAPI(conf=conf, device=device)
|
356 |
+
self.app = FastAPI()
|
357 |
+
self.register_routes()
|
358 |
+
|
359 |
+
def register_routes(self):
|
360 |
+
|
361 |
+
@self.app.get("/version")
|
362 |
+
async def version():
|
363 |
+
return {"version": get_version()}
|
364 |
+
|
365 |
+
@self.app.post("/v1/match")
|
366 |
+
async def match(
|
367 |
+
image0: UploadFile = File(...), image1: UploadFile = File(...)
|
368 |
+
):
|
369 |
+
"""
|
370 |
+
Handle the image matching request and return the processed result.
|
371 |
+
|
372 |
+
Args:
|
373 |
+
image0 (UploadFile): The first image file for matching.
|
374 |
+
image1 (UploadFile): The second image file for matching.
|
375 |
+
|
376 |
+
Returns:
|
377 |
+
JSONResponse: A JSON response containing the filtered match results
|
378 |
+
or an error message in case of failure.
|
379 |
+
"""
|
380 |
+
try:
|
381 |
+
# Load the images from the uploaded files
|
382 |
+
image0_array = self.load_image(image0)
|
383 |
+
image1_array = self.load_image(image1)
|
384 |
+
|
385 |
+
# Perform image matching using the API
|
386 |
+
output = self.api(image0_array, image1_array)
|
387 |
+
|
388 |
+
# Keys to skip in the output
|
389 |
+
skip_keys = ["image0_orig", "image1_orig"]
|
390 |
+
|
391 |
+
# Postprocess the output to filter unwanted data
|
392 |
+
pred = self.postprocess(output, skip_keys)
|
393 |
+
|
394 |
+
# Return the filtered prediction as a JSON response
|
395 |
+
return JSONResponse(content=pred)
|
396 |
+
except Exception as e:
|
397 |
+
# Return an error message with status code 500 in case of exception
|
398 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
399 |
+
|
400 |
+
@self.app.post("/v1/extract")
|
401 |
+
async def extract(input_info: ImagesInput):
|
402 |
+
"""
|
403 |
+
Extract keypoints and descriptors from images.
|
404 |
+
|
405 |
+
Args:
|
406 |
+
input_info: An object containing the image data and options.
|
407 |
+
|
408 |
+
Returns:
|
409 |
+
A list of dictionaries containing the keypoints and descriptors.
|
410 |
+
"""
|
411 |
+
try:
|
412 |
+
preds = []
|
413 |
+
for i, input_image in enumerate(input_info.data):
|
414 |
+
# Load the image from the input data
|
415 |
+
image_array = to_base64_nparray(input_image)
|
416 |
+
# Extract keypoints and descriptors
|
417 |
+
output = self.api.extract(
|
418 |
+
image_array,
|
419 |
+
max_keypoints=input_info.max_keypoints[i],
|
420 |
+
binarize=input_info.binarize,
|
421 |
+
)
|
422 |
+
# Do not return the original image and image_orig
|
423 |
+
# skip_keys = ["image", "image_orig"]
|
424 |
+
skip_keys = []
|
425 |
+
|
426 |
+
# Postprocess the output
|
427 |
+
pred = self.postprocess(output, skip_keys)
|
428 |
+
preds.append(pred)
|
429 |
+
# Return the list of extracted features
|
430 |
+
return JSONResponse(content=preds)
|
431 |
+
except Exception as e:
|
432 |
+
# Return an error message if an exception occurs
|
433 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
434 |
+
|
435 |
+
def load_image(self, file_path: Union[str, UploadFile]) -> np.ndarray:
|
436 |
+
"""
|
437 |
+
Reads an image from a file path or an UploadFile object.
|
438 |
+
|
439 |
+
Args:
|
440 |
+
file_path: A file path or an UploadFile object.
|
441 |
+
|
442 |
+
Returns:
|
443 |
+
A numpy array representing the image.
|
444 |
+
"""
|
445 |
+
if isinstance(file_path, str):
|
446 |
+
file_path = Path(file_path).resolve(strict=False)
|
447 |
+
else:
|
448 |
+
file_path = file_path.file
|
449 |
+
with Image.open(file_path) as img:
|
450 |
+
image_array = np.array(img)
|
451 |
+
return image_array
|
452 |
+
|
453 |
+
def postprocess(
|
454 |
+
self, output: dict, skip_keys: list, binarize: bool = True
|
455 |
+
) -> dict:
|
456 |
+
pred = {}
|
457 |
+
for key, value in output.items():
|
458 |
+
if key in skip_keys:
|
459 |
+
continue
|
460 |
+
if isinstance(value, np.ndarray):
|
461 |
+
pred[key] = value.tolist()
|
462 |
+
return pred
|
463 |
+
|
464 |
+
def run(self, host: str = "0.0.0.0", port: int = 8001):
|
465 |
+
uvicorn.run(self.app, host=host, port=port)
|
466 |
+
|
467 |
+
|
468 |
+
if __name__ == "__main__":
|
469 |
+
conf = {
|
470 |
+
"feature": {
|
471 |
+
"output": "feats-superpoint-n4096-rmax1600",
|
472 |
+
"model": {
|
473 |
+
"name": "superpoint",
|
474 |
+
"nms_radius": 3,
|
475 |
+
"max_keypoints": 4096,
|
476 |
+
"keypoint_threshold": 0.005,
|
477 |
+
},
|
478 |
+
"preprocessing": {
|
479 |
+
"grayscale": True,
|
480 |
+
"force_resize": True,
|
481 |
+
"resize_max": 1600,
|
482 |
+
"width": 640,
|
483 |
+
"height": 480,
|
484 |
+
"dfactor": 8,
|
485 |
+
},
|
486 |
+
},
|
487 |
+
"matcher": {
|
488 |
+
"output": "matches-NN-mutual",
|
489 |
+
"model": {
|
490 |
+
"name": "nearest_neighbor",
|
491 |
+
"do_mutual_check": True,
|
492 |
+
"match_threshold": 0.2,
|
493 |
+
},
|
494 |
+
},
|
495 |
+
"dense": False,
|
496 |
+
}
|
497 |
+
|
498 |
+
service = ImageMatchingService(conf=conf, device=DEVICE)
|
499 |
+
service.run()
|
api/test/CMakeLists.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cmake_minimum_required(VERSION 3.10)
|
2 |
+
project(imatchui)
|
3 |
+
|
4 |
+
set(OpenCV_DIR /usr/include/opencv4)
|
5 |
+
find_package(OpenCV REQUIRED)
|
6 |
+
|
7 |
+
find_package(Boost REQUIRED COMPONENTS system)
|
8 |
+
if(Boost_FOUND)
|
9 |
+
include_directories(${Boost_INCLUDE_DIRS})
|
10 |
+
endif()
|
11 |
+
|
12 |
+
add_executable(client client.cpp)
|
13 |
+
|
14 |
+
target_include_directories(client PRIVATE ${Boost_LIBRARIES} ${OpenCV_INCLUDE_DIRS})
|
15 |
+
|
16 |
+
target_link_libraries(client PRIVATE curl jsoncpp b64 ${OpenCV_LIBS})
|
api/test/build_and_run.sh
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# g++ main.cpp -I/usr/include/opencv4 -lcurl -ljsoncpp -lb64 -lopencv_core -lopencv_imgcodecs -o main
|
2 |
+
# sudo apt-get update
|
3 |
+
# sudo apt-get install libboost-all-dev -y
|
4 |
+
# sudo apt-get install libcurl4-openssl-dev libjsoncpp-dev libb64-dev libopencv-dev -y
|
5 |
+
|
6 |
+
cd build
|
7 |
+
cmake ..
|
8 |
+
make -j12
|
9 |
+
|
10 |
+
echo " ======== RUN DEMO ========"
|
11 |
+
|
12 |
+
./client
|
13 |
+
|
14 |
+
echo " ======== END DEMO ========"
|
15 |
+
|
16 |
+
cd ..
|
api/test/client.cpp
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <curl/curl.h>
|
2 |
+
#include <opencv2/opencv.hpp>
|
3 |
+
#include "helper.h"
|
4 |
+
|
5 |
+
int main() {
|
6 |
+
std::string img_path = "../../../datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg";
|
7 |
+
cv::Mat original_img = cv::imread(img_path, cv::IMREAD_GRAYSCALE);
|
8 |
+
|
9 |
+
if (original_img.empty()) {
|
10 |
+
throw std::runtime_error("Failed to decode image");
|
11 |
+
}
|
12 |
+
|
13 |
+
// Convert the image to Base64
|
14 |
+
std::string base64_img = image_to_base64(original_img);
|
15 |
+
|
16 |
+
// Convert the Base64 back to an image
|
17 |
+
cv::Mat decoded_img = base64_to_image(base64_img);
|
18 |
+
cv::imwrite("decoded_image.jpg", decoded_img);
|
19 |
+
cv::imwrite("original_img.jpg", original_img);
|
20 |
+
|
21 |
+
// The images should be identical
|
22 |
+
if (cv::countNonZero(original_img != decoded_img) != 0) {
|
23 |
+
std::cerr << "The images are not identical" << std::endl;
|
24 |
+
return -1;
|
25 |
+
} else {
|
26 |
+
std::cout << "The images are identical!" << std::endl;
|
27 |
+
}
|
28 |
+
|
29 |
+
// construct params
|
30 |
+
APIParams params{
|
31 |
+
.data = {base64_img},
|
32 |
+
.max_keypoints = {100, 100},
|
33 |
+
.timestamps = {"0", "1"},
|
34 |
+
.grayscale = {0},
|
35 |
+
.image_hw = {{480, 640}, {240, 320}},
|
36 |
+
.feature_type = 0,
|
37 |
+
.rotates = {0.0f, 0.0f},
|
38 |
+
.scales = {1.0f, 1.0f},
|
39 |
+
.reference_points = {
|
40 |
+
{1.23e+2f, 1.2e+1f},
|
41 |
+
{5.0e-1f, 3.0e-1f},
|
42 |
+
{2.3e+2f, 2.2e+1f},
|
43 |
+
{6.0e-1f, 4.0e-1f}
|
44 |
+
},
|
45 |
+
.binarize = {1}
|
46 |
+
};
|
47 |
+
|
48 |
+
KeyPointResults kpts_results;
|
49 |
+
|
50 |
+
// Convert the parameters to JSON
|
51 |
+
Json::Value jsonData = paramsToJson(params);
|
52 |
+
std::string url = "http://127.0.0.1:8001/v1/extract";
|
53 |
+
Json::StreamWriterBuilder writer;
|
54 |
+
std::string output = Json::writeString(writer, jsonData);
|
55 |
+
|
56 |
+
CURL* curl;
|
57 |
+
CURLcode res;
|
58 |
+
std::string readBuffer;
|
59 |
+
|
60 |
+
curl_global_init(CURL_GLOBAL_DEFAULT);
|
61 |
+
curl = curl_easy_init();
|
62 |
+
if (curl) {
|
63 |
+
struct curl_slist* hs = NULL;
|
64 |
+
hs = curl_slist_append(hs, "Content-Type: application/json");
|
65 |
+
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, hs);
|
66 |
+
curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
|
67 |
+
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, output.c_str());
|
68 |
+
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, WriteCallback);
|
69 |
+
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &readBuffer);
|
70 |
+
res = curl_easy_perform(curl);
|
71 |
+
|
72 |
+
if (res != CURLE_OK)
|
73 |
+
fprintf(stderr, "curl_easy_perform() failed: %s\n",
|
74 |
+
curl_easy_strerror(res));
|
75 |
+
else {
|
76 |
+
// std::cout << "Response from server: " << readBuffer << std::endl;
|
77 |
+
kpts_results = decode_response(readBuffer);
|
78 |
+
}
|
79 |
+
curl_easy_cleanup(curl);
|
80 |
+
}
|
81 |
+
curl_global_cleanup();
|
82 |
+
|
83 |
+
return 0;
|
84 |
+
}
|
api/test/helper.h
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#include <sstream>
|
3 |
+
#include <fstream>
|
4 |
+
#include <vector>
|
5 |
+
#include <b64/encode.h>
|
6 |
+
#include <jsoncpp/json/json.h>
|
7 |
+
#include <opencv2/opencv.hpp>
|
8 |
+
|
9 |
+
// base64 to image
|
10 |
+
#include <boost/archive/iterators/binary_from_base64.hpp>
|
11 |
+
#include <boost/archive/iterators/transform_width.hpp>
|
12 |
+
#include <boost/archive/iterators/base64_from_binary.hpp>
|
13 |
+
|
14 |
+
/// Parameters used in the API
|
15 |
+
struct APIParams {
|
16 |
+
/// A list of images, base64 encoded
|
17 |
+
std::vector<std::string> data;
|
18 |
+
|
19 |
+
/// The maximum number of keypoints to detect for each image
|
20 |
+
std::vector<int> max_keypoints;
|
21 |
+
|
22 |
+
/// The timestamps of the images
|
23 |
+
std::vector<std::string> timestamps;
|
24 |
+
|
25 |
+
/// Whether to convert the images to grayscale
|
26 |
+
bool grayscale;
|
27 |
+
|
28 |
+
/// The height and width of each image
|
29 |
+
std::vector<std::vector<int>> image_hw;
|
30 |
+
|
31 |
+
/// The type of feature detector to use
|
32 |
+
int feature_type;
|
33 |
+
|
34 |
+
/// The rotations of the images
|
35 |
+
std::vector<double> rotates;
|
36 |
+
|
37 |
+
/// The scales of the images
|
38 |
+
std::vector<double> scales;
|
39 |
+
|
40 |
+
/// The reference points of the images
|
41 |
+
std::vector<std::vector<float>> reference_points;
|
42 |
+
|
43 |
+
/// Whether to binarize the descriptors
|
44 |
+
bool binarize;
|
45 |
+
};
|
46 |
+
|
47 |
+
/**
|
48 |
+
* @brief Contains the results of a keypoint detector.
|
49 |
+
*
|
50 |
+
* @details Stores the keypoints and descriptors for each image.
|
51 |
+
*/
|
52 |
+
class KeyPointResults {
|
53 |
+
public:
|
54 |
+
KeyPointResults() {}
|
55 |
+
|
56 |
+
/**
|
57 |
+
* @brief Constructor.
|
58 |
+
*
|
59 |
+
* @param kp The keypoints for each image.
|
60 |
+
*/
|
61 |
+
KeyPointResults(const std::vector<std::vector<cv::KeyPoint>>& kp,
|
62 |
+
const std::vector<cv::Mat>& desc)
|
63 |
+
: keypoints(kp), descriptors(desc) {}
|
64 |
+
|
65 |
+
/**
|
66 |
+
* @brief Append keypoints to the result.
|
67 |
+
*
|
68 |
+
* @param kpts The keypoints to append.
|
69 |
+
*/
|
70 |
+
inline void append_keypoints(std::vector<cv::KeyPoint>& kpts) {
|
71 |
+
keypoints.emplace_back(kpts);
|
72 |
+
}
|
73 |
+
|
74 |
+
/**
|
75 |
+
* @brief Append descriptors to the result.
|
76 |
+
*
|
77 |
+
* @param desc The descriptors to append.
|
78 |
+
*/
|
79 |
+
inline void append_descriptors(cv::Mat& desc) {
|
80 |
+
descriptors.emplace_back(desc);
|
81 |
+
}
|
82 |
+
|
83 |
+
/**
|
84 |
+
* @brief Get the keypoints.
|
85 |
+
*
|
86 |
+
* @return The keypoints.
|
87 |
+
*/
|
88 |
+
inline std::vector<std::vector<cv::KeyPoint>> get_keypoints() {
|
89 |
+
return keypoints;
|
90 |
+
}
|
91 |
+
|
92 |
+
/**
|
93 |
+
* @brief Get the descriptors.
|
94 |
+
*
|
95 |
+
* @return The descriptors.
|
96 |
+
*/
|
97 |
+
inline std::vector<cv::Mat> get_descriptors() {
|
98 |
+
return descriptors;
|
99 |
+
}
|
100 |
+
|
101 |
+
private:
|
102 |
+
std::vector<std::vector<cv::KeyPoint>> keypoints;
|
103 |
+
std::vector<cv::Mat> descriptors;
|
104 |
+
std::vector<std::vector<float>> scores;
|
105 |
+
};
|
106 |
+
|
107 |
+
|
108 |
+
/**
|
109 |
+
* @brief Decodes a base64 encoded string.
|
110 |
+
*
|
111 |
+
* @param base64 The base64 encoded string to decode.
|
112 |
+
* @return The decoded string.
|
113 |
+
*/
|
114 |
+
std::string base64_decode(const std::string& base64) {
|
115 |
+
using namespace boost::archive::iterators;
|
116 |
+
using It = transform_width<binary_from_base64<std::string::const_iterator>, 8, 6>;
|
117 |
+
|
118 |
+
// Find the position of the last non-whitespace character
|
119 |
+
auto end = base64.find_last_not_of(" \t\n\r");
|
120 |
+
if (end != std::string::npos) {
|
121 |
+
// Move one past the last non-whitespace character
|
122 |
+
end += 1;
|
123 |
+
}
|
124 |
+
|
125 |
+
// Decode the base64 string and return the result
|
126 |
+
return std::string(It(base64.begin()), It(base64.begin() + end));
|
127 |
+
}
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
/**
|
132 |
+
* @brief Decodes a base64 string into an OpenCV image
|
133 |
+
*
|
134 |
+
* @param base64 The base64 encoded string
|
135 |
+
* @return The decoded OpenCV image
|
136 |
+
*/
|
137 |
+
cv::Mat base64_to_image(const std::string& base64) {
|
138 |
+
// Decode the base64 string
|
139 |
+
std::string decodedStr = base64_decode(base64);
|
140 |
+
|
141 |
+
// Decode the image
|
142 |
+
std::vector<uchar> data(decodedStr.begin(), decodedStr.end());
|
143 |
+
cv::Mat img = cv::imdecode(data, cv::IMREAD_GRAYSCALE);
|
144 |
+
|
145 |
+
// Check for errors
|
146 |
+
if (img.empty()) {
|
147 |
+
throw std::runtime_error("Failed to decode image");
|
148 |
+
}
|
149 |
+
|
150 |
+
return img;
|
151 |
+
}
|
152 |
+
|
153 |
+
|
154 |
+
/**
|
155 |
+
* @brief Encodes an OpenCV image into a base64 string
|
156 |
+
*
|
157 |
+
* This function takes an OpenCV image and encodes it into a base64 string.
|
158 |
+
* The image is first encoded as a PNG image, and then the resulting
|
159 |
+
* bytes are encoded as a base64 string.
|
160 |
+
*
|
161 |
+
* @param img The OpenCV image
|
162 |
+
* @return The base64 encoded string
|
163 |
+
*
|
164 |
+
* @throws std::runtime_error if the image is empty or encoding fails
|
165 |
+
*/
|
166 |
+
std::string image_to_base64(cv::Mat &img) {
|
167 |
+
if (img.empty()) {
|
168 |
+
throw std::runtime_error("Failed to read image");
|
169 |
+
}
|
170 |
+
|
171 |
+
// Encode the image as a PNG
|
172 |
+
std::vector<uchar> buf;
|
173 |
+
if (!cv::imencode(".png", img, buf)) {
|
174 |
+
throw std::runtime_error("Failed to encode image");
|
175 |
+
}
|
176 |
+
|
177 |
+
// Encode the bytes as a base64 string
|
178 |
+
using namespace boost::archive::iterators;
|
179 |
+
using It = base64_from_binary<transform_width<std::vector<uchar>::const_iterator, 6, 8>>;
|
180 |
+
std::string base64(It(buf.begin()), It(buf.end()));
|
181 |
+
|
182 |
+
// Pad the string with '=' characters to a multiple of 4 bytes
|
183 |
+
base64.append((3 - buf.size() % 3) % 3, '=');
|
184 |
+
|
185 |
+
return base64;
|
186 |
+
}
|
187 |
+
|
188 |
+
|
189 |
+
/**
|
190 |
+
* @brief Callback function for libcurl to write data to a string
|
191 |
+
*
|
192 |
+
* This function is used as a callback for libcurl to write data to a string.
|
193 |
+
* It takes the contents, size, and nmemb as parameters, and writes the data to
|
194 |
+
* the string.
|
195 |
+
*
|
196 |
+
* @param contents The data to write
|
197 |
+
* @param size The size of the data
|
198 |
+
* @param nmemb The number of members in the data
|
199 |
+
* @param s The string to write the data to
|
200 |
+
* @return The number of bytes written
|
201 |
+
*/
|
202 |
+
size_t WriteCallback(void* contents, size_t size, size_t nmemb, std::string* s) {
|
203 |
+
size_t newLength = size * nmemb;
|
204 |
+
try {
|
205 |
+
// Resize the string to fit the new data
|
206 |
+
s->resize(s->size() + newLength);
|
207 |
+
} catch (std::bad_alloc& e) {
|
208 |
+
// If there's an error allocating memory, return 0
|
209 |
+
return 0;
|
210 |
+
}
|
211 |
+
|
212 |
+
// Copy the data to the string
|
213 |
+
std::copy(static_cast<const char*>(contents),
|
214 |
+
static_cast<const char*>(contents) + newLength,
|
215 |
+
s->begin() + s->size() - newLength);
|
216 |
+
return newLength;
|
217 |
+
}
|
218 |
+
|
219 |
+
// Helper functions
|
220 |
+
|
221 |
+
/**
|
222 |
+
* @brief Helper function to convert a type to a Json::Value
|
223 |
+
*
|
224 |
+
* This function takes a value of type T and converts it to a Json::Value.
|
225 |
+
* It is used to simplify the process of converting a type to a Json::Value.
|
226 |
+
*
|
227 |
+
* @param val The value to convert
|
228 |
+
* @return The converted Json::Value
|
229 |
+
*/
|
230 |
+
template <typename T>
|
231 |
+
Json::Value toJson(const T& val) {
|
232 |
+
return Json::Value(val);
|
233 |
+
}
|
234 |
+
|
235 |
+
/**
|
236 |
+
* @brief Converts a vector to a Json::Value
|
237 |
+
*
|
238 |
+
* This function takes a vector of type T and converts it to a Json::Value.
|
239 |
+
* Each element in the vector is appended to the Json::Value array.
|
240 |
+
*
|
241 |
+
* @param vec The vector to convert to Json::Value
|
242 |
+
* @return The Json::Value representing the vector
|
243 |
+
*/
|
244 |
+
template <typename T>
|
245 |
+
Json::Value vectorToJson(const std::vector<T>& vec) {
|
246 |
+
Json::Value json(Json::arrayValue);
|
247 |
+
for (const auto& item : vec) {
|
248 |
+
json.append(item);
|
249 |
+
}
|
250 |
+
return json;
|
251 |
+
}
|
252 |
+
|
253 |
+
/**
|
254 |
+
* @brief Converts a nested vector to a Json::Value
|
255 |
+
*
|
256 |
+
* This function takes a nested vector of type T and converts it to a Json::Value.
|
257 |
+
* Each sub-vector is converted to a Json::Value array and appended to the main Json::Value array.
|
258 |
+
*
|
259 |
+
* @param vec The nested vector to convert to Json::Value
|
260 |
+
* @return The Json::Value representing the nested vector
|
261 |
+
*/
|
262 |
+
template <typename T>
|
263 |
+
Json::Value nestedVectorToJson(const std::vector<std::vector<T>>& vec) {
|
264 |
+
Json::Value json(Json::arrayValue);
|
265 |
+
for (const auto& subVec : vec) {
|
266 |
+
json.append(vectorToJson(subVec));
|
267 |
+
}
|
268 |
+
return json;
|
269 |
+
}
|
270 |
+
|
271 |
+
|
272 |
+
|
273 |
+
/**
|
274 |
+
* @brief Converts the APIParams struct to a Json::Value
|
275 |
+
*
|
276 |
+
* This function takes an APIParams struct and converts it to a Json::Value.
|
277 |
+
* The Json::Value is a JSON object with the following fields:
|
278 |
+
* - data: a JSON array of base64 encoded images
|
279 |
+
* - max_keypoints: a JSON array of integers, max number of keypoints for each image
|
280 |
+
* - timestamps: a JSON array of timestamps, one for each image
|
281 |
+
* - grayscale: a JSON boolean, whether to convert images to grayscale
|
282 |
+
* - image_hw: a nested JSON array, each sub-array contains the height and width of an image
|
283 |
+
* - feature_type: a JSON integer, the type of feature detector to use
|
284 |
+
* - rotates: a JSON array of doubles, the rotation of each image
|
285 |
+
* - scales: a JSON array of doubles, the scale of each image
|
286 |
+
* - reference_points: a nested JSON array, each sub-array contains the reference points of an image
|
287 |
+
* - binarize: a JSON boolean, whether to binarize the descriptors
|
288 |
+
*
|
289 |
+
* @param params The APIParams struct to convert
|
290 |
+
* @return The Json::Value representing the APIParams struct
|
291 |
+
*/
|
292 |
+
Json::Value paramsToJson(const APIParams& params) {
|
293 |
+
Json::Value json;
|
294 |
+
json["data"] = vectorToJson(params.data);
|
295 |
+
json["max_keypoints"] = vectorToJson(params.max_keypoints);
|
296 |
+
json["timestamps"] = vectorToJson(params.timestamps);
|
297 |
+
json["grayscale"] = toJson(params.grayscale);
|
298 |
+
json["image_hw"] = nestedVectorToJson(params.image_hw);
|
299 |
+
json["feature_type"] = toJson(params.feature_type);
|
300 |
+
json["rotates"] = vectorToJson(params.rotates);
|
301 |
+
json["scales"] = vectorToJson(params.scales);
|
302 |
+
json["reference_points"] = nestedVectorToJson(params.reference_points);
|
303 |
+
json["binarize"] = toJson(params.binarize);
|
304 |
+
return json;
|
305 |
+
}
|
306 |
+
|
307 |
+
template<typename T>
|
308 |
+
cv::Mat jsonToMat(Json::Value json) {
|
309 |
+
int rows = json.size();
|
310 |
+
int cols = json[0].size();
|
311 |
+
|
312 |
+
// Create a single array to hold all the data.
|
313 |
+
std::vector<T> data;
|
314 |
+
data.reserve(rows * cols);
|
315 |
+
|
316 |
+
for (int i = 0; i < rows; i++) {
|
317 |
+
for (int j = 0; j < cols; j++) {
|
318 |
+
data.push_back(static_cast<T>(json[i][j].asInt()));
|
319 |
+
}
|
320 |
+
}
|
321 |
+
|
322 |
+
// Create a cv::Mat object that points to the data.
|
323 |
+
cv::Mat mat(rows, cols, CV_8UC1, data.data()); // Change the type if necessary.
|
324 |
+
// cv::Mat mat(cols, rows,CV_8UC1, data.data()); // Change the type if necessary.
|
325 |
+
|
326 |
+
return mat;
|
327 |
+
}
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
+
/**
|
332 |
+
* @brief Decodes the response of the server and prints the keypoints
|
333 |
+
*
|
334 |
+
* This function takes the response of the server, a JSON string, and decodes
|
335 |
+
* it. It then prints the keypoints and draws them on the original image.
|
336 |
+
*
|
337 |
+
* @param response The response of the server
|
338 |
+
* @return The keypoints and descriptors
|
339 |
+
*/
|
340 |
+
KeyPointResults decode_response(const std::string& response, bool viz=true) {
|
341 |
+
Json::CharReaderBuilder builder;
|
342 |
+
Json::CharReader* reader = builder.newCharReader();
|
343 |
+
|
344 |
+
Json::Value jsonData;
|
345 |
+
std::string errors;
|
346 |
+
|
347 |
+
// Parse the JSON response
|
348 |
+
bool parsingSuccessful = reader->parse(response.c_str(),
|
349 |
+
response.c_str() + response.size(), &jsonData, &errors);
|
350 |
+
delete reader;
|
351 |
+
|
352 |
+
if (!parsingSuccessful) {
|
353 |
+
// Handle error
|
354 |
+
std::cout << "Failed to parse the JSON, errors:" << std::endl;
|
355 |
+
std::cout << errors << std::endl;
|
356 |
+
return KeyPointResults();
|
357 |
+
}
|
358 |
+
|
359 |
+
KeyPointResults kpts_results;
|
360 |
+
|
361 |
+
// Iterate over the images
|
362 |
+
for (const auto& jsonItem : jsonData) {
|
363 |
+
auto jkeypoints = jsonItem["keypoints"];
|
364 |
+
auto jkeypoints_orig = jsonItem["keypoints_orig"];
|
365 |
+
auto jdescriptors = jsonItem["descriptors"];
|
366 |
+
auto jscores = jsonItem["scores"];
|
367 |
+
auto jimageSize = jsonItem["image_size"];
|
368 |
+
auto joriginalSize = jsonItem["original_size"];
|
369 |
+
auto jsize = jsonItem["size"];
|
370 |
+
|
371 |
+
std::vector<cv::KeyPoint> vkeypoints;
|
372 |
+
std::vector<float> vscores;
|
373 |
+
|
374 |
+
// Iterate over the keypoints
|
375 |
+
int counter = 0;
|
376 |
+
for (const auto& keypoint : jkeypoints_orig) {
|
377 |
+
if (counter < 10) {
|
378 |
+
// Print the first 10 keypoints
|
379 |
+
std::cout << keypoint[0].asFloat() << ", "
|
380 |
+
<< keypoint[1].asFloat() << std::endl;
|
381 |
+
}
|
382 |
+
counter++;
|
383 |
+
// Convert the Json::Value to a cv::KeyPoint
|
384 |
+
vkeypoints.emplace_back(cv::KeyPoint(keypoint[0].asFloat(),
|
385 |
+
keypoint[1].asFloat(), 0.0));
|
386 |
+
}
|
387 |
+
|
388 |
+
if (viz && jsonItem.isMember("image_orig")) {
|
389 |
+
|
390 |
+
auto jimg_orig = jsonItem["image_orig"];
|
391 |
+
cv::Mat img = jsonToMat<uchar>(jimg_orig);
|
392 |
+
cv::imwrite("viz_image_orig.jpg", img);
|
393 |
+
|
394 |
+
// Draw keypoints on the image
|
395 |
+
cv::Mat imgWithKeypoints;
|
396 |
+
cv::drawKeypoints(img, vkeypoints,
|
397 |
+
imgWithKeypoints, cv::Scalar(0, 0, 255));
|
398 |
+
|
399 |
+
// Write the image with keypoints
|
400 |
+
std::string filename = "viz_image_orig_keypoints.jpg";
|
401 |
+
cv::imwrite(filename, imgWithKeypoints);
|
402 |
+
}
|
403 |
+
|
404 |
+
// Iterate over the descriptors
|
405 |
+
cv::Mat descriptors = jsonToMat<uchar>(jdescriptors);
|
406 |
+
kpts_results.append_keypoints(vkeypoints);
|
407 |
+
kpts_results.append_descriptors(descriptors);
|
408 |
+
}
|
409 |
+
return kpts_results;
|
410 |
+
}
|
api/types.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from pydantic import BaseModel
|
4 |
+
|
5 |
+
|
6 |
+
class ImagesInput(BaseModel):
|
7 |
+
data: List[str] = []
|
8 |
+
max_keypoints: List[int] = []
|
9 |
+
timestamps: List[str] = []
|
10 |
+
grayscale: bool = False
|
11 |
+
image_hw: List[List[int]] = [[], []]
|
12 |
+
feature_type: int = 0
|
13 |
+
rotates: List[float] = []
|
14 |
+
scales: List[float] = []
|
15 |
+
reference_points: List[List[float]] = []
|
16 |
+
binarize: bool = False
|
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from pathlib import Path
|
3 |
+
from ui.app_class import ImageMatchingApp
|
4 |
+
|
5 |
+
if __name__ == "__main__":
|
6 |
+
parser = argparse.ArgumentParser()
|
7 |
+
parser.add_argument(
|
8 |
+
"--server_name",
|
9 |
+
type=str,
|
10 |
+
default="0.0.0.0",
|
11 |
+
help="server name",
|
12 |
+
)
|
13 |
+
parser.add_argument(
|
14 |
+
"--server_port",
|
15 |
+
type=int,
|
16 |
+
default=7860,
|
17 |
+
help="server port",
|
18 |
+
)
|
19 |
+
parser.add_argument(
|
20 |
+
"--config",
|
21 |
+
type=str,
|
22 |
+
default=Path(__file__).parent / "ui/config.yaml",
|
23 |
+
help="config file",
|
24 |
+
)
|
25 |
+
args = parser.parse_args()
|
26 |
+
ImageMatchingApp(
|
27 |
+
args.server_name, args.server_port, config=args.config
|
28 |
+
).run()
|
build_docker.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
docker build -t image-matching-webui:latest . --no-cache
|
2 |
+
docker tag image-matching-webui:latest vincentqin/image-matching-webui:latest
|
3 |
+
docker push vincentqin/image-matching-webui:latest
|
docker/Dockerfile
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official conda-based Python image as a parent image
|
2 |
+
FROM pytorch/pytorch:2.4.0-cuda12.1-cudnn9-runtime
|
3 |
+
LABEL maintainer vincentqyw
|
4 |
+
ARG PYTHON_VERSION=3.10.10
|
5 |
+
|
6 |
+
# Set the working directory to /code
|
7 |
+
WORKDIR /code
|
8 |
+
|
9 |
+
# Install Git and Git LFS
|
10 |
+
RUN apt-get update && apt-get install -y git-lfs
|
11 |
+
RUN git lfs install
|
12 |
+
|
13 |
+
# Clone the Git repository
|
14 |
+
RUN git clone https://huggingface.co/spaces/Realcat/image-matching-webui /code
|
15 |
+
|
16 |
+
RUN conda create -n imw python=${PYTHON_VERSION}
|
17 |
+
RUN echo "source activate imw" > ~/.bashrc
|
18 |
+
ENV PATH /opt/conda/envs/imw/bin:$PATH
|
19 |
+
|
20 |
+
# Make RUN commands use the new environment
|
21 |
+
SHELL ["conda", "run", "-n", "imw", "/bin/bash", "-c"]
|
22 |
+
RUN pip install --upgrade pip
|
23 |
+
RUN pip install -r requirements.txt
|
24 |
+
RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
|
25 |
+
|
26 |
+
# Export port
|
27 |
+
EXPOSE 7860
|
docker/build_docker.bat
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
docker build -t image-matching-webui:latest . --no-cache
|
2 |
+
# docker tag image-matching-webui:latest vincentqin/image-matching-webui:latest
|
3 |
+
# docker push vincentqin/image-matching-webui:latest
|
docker/run_docker.bat
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
docker run -it -p 7860:7860 vincentqin/image-matching-webui:latest python app.py --server_name "0.0.0.0" --server_port=7860
|
docker/run_docker.sh
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
docker run -it -p 7860:7860 vincentqin/image-matching-webui:latest python app.py --server_name "0.0.0.0" --server_port=7860
|
format.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
python -m flake8 ui/*.py api/*.py hloc/*.py hloc/matchers/*.py hloc/extractors/*.py
|
2 |
+
python -m isort ui/*.py api/*.py hloc/*.py hloc/matchers/*.py hloc/extractors/*.py
|
3 |
+
python -m black ui/*.py api/*.py hloc/*.py hloc/matchers/*.py hloc/extractors/*.py
|
hloc/__init__.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from packaging import version
|
6 |
+
|
7 |
+
__version__ = "1.5"
|
8 |
+
|
9 |
+
LOG_PATH = "log.txt"
|
10 |
+
|
11 |
+
|
12 |
+
def read_logs():
|
13 |
+
sys.stdout.flush()
|
14 |
+
with open(LOG_PATH, "r") as f:
|
15 |
+
return f.read()
|
16 |
+
|
17 |
+
|
18 |
+
def flush_logs():
|
19 |
+
sys.stdout.flush()
|
20 |
+
logs = open(LOG_PATH, "w")
|
21 |
+
logs.close()
|
22 |
+
|
23 |
+
|
24 |
+
formatter = logging.Formatter(
|
25 |
+
fmt="[%(asctime)s %(name)s %(levelname)s] %(message)s",
|
26 |
+
datefmt="%Y/%m/%d %H:%M:%S",
|
27 |
+
)
|
28 |
+
|
29 |
+
logs_file = open(LOG_PATH, "w")
|
30 |
+
logs_file.close()
|
31 |
+
|
32 |
+
file_handler = logging.FileHandler(filename=LOG_PATH)
|
33 |
+
file_handler.setFormatter(formatter)
|
34 |
+
file_handler.setLevel(logging.INFO)
|
35 |
+
stdout_handler = logging.StreamHandler()
|
36 |
+
stdout_handler.setFormatter(formatter)
|
37 |
+
stdout_handler.setLevel(logging.INFO)
|
38 |
+
logger = logging.getLogger("hloc")
|
39 |
+
logger.setLevel(logging.INFO)
|
40 |
+
logger.addHandler(file_handler)
|
41 |
+
logger.addHandler(stdout_handler)
|
42 |
+
logger.propagate = False
|
43 |
+
|
44 |
+
try:
|
45 |
+
import pycolmap
|
46 |
+
except ImportError:
|
47 |
+
logger.warning("pycolmap is not installed, some features may not work.")
|
48 |
+
else:
|
49 |
+
min_version = version.parse("0.6.0")
|
50 |
+
found_version = pycolmap.__version__
|
51 |
+
if found_version != "dev":
|
52 |
+
version = version.parse(found_version)
|
53 |
+
if version < min_version:
|
54 |
+
s = f"pycolmap>={min_version}"
|
55 |
+
logger.warning(
|
56 |
+
"hloc requires %s but found pycolmap==%s, "
|
57 |
+
'please upgrade with `pip install --upgrade "%s"`',
|
58 |
+
s,
|
59 |
+
found_version,
|
60 |
+
s,
|
61 |
+
)
|
62 |
+
|
63 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
hloc/colmap_from_nvm.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import sqlite3
|
3 |
+
from collections import defaultdict
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from . import logger
|
10 |
+
from .utils.read_write_model import (
|
11 |
+
CAMERA_MODEL_NAMES,
|
12 |
+
Camera,
|
13 |
+
Image,
|
14 |
+
Point3D,
|
15 |
+
write_model,
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
def recover_database_images_and_ids(database_path):
|
20 |
+
images = {}
|
21 |
+
cameras = {}
|
22 |
+
db = sqlite3.connect(str(database_path))
|
23 |
+
ret = db.execute("SELECT name, image_id, camera_id FROM images;")
|
24 |
+
for name, image_id, camera_id in ret:
|
25 |
+
images[name] = image_id
|
26 |
+
cameras[name] = camera_id
|
27 |
+
db.close()
|
28 |
+
logger.info(
|
29 |
+
f"Found {len(images)} images and {len(cameras)} cameras in database."
|
30 |
+
)
|
31 |
+
return images, cameras
|
32 |
+
|
33 |
+
|
34 |
+
def quaternion_to_rotation_matrix(qvec):
|
35 |
+
qvec = qvec / np.linalg.norm(qvec)
|
36 |
+
w, x, y, z = qvec
|
37 |
+
R = np.array(
|
38 |
+
[
|
39 |
+
[
|
40 |
+
1 - 2 * y * y - 2 * z * z,
|
41 |
+
2 * x * y - 2 * z * w,
|
42 |
+
2 * x * z + 2 * y * w,
|
43 |
+
],
|
44 |
+
[
|
45 |
+
2 * x * y + 2 * z * w,
|
46 |
+
1 - 2 * x * x - 2 * z * z,
|
47 |
+
2 * y * z - 2 * x * w,
|
48 |
+
],
|
49 |
+
[
|
50 |
+
2 * x * z - 2 * y * w,
|
51 |
+
2 * y * z + 2 * x * w,
|
52 |
+
1 - 2 * x * x - 2 * y * y,
|
53 |
+
],
|
54 |
+
]
|
55 |
+
)
|
56 |
+
return R
|
57 |
+
|
58 |
+
|
59 |
+
def camera_center_to_translation(c, qvec):
|
60 |
+
R = quaternion_to_rotation_matrix(qvec)
|
61 |
+
return (-1) * np.matmul(R, c)
|
62 |
+
|
63 |
+
|
64 |
+
def read_nvm_model(
|
65 |
+
nvm_path, intrinsics_path, image_ids, camera_ids, skip_points=False
|
66 |
+
):
|
67 |
+
with open(intrinsics_path, "r") as f:
|
68 |
+
raw_intrinsics = f.readlines()
|
69 |
+
|
70 |
+
logger.info(f"Reading {len(raw_intrinsics)} cameras...")
|
71 |
+
cameras = {}
|
72 |
+
for intrinsics in raw_intrinsics:
|
73 |
+
intrinsics = intrinsics.strip("\n").split(" ")
|
74 |
+
name, camera_model, width, height = intrinsics[:4]
|
75 |
+
params = [float(p) for p in intrinsics[4:]]
|
76 |
+
camera_model = CAMERA_MODEL_NAMES[camera_model]
|
77 |
+
assert len(params) == camera_model.num_params
|
78 |
+
camera_id = camera_ids[name]
|
79 |
+
camera = Camera(
|
80 |
+
id=camera_id,
|
81 |
+
model=camera_model.model_name,
|
82 |
+
width=int(width),
|
83 |
+
height=int(height),
|
84 |
+
params=params,
|
85 |
+
)
|
86 |
+
cameras[camera_id] = camera
|
87 |
+
|
88 |
+
nvm_f = open(nvm_path, "r")
|
89 |
+
line = nvm_f.readline()
|
90 |
+
while line == "\n" or line.startswith("NVM_V3"):
|
91 |
+
line = nvm_f.readline()
|
92 |
+
num_images = int(line)
|
93 |
+
assert num_images == len(cameras)
|
94 |
+
|
95 |
+
logger.info(f"Reading {num_images} images...")
|
96 |
+
image_idx_to_db_image_id = []
|
97 |
+
image_data = []
|
98 |
+
i = 0
|
99 |
+
while i < num_images:
|
100 |
+
line = nvm_f.readline()
|
101 |
+
if line == "\n":
|
102 |
+
continue
|
103 |
+
data = line.strip("\n").split(" ")
|
104 |
+
image_data.append(data)
|
105 |
+
image_idx_to_db_image_id.append(image_ids[data[0]])
|
106 |
+
i += 1
|
107 |
+
|
108 |
+
line = nvm_f.readline()
|
109 |
+
while line == "\n":
|
110 |
+
line = nvm_f.readline()
|
111 |
+
num_points = int(line)
|
112 |
+
|
113 |
+
if skip_points:
|
114 |
+
logger.info(f"Skipping {num_points} points.")
|
115 |
+
num_points = 0
|
116 |
+
else:
|
117 |
+
logger.info(f"Reading {num_points} points...")
|
118 |
+
points3D = {}
|
119 |
+
image_idx_to_keypoints = defaultdict(list)
|
120 |
+
i = 0
|
121 |
+
pbar = tqdm(total=num_points, unit="pts")
|
122 |
+
while i < num_points:
|
123 |
+
line = nvm_f.readline()
|
124 |
+
if line == "\n":
|
125 |
+
continue
|
126 |
+
|
127 |
+
data = line.strip("\n").split(" ")
|
128 |
+
x, y, z, r, g, b, num_observations = data[:7]
|
129 |
+
obs_image_ids, point2D_idxs = [], []
|
130 |
+
for j in range(int(num_observations)):
|
131 |
+
s = 7 + 4 * j
|
132 |
+
img_index, kp_index, kx, ky = data[s : s + 4]
|
133 |
+
image_idx_to_keypoints[int(img_index)].append(
|
134 |
+
(int(kp_index), float(kx), float(ky), i)
|
135 |
+
)
|
136 |
+
db_image_id = image_idx_to_db_image_id[int(img_index)]
|
137 |
+
obs_image_ids.append(db_image_id)
|
138 |
+
point2D_idxs.append(kp_index)
|
139 |
+
|
140 |
+
point = Point3D(
|
141 |
+
id=i,
|
142 |
+
xyz=np.array([x, y, z], float),
|
143 |
+
rgb=np.array([r, g, b], int),
|
144 |
+
error=1.0, # fake
|
145 |
+
image_ids=np.array(obs_image_ids, int),
|
146 |
+
point2D_idxs=np.array(point2D_idxs, int),
|
147 |
+
)
|
148 |
+
points3D[i] = point
|
149 |
+
|
150 |
+
i += 1
|
151 |
+
pbar.update(1)
|
152 |
+
pbar.close()
|
153 |
+
|
154 |
+
logger.info("Parsing image data...")
|
155 |
+
images = {}
|
156 |
+
for i, data in enumerate(image_data):
|
157 |
+
# Skip the focal length. Skip the distortion and terminal 0.
|
158 |
+
name, _, qw, qx, qy, qz, cx, cy, cz, _, _ = data
|
159 |
+
qvec = np.array([qw, qx, qy, qz], float)
|
160 |
+
c = np.array([cx, cy, cz], float)
|
161 |
+
t = camera_center_to_translation(c, qvec)
|
162 |
+
|
163 |
+
if i in image_idx_to_keypoints:
|
164 |
+
# NVM only stores triangulated 2D keypoints: add dummy ones
|
165 |
+
keypoints = image_idx_to_keypoints[i]
|
166 |
+
point2D_idxs = np.array([d[0] for d in keypoints])
|
167 |
+
tri_xys = np.array([[x, y] for _, x, y, _ in keypoints])
|
168 |
+
tri_ids = np.array([i for _, _, _, i in keypoints])
|
169 |
+
|
170 |
+
num_2Dpoints = max(point2D_idxs) + 1
|
171 |
+
xys = np.zeros((num_2Dpoints, 2), float)
|
172 |
+
point3D_ids = np.full(num_2Dpoints, -1, int)
|
173 |
+
xys[point2D_idxs] = tri_xys
|
174 |
+
point3D_ids[point2D_idxs] = tri_ids
|
175 |
+
else:
|
176 |
+
xys = np.zeros((0, 2), float)
|
177 |
+
point3D_ids = np.full(0, -1, int)
|
178 |
+
|
179 |
+
image_id = image_ids[name]
|
180 |
+
image = Image(
|
181 |
+
id=image_id,
|
182 |
+
qvec=qvec,
|
183 |
+
tvec=t,
|
184 |
+
camera_id=camera_ids[name],
|
185 |
+
name=name,
|
186 |
+
xys=xys,
|
187 |
+
point3D_ids=point3D_ids,
|
188 |
+
)
|
189 |
+
images[image_id] = image
|
190 |
+
|
191 |
+
return cameras, images, points3D
|
192 |
+
|
193 |
+
|
194 |
+
def main(nvm, intrinsics, database, output, skip_points=False):
|
195 |
+
assert nvm.exists(), nvm
|
196 |
+
assert intrinsics.exists(), intrinsics
|
197 |
+
assert database.exists(), database
|
198 |
+
|
199 |
+
image_ids, camera_ids = recover_database_images_and_ids(database)
|
200 |
+
|
201 |
+
logger.info("Reading the NVM model...")
|
202 |
+
model = read_nvm_model(
|
203 |
+
nvm, intrinsics, image_ids, camera_ids, skip_points=skip_points
|
204 |
+
)
|
205 |
+
|
206 |
+
logger.info("Writing the COLMAP model...")
|
207 |
+
output.mkdir(exist_ok=True, parents=True)
|
208 |
+
write_model(*model, path=str(output), ext=".bin")
|
209 |
+
logger.info("Done.")
|
210 |
+
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
parser = argparse.ArgumentParser()
|
214 |
+
parser.add_argument("--nvm", required=True, type=Path)
|
215 |
+
parser.add_argument("--intrinsics", required=True, type=Path)
|
216 |
+
parser.add_argument("--database", required=True, type=Path)
|
217 |
+
parser.add_argument("--output", required=True, type=Path)
|
218 |
+
parser.add_argument("--skip_points", action="store_true")
|
219 |
+
args = parser.parse_args()
|
220 |
+
main(**args.__dict__)
|
hloc/extract_features.py
ADDED
@@ -0,0 +1,618 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import collections.abc as collections
|
3 |
+
import pprint
|
4 |
+
from pathlib import Path
|
5 |
+
from types import SimpleNamespace
|
6 |
+
from typing import Dict, List, Optional, Union
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import h5py
|
10 |
+
import numpy as np
|
11 |
+
import PIL.Image
|
12 |
+
import torch
|
13 |
+
import torchvision.transforms.functional as F
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
from . import extractors, logger
|
17 |
+
from .utils.base_model import dynamic_load
|
18 |
+
from .utils.io import list_h5_names, read_image
|
19 |
+
from .utils.parsers import parse_image_lists
|
20 |
+
|
21 |
+
"""
|
22 |
+
A set of standard configurations that can be directly selected from the command
|
23 |
+
line using their name. Each is a dictionary with the following entries:
|
24 |
+
- output: the name of the feature file that will be generated.
|
25 |
+
- model: the model configuration, as passed to a feature extractor.
|
26 |
+
- preprocessing: how to preprocess the images read from disk.
|
27 |
+
"""
|
28 |
+
confs = {
|
29 |
+
"superpoint_aachen": {
|
30 |
+
"output": "feats-superpoint-n4096-r1024",
|
31 |
+
"model": {
|
32 |
+
"name": "superpoint",
|
33 |
+
"nms_radius": 3,
|
34 |
+
"max_keypoints": 4096,
|
35 |
+
"keypoint_threshold": 0.005,
|
36 |
+
},
|
37 |
+
"preprocessing": {
|
38 |
+
"grayscale": True,
|
39 |
+
"force_resize": True,
|
40 |
+
"resize_max": 1600,
|
41 |
+
"width": 640,
|
42 |
+
"height": 480,
|
43 |
+
"dfactor": 8,
|
44 |
+
},
|
45 |
+
},
|
46 |
+
# Resize images to 1600px even if they are originally smaller.
|
47 |
+
# Improves the keypoint localization if the images are of good quality.
|
48 |
+
"superpoint_max": {
|
49 |
+
"output": "feats-superpoint-n4096-rmax1600",
|
50 |
+
"model": {
|
51 |
+
"name": "superpoint",
|
52 |
+
"nms_radius": 3,
|
53 |
+
"max_keypoints": 4096,
|
54 |
+
"keypoint_threshold": 0.005,
|
55 |
+
},
|
56 |
+
"preprocessing": {
|
57 |
+
"grayscale": True,
|
58 |
+
"force_resize": True,
|
59 |
+
"resize_max": 1600,
|
60 |
+
"width": 640,
|
61 |
+
"height": 480,
|
62 |
+
"dfactor": 8,
|
63 |
+
},
|
64 |
+
},
|
65 |
+
"superpoint_inloc": {
|
66 |
+
"output": "feats-superpoint-n4096-r1600",
|
67 |
+
"model": {
|
68 |
+
"name": "superpoint",
|
69 |
+
"nms_radius": 4,
|
70 |
+
"max_keypoints": 4096,
|
71 |
+
"keypoint_threshold": 0.005,
|
72 |
+
},
|
73 |
+
"preprocessing": {
|
74 |
+
"grayscale": True,
|
75 |
+
"resize_max": 1600,
|
76 |
+
"force_resize": True,
|
77 |
+
"width": 640,
|
78 |
+
"height": 480,
|
79 |
+
"dfactor": 8,
|
80 |
+
},
|
81 |
+
},
|
82 |
+
"r2d2": {
|
83 |
+
"output": "feats-r2d2-n5000-r1024",
|
84 |
+
"model": {
|
85 |
+
"name": "r2d2",
|
86 |
+
"max_keypoints": 5000,
|
87 |
+
"reliability_threshold": 0.7,
|
88 |
+
"repetability_threshold": 0.7,
|
89 |
+
},
|
90 |
+
"preprocessing": {
|
91 |
+
"grayscale": False,
|
92 |
+
"force_resize": True,
|
93 |
+
"resize_max": 1024,
|
94 |
+
"width": 640,
|
95 |
+
"height": 480,
|
96 |
+
"dfactor": 8,
|
97 |
+
},
|
98 |
+
},
|
99 |
+
"d2net-ss": {
|
100 |
+
"output": "feats-d2net-ss-n5000-r1600",
|
101 |
+
"model": {
|
102 |
+
"name": "d2net",
|
103 |
+
"multiscale": False,
|
104 |
+
"max_keypoints": 5000,
|
105 |
+
},
|
106 |
+
"preprocessing": {
|
107 |
+
"grayscale": False,
|
108 |
+
"resize_max": 1600,
|
109 |
+
"force_resize": True,
|
110 |
+
"width": 640,
|
111 |
+
"height": 480,
|
112 |
+
"dfactor": 8,
|
113 |
+
},
|
114 |
+
},
|
115 |
+
"d2net-ms": {
|
116 |
+
"output": "feats-d2net-ms-n5000-r1600",
|
117 |
+
"model": {
|
118 |
+
"name": "d2net",
|
119 |
+
"multiscale": True,
|
120 |
+
"max_keypoints": 5000,
|
121 |
+
},
|
122 |
+
"preprocessing": {
|
123 |
+
"grayscale": False,
|
124 |
+
"resize_max": 1600,
|
125 |
+
"force_resize": True,
|
126 |
+
"width": 640,
|
127 |
+
"height": 480,
|
128 |
+
"dfactor": 8,
|
129 |
+
},
|
130 |
+
},
|
131 |
+
"rord": {
|
132 |
+
"output": "feats-rord-ss-n5000-r1600",
|
133 |
+
"model": {
|
134 |
+
"name": "rord",
|
135 |
+
"multiscale": False,
|
136 |
+
"max_keypoints": 5000,
|
137 |
+
},
|
138 |
+
"preprocessing": {
|
139 |
+
"grayscale": False,
|
140 |
+
"resize_max": 1600,
|
141 |
+
"force_resize": True,
|
142 |
+
"width": 640,
|
143 |
+
"height": 480,
|
144 |
+
"dfactor": 8,
|
145 |
+
},
|
146 |
+
},
|
147 |
+
"rootsift": {
|
148 |
+
"output": "feats-rootsift-n5000-r1600",
|
149 |
+
"model": {
|
150 |
+
"name": "dog",
|
151 |
+
"descriptor": "rootsift",
|
152 |
+
"max_keypoints": 5000,
|
153 |
+
},
|
154 |
+
"preprocessing": {
|
155 |
+
"grayscale": True,
|
156 |
+
"force_resize": True,
|
157 |
+
"resize_max": 1600,
|
158 |
+
"width": 640,
|
159 |
+
"height": 480,
|
160 |
+
"dfactor": 8,
|
161 |
+
},
|
162 |
+
},
|
163 |
+
"sift": {
|
164 |
+
"output": "feats-sift-n5000-r1600",
|
165 |
+
"model": {
|
166 |
+
"name": "sift",
|
167 |
+
"rootsift": True,
|
168 |
+
"max_keypoints": 5000,
|
169 |
+
},
|
170 |
+
"preprocessing": {
|
171 |
+
"grayscale": True,
|
172 |
+
"force_resize": True,
|
173 |
+
"resize_max": 1600,
|
174 |
+
"width": 640,
|
175 |
+
"height": 480,
|
176 |
+
"dfactor": 8,
|
177 |
+
},
|
178 |
+
},
|
179 |
+
"sosnet": {
|
180 |
+
"output": "feats-sosnet-n5000-r1600",
|
181 |
+
"model": {
|
182 |
+
"name": "dog",
|
183 |
+
"descriptor": "sosnet",
|
184 |
+
"max_keypoints": 5000,
|
185 |
+
},
|
186 |
+
"preprocessing": {
|
187 |
+
"grayscale": True,
|
188 |
+
"resize_max": 1600,
|
189 |
+
"force_resize": True,
|
190 |
+
"width": 640,
|
191 |
+
"height": 480,
|
192 |
+
"dfactor": 8,
|
193 |
+
},
|
194 |
+
},
|
195 |
+
"hardnet": {
|
196 |
+
"output": "feats-hardnet-n5000-r1600",
|
197 |
+
"model": {
|
198 |
+
"name": "dog",
|
199 |
+
"descriptor": "hardnet",
|
200 |
+
"max_keypoints": 5000,
|
201 |
+
},
|
202 |
+
"preprocessing": {
|
203 |
+
"grayscale": True,
|
204 |
+
"resize_max": 1600,
|
205 |
+
"force_resize": True,
|
206 |
+
"width": 640,
|
207 |
+
"height": 480,
|
208 |
+
"dfactor": 8,
|
209 |
+
},
|
210 |
+
},
|
211 |
+
"disk": {
|
212 |
+
"output": "feats-disk-n5000-r1600",
|
213 |
+
"model": {
|
214 |
+
"name": "disk",
|
215 |
+
"max_keypoints": 5000,
|
216 |
+
},
|
217 |
+
"preprocessing": {
|
218 |
+
"grayscale": False,
|
219 |
+
"resize_max": 1600,
|
220 |
+
"force_resize": True,
|
221 |
+
"width": 640,
|
222 |
+
"height": 480,
|
223 |
+
"dfactor": 8,
|
224 |
+
},
|
225 |
+
},
|
226 |
+
"xfeat": {
|
227 |
+
"output": "feats-xfeat-n5000-r1600",
|
228 |
+
"model": {
|
229 |
+
"name": "xfeat",
|
230 |
+
"max_keypoints": 5000,
|
231 |
+
},
|
232 |
+
"preprocessing": {
|
233 |
+
"grayscale": False,
|
234 |
+
"resize_max": 1600,
|
235 |
+
"force_resize": True,
|
236 |
+
"width": 640,
|
237 |
+
"height": 480,
|
238 |
+
"dfactor": 8,
|
239 |
+
},
|
240 |
+
},
|
241 |
+
"alike": {
|
242 |
+
"output": "feats-alike-n5000-r1600",
|
243 |
+
"model": {
|
244 |
+
"name": "alike",
|
245 |
+
"max_keypoints": 5000,
|
246 |
+
"use_relu": True,
|
247 |
+
"multiscale": False,
|
248 |
+
"detection_threshold": 0.5,
|
249 |
+
"top_k": -1,
|
250 |
+
"sub_pixel": False,
|
251 |
+
},
|
252 |
+
"preprocessing": {
|
253 |
+
"grayscale": False,
|
254 |
+
"resize_max": 1600,
|
255 |
+
"force_resize": True,
|
256 |
+
"width": 640,
|
257 |
+
"height": 480,
|
258 |
+
"dfactor": 8,
|
259 |
+
},
|
260 |
+
},
|
261 |
+
"lanet": {
|
262 |
+
"output": "feats-lanet-n5000-r1600",
|
263 |
+
"model": {
|
264 |
+
"name": "lanet",
|
265 |
+
"keypoint_threshold": 0.1,
|
266 |
+
"max_keypoints": 5000,
|
267 |
+
},
|
268 |
+
"preprocessing": {
|
269 |
+
"grayscale": False,
|
270 |
+
"resize_max": 1600,
|
271 |
+
"force_resize": True,
|
272 |
+
"width": 640,
|
273 |
+
"height": 480,
|
274 |
+
"dfactor": 8,
|
275 |
+
},
|
276 |
+
},
|
277 |
+
"darkfeat": {
|
278 |
+
"output": "feats-darkfeat-n5000-r1600",
|
279 |
+
"model": {
|
280 |
+
"name": "darkfeat",
|
281 |
+
"max_keypoints": 5000,
|
282 |
+
"reliability_threshold": 0.7,
|
283 |
+
"repetability_threshold": 0.7,
|
284 |
+
},
|
285 |
+
"preprocessing": {
|
286 |
+
"grayscale": False,
|
287 |
+
"force_resize": True,
|
288 |
+
"resize_max": 1600,
|
289 |
+
"width": 640,
|
290 |
+
"height": 480,
|
291 |
+
"dfactor": 8,
|
292 |
+
},
|
293 |
+
},
|
294 |
+
"dedode": {
|
295 |
+
"output": "feats-dedode-n5000-r1600",
|
296 |
+
"model": {
|
297 |
+
"name": "dedode",
|
298 |
+
"max_keypoints": 5000,
|
299 |
+
},
|
300 |
+
"preprocessing": {
|
301 |
+
"grayscale": False,
|
302 |
+
"force_resize": True,
|
303 |
+
"resize_max": 1600,
|
304 |
+
"width": 768,
|
305 |
+
"height": 768,
|
306 |
+
"dfactor": 8,
|
307 |
+
},
|
308 |
+
},
|
309 |
+
"example": {
|
310 |
+
"output": "feats-example-n2000-r1024",
|
311 |
+
"model": {
|
312 |
+
"name": "example",
|
313 |
+
"keypoint_threshold": 0.1,
|
314 |
+
"max_keypoints": 2000,
|
315 |
+
"model_name": "model.pth",
|
316 |
+
},
|
317 |
+
"preprocessing": {
|
318 |
+
"grayscale": False,
|
319 |
+
"force_resize": True,
|
320 |
+
"resize_max": 1024,
|
321 |
+
"width": 768,
|
322 |
+
"height": 768,
|
323 |
+
"dfactor": 8,
|
324 |
+
},
|
325 |
+
},
|
326 |
+
"sfd2": {
|
327 |
+
"output": "feats-sfd2-n4096-r1600",
|
328 |
+
"model": {
|
329 |
+
"name": "sfd2",
|
330 |
+
"max_keypoints": 4096,
|
331 |
+
},
|
332 |
+
"preprocessing": {
|
333 |
+
"grayscale": False,
|
334 |
+
"force_resize": True,
|
335 |
+
"resize_max": 1600,
|
336 |
+
"width": 640,
|
337 |
+
"height": 480,
|
338 |
+
"conf_th": 0.001,
|
339 |
+
"multiscale": False,
|
340 |
+
"scales": [1.0],
|
341 |
+
},
|
342 |
+
},
|
343 |
+
# Global descriptors
|
344 |
+
"dir": {
|
345 |
+
"output": "global-feats-dir",
|
346 |
+
"model": {"name": "dir"},
|
347 |
+
"preprocessing": {"resize_max": 1024},
|
348 |
+
},
|
349 |
+
"netvlad": {
|
350 |
+
"output": "global-feats-netvlad",
|
351 |
+
"model": {"name": "netvlad"},
|
352 |
+
"preprocessing": {"resize_max": 1024},
|
353 |
+
},
|
354 |
+
"openibl": {
|
355 |
+
"output": "global-feats-openibl",
|
356 |
+
"model": {"name": "openibl"},
|
357 |
+
"preprocessing": {"resize_max": 1024},
|
358 |
+
},
|
359 |
+
"cosplace": {
|
360 |
+
"output": "global-feats-cosplace",
|
361 |
+
"model": {"name": "cosplace"},
|
362 |
+
"preprocessing": {"resize_max": 1024},
|
363 |
+
},
|
364 |
+
"eigenplaces": {
|
365 |
+
"output": "global-feats-eigenplaces",
|
366 |
+
"model": {"name": "eigenplaces"},
|
367 |
+
"preprocessing": {"resize_max": 1024},
|
368 |
+
},
|
369 |
+
}
|
370 |
+
|
371 |
+
|
372 |
+
def resize_image(image, size, interp):
|
373 |
+
if interp.startswith("cv2_"):
|
374 |
+
interp = getattr(cv2, "INTER_" + interp[len("cv2_") :].upper())
|
375 |
+
h, w = image.shape[:2]
|
376 |
+
if interp == cv2.INTER_AREA and (w < size[0] or h < size[1]):
|
377 |
+
interp = cv2.INTER_LINEAR
|
378 |
+
resized = cv2.resize(image, size, interpolation=interp)
|
379 |
+
elif interp.startswith("pil_"):
|
380 |
+
interp = getattr(PIL.Image, interp[len("pil_") :].upper())
|
381 |
+
resized = PIL.Image.fromarray(image.astype(np.uint8))
|
382 |
+
resized = resized.resize(size, resample=interp)
|
383 |
+
resized = np.asarray(resized, dtype=image.dtype)
|
384 |
+
else:
|
385 |
+
raise ValueError(f"Unknown interpolation {interp}.")
|
386 |
+
return resized
|
387 |
+
|
388 |
+
|
389 |
+
class ImageDataset(torch.utils.data.Dataset):
|
390 |
+
default_conf = {
|
391 |
+
"globs": ["*.jpg", "*.png", "*.jpeg", "*.JPG", "*.PNG"],
|
392 |
+
"grayscale": False,
|
393 |
+
"resize_max": None,
|
394 |
+
"force_resize": False,
|
395 |
+
"interpolation": "cv2_area", # pil_linear is more accurate but slower
|
396 |
+
}
|
397 |
+
|
398 |
+
def __init__(self, root, conf, paths=None):
|
399 |
+
self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
|
400 |
+
self.root = root
|
401 |
+
|
402 |
+
if paths is None:
|
403 |
+
paths = []
|
404 |
+
for g in conf.globs:
|
405 |
+
paths += list(Path(root).glob("**/" + g))
|
406 |
+
if len(paths) == 0:
|
407 |
+
raise ValueError(f"Could not find any image in root: {root}.")
|
408 |
+
paths = sorted(list(set(paths)))
|
409 |
+
self.names = [i.relative_to(root).as_posix() for i in paths]
|
410 |
+
logger.info(f"Found {len(self.names)} images in root {root}.")
|
411 |
+
else:
|
412 |
+
if isinstance(paths, (Path, str)):
|
413 |
+
self.names = parse_image_lists(paths)
|
414 |
+
elif isinstance(paths, collections.Iterable):
|
415 |
+
self.names = [
|
416 |
+
p.as_posix() if isinstance(p, Path) else p for p in paths
|
417 |
+
]
|
418 |
+
else:
|
419 |
+
raise ValueError(f"Unknown format for path argument {paths}.")
|
420 |
+
|
421 |
+
for name in self.names:
|
422 |
+
if not (root / name).exists():
|
423 |
+
raise ValueError(
|
424 |
+
f"Image {name} does not exists in root: {root}."
|
425 |
+
)
|
426 |
+
|
427 |
+
def __getitem__(self, idx):
|
428 |
+
name = self.names[idx]
|
429 |
+
image = read_image(self.root / name, self.conf.grayscale)
|
430 |
+
image = image.astype(np.float32)
|
431 |
+
size = image.shape[:2][::-1]
|
432 |
+
|
433 |
+
if self.conf.resize_max and (
|
434 |
+
self.conf.force_resize or max(size) > self.conf.resize_max
|
435 |
+
):
|
436 |
+
scale = self.conf.resize_max / max(size)
|
437 |
+
size_new = tuple(int(round(x * scale)) for x in size)
|
438 |
+
image = resize_image(image, size_new, self.conf.interpolation)
|
439 |
+
|
440 |
+
if self.conf.grayscale:
|
441 |
+
image = image[None]
|
442 |
+
else:
|
443 |
+
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
|
444 |
+
image = image / 255.0
|
445 |
+
|
446 |
+
data = {
|
447 |
+
"image": image,
|
448 |
+
"original_size": np.array(size),
|
449 |
+
}
|
450 |
+
return data
|
451 |
+
|
452 |
+
def __len__(self):
|
453 |
+
return len(self.names)
|
454 |
+
|
455 |
+
|
456 |
+
def extract(model, image_0, conf):
|
457 |
+
default_conf = {
|
458 |
+
"grayscale": True,
|
459 |
+
"resize_max": 1024,
|
460 |
+
"dfactor": 8,
|
461 |
+
"cache_images": False,
|
462 |
+
"force_resize": False,
|
463 |
+
"width": 320,
|
464 |
+
"height": 240,
|
465 |
+
"interpolation": "cv2_area",
|
466 |
+
}
|
467 |
+
conf = SimpleNamespace(**{**default_conf, **conf})
|
468 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
469 |
+
|
470 |
+
def preprocess(image: np.ndarray, conf: SimpleNamespace):
|
471 |
+
image = image.astype(np.float32, copy=False)
|
472 |
+
size = image.shape[:2][::-1]
|
473 |
+
scale = np.array([1.0, 1.0])
|
474 |
+
if conf.resize_max:
|
475 |
+
scale = conf.resize_max / max(size)
|
476 |
+
if scale < 1.0:
|
477 |
+
size_new = tuple(int(round(x * scale)) for x in size)
|
478 |
+
image = resize_image(image, size_new, "cv2_area")
|
479 |
+
scale = np.array(size) / np.array(size_new)
|
480 |
+
if conf.force_resize:
|
481 |
+
image = resize_image(image, (conf.width, conf.height), "cv2_area")
|
482 |
+
size_new = (conf.width, conf.height)
|
483 |
+
scale = np.array(size) / np.array(size_new)
|
484 |
+
if conf.grayscale:
|
485 |
+
assert image.ndim == 2, image.shape
|
486 |
+
image = image[None]
|
487 |
+
else:
|
488 |
+
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
|
489 |
+
image = torch.from_numpy(image / 255.0).float()
|
490 |
+
|
491 |
+
# assure that the size is divisible by dfactor
|
492 |
+
size_new = tuple(
|
493 |
+
map(
|
494 |
+
lambda x: int(x // conf.dfactor * conf.dfactor),
|
495 |
+
image.shape[-2:],
|
496 |
+
)
|
497 |
+
)
|
498 |
+
image = F.resize(image, size=size_new, antialias=True)
|
499 |
+
input_ = image.to(device, non_blocking=True)[None]
|
500 |
+
data = {
|
501 |
+
"image": input_,
|
502 |
+
"image_orig": image_0,
|
503 |
+
"original_size": np.array(size),
|
504 |
+
"size": np.array(image.shape[1:][::-1]),
|
505 |
+
}
|
506 |
+
return data
|
507 |
+
|
508 |
+
# convert to grayscale if needed
|
509 |
+
if len(image_0.shape) == 3 and conf.grayscale:
|
510 |
+
image0 = cv2.cvtColor(image_0, cv2.COLOR_RGB2GRAY)
|
511 |
+
else:
|
512 |
+
image0 = image_0
|
513 |
+
# comment following lines, image is always RGB mode
|
514 |
+
# if not conf.grayscale and len(image_0.shape) == 3:
|
515 |
+
# image0 = image_0[:, :, ::-1] # BGR to RGB
|
516 |
+
data = preprocess(image0, conf)
|
517 |
+
pred = model({"image": data["image"]})
|
518 |
+
pred["image_size"] = data["original_size"]
|
519 |
+
pred = {**pred, **data}
|
520 |
+
return pred
|
521 |
+
|
522 |
+
|
523 |
+
@torch.no_grad()
|
524 |
+
def main(
|
525 |
+
conf: Dict,
|
526 |
+
image_dir: Path,
|
527 |
+
export_dir: Optional[Path] = None,
|
528 |
+
as_half: bool = True,
|
529 |
+
image_list: Optional[Union[Path, List[str]]] = None,
|
530 |
+
feature_path: Optional[Path] = None,
|
531 |
+
overwrite: bool = False,
|
532 |
+
) -> Path:
|
533 |
+
logger.info(
|
534 |
+
"Extracting local features with configuration:"
|
535 |
+
f"\n{pprint.pformat(conf)}"
|
536 |
+
)
|
537 |
+
|
538 |
+
dataset = ImageDataset(image_dir, conf["preprocessing"], image_list)
|
539 |
+
if feature_path is None:
|
540 |
+
feature_path = Path(export_dir, conf["output"] + ".h5")
|
541 |
+
feature_path.parent.mkdir(exist_ok=True, parents=True)
|
542 |
+
skip_names = set(
|
543 |
+
list_h5_names(feature_path)
|
544 |
+
if feature_path.exists() and not overwrite
|
545 |
+
else ()
|
546 |
+
)
|
547 |
+
dataset.names = [n for n in dataset.names if n not in skip_names]
|
548 |
+
if len(dataset.names) == 0:
|
549 |
+
logger.info("Skipping the extraction.")
|
550 |
+
return feature_path
|
551 |
+
|
552 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
553 |
+
Model = dynamic_load(extractors, conf["model"]["name"])
|
554 |
+
model = Model(conf["model"]).eval().to(device)
|
555 |
+
|
556 |
+
loader = torch.utils.data.DataLoader(
|
557 |
+
dataset, num_workers=1, shuffle=False, pin_memory=True
|
558 |
+
)
|
559 |
+
for idx, data in enumerate(tqdm(loader)):
|
560 |
+
name = dataset.names[idx]
|
561 |
+
pred = model({"image": data["image"].to(device, non_blocking=True)})
|
562 |
+
pred = {k: v[0].cpu().numpy() for k, v in pred.items()}
|
563 |
+
|
564 |
+
pred["image_size"] = original_size = data["original_size"][0].numpy()
|
565 |
+
if "keypoints" in pred:
|
566 |
+
size = np.array(data["image"].shape[-2:][::-1])
|
567 |
+
scales = (original_size / size).astype(np.float32)
|
568 |
+
pred["keypoints"] = (pred["keypoints"] + 0.5) * scales[None] - 0.5
|
569 |
+
if "scales" in pred:
|
570 |
+
pred["scales"] *= scales.mean()
|
571 |
+
# add keypoint uncertainties scaled to the original resolution
|
572 |
+
uncertainty = getattr(model, "detection_noise", 1) * scales.mean()
|
573 |
+
|
574 |
+
if as_half:
|
575 |
+
for k in pred:
|
576 |
+
dt = pred[k].dtype
|
577 |
+
if (dt == np.float32) and (dt != np.float16):
|
578 |
+
pred[k] = pred[k].astype(np.float16)
|
579 |
+
|
580 |
+
with h5py.File(str(feature_path), "a", libver="latest") as fd:
|
581 |
+
try:
|
582 |
+
if name in fd:
|
583 |
+
del fd[name]
|
584 |
+
grp = fd.create_group(name)
|
585 |
+
for k, v in pred.items():
|
586 |
+
grp.create_dataset(k, data=v)
|
587 |
+
if "keypoints" in pred:
|
588 |
+
grp["keypoints"].attrs["uncertainty"] = uncertainty
|
589 |
+
except OSError as error:
|
590 |
+
if "No space left on device" in error.args[0]:
|
591 |
+
logger.error(
|
592 |
+
"Out of disk space: storing features on disk can take "
|
593 |
+
"significant space, did you enable the as_half flag?"
|
594 |
+
)
|
595 |
+
del grp, fd[name]
|
596 |
+
raise error
|
597 |
+
|
598 |
+
del pred
|
599 |
+
|
600 |
+
logger.info("Finished exporting features.")
|
601 |
+
return feature_path
|
602 |
+
|
603 |
+
|
604 |
+
if __name__ == "__main__":
|
605 |
+
parser = argparse.ArgumentParser()
|
606 |
+
parser.add_argument("--image_dir", type=Path, required=True)
|
607 |
+
parser.add_argument("--export_dir", type=Path, required=True)
|
608 |
+
parser.add_argument(
|
609 |
+
"--conf",
|
610 |
+
type=str,
|
611 |
+
default="superpoint_aachen",
|
612 |
+
choices=list(confs.keys()),
|
613 |
+
)
|
614 |
+
parser.add_argument("--as_half", action="store_true")
|
615 |
+
parser.add_argument("--image_list", type=Path)
|
616 |
+
parser.add_argument("--feature_path", type=Path)
|
617 |
+
args = parser.parse_args()
|
618 |
+
main(confs[args.conf], args.image_dir, args.export_dir, args.as_half)
|
hloc/extractors/__init__.py
ADDED
File without changes
|
hloc/extractors/alike.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from hloc import logger
|
7 |
+
|
8 |
+
from ..utils.base_model import BaseModel
|
9 |
+
|
10 |
+
alike_path = Path(__file__).parent / "../../third_party/ALIKE"
|
11 |
+
sys.path.append(str(alike_path))
|
12 |
+
from alike import ALike as Alike_
|
13 |
+
from alike import configs
|
14 |
+
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
|
17 |
+
|
18 |
+
class Alike(BaseModel):
|
19 |
+
default_conf = {
|
20 |
+
"model_name": "alike-t", # 'alike-t', 'alike-s', 'alike-n', 'alike-l'
|
21 |
+
"use_relu": True,
|
22 |
+
"multiscale": False,
|
23 |
+
"max_keypoints": 1000,
|
24 |
+
"detection_threshold": 0.5,
|
25 |
+
"top_k": -1,
|
26 |
+
"sub_pixel": False,
|
27 |
+
}
|
28 |
+
|
29 |
+
required_inputs = ["image"]
|
30 |
+
|
31 |
+
def _init(self, conf):
|
32 |
+
self.net = Alike_(
|
33 |
+
**configs[conf["model_name"]],
|
34 |
+
device=device,
|
35 |
+
top_k=conf["top_k"],
|
36 |
+
scores_th=conf["detection_threshold"],
|
37 |
+
n_limit=conf["max_keypoints"],
|
38 |
+
)
|
39 |
+
logger.info("Load Alike model done.")
|
40 |
+
|
41 |
+
def _forward(self, data):
|
42 |
+
image = data["image"]
|
43 |
+
image = image.permute(0, 2, 3, 1).squeeze()
|
44 |
+
image = image.cpu().numpy() * 255.0
|
45 |
+
pred = self.net(image, sub_pixel=self.conf["sub_pixel"])
|
46 |
+
|
47 |
+
keypoints = pred["keypoints"]
|
48 |
+
descriptors = pred["descriptors"]
|
49 |
+
scores = pred["scores"]
|
50 |
+
|
51 |
+
return {
|
52 |
+
"keypoints": torch.from_numpy(keypoints)[None],
|
53 |
+
"scores": torch.from_numpy(scores)[None],
|
54 |
+
"descriptors": torch.from_numpy(descriptors.T)[None],
|
55 |
+
}
|
hloc/extractors/cosplace.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Code for loading models trained with CosPlace as a global features extractor
|
3 |
+
for geolocalization through image retrieval.
|
4 |
+
Multiple models are available with different backbones. Below is a summary of
|
5 |
+
models available (backbone : list of available output descriptors
|
6 |
+
dimensionality). For example you can use a model based on a ResNet50 with
|
7 |
+
descriptors dimensionality 1024.
|
8 |
+
ResNet18: [32, 64, 128, 256, 512]
|
9 |
+
ResNet50: [32, 64, 128, 256, 512, 1024, 2048]
|
10 |
+
ResNet101: [32, 64, 128, 256, 512, 1024, 2048]
|
11 |
+
ResNet152: [32, 64, 128, 256, 512, 1024, 2048]
|
12 |
+
VGG16: [ 64, 128, 256, 512]
|
13 |
+
|
14 |
+
CosPlace paper: https://arxiv.org/abs/2204.02287
|
15 |
+
"""
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torchvision.transforms as tvf
|
19 |
+
|
20 |
+
from ..utils.base_model import BaseModel
|
21 |
+
|
22 |
+
|
23 |
+
class CosPlace(BaseModel):
|
24 |
+
default_conf = {"backbone": "ResNet50", "fc_output_dim": 2048}
|
25 |
+
required_inputs = ["image"]
|
26 |
+
|
27 |
+
def _init(self, conf):
|
28 |
+
self.net = torch.hub.load(
|
29 |
+
"gmberton/CosPlace",
|
30 |
+
"get_trained_model",
|
31 |
+
backbone=conf["backbone"],
|
32 |
+
fc_output_dim=conf["fc_output_dim"],
|
33 |
+
).eval()
|
34 |
+
|
35 |
+
mean = [0.485, 0.456, 0.406]
|
36 |
+
std = [0.229, 0.224, 0.225]
|
37 |
+
self.norm_rgb = tvf.Normalize(mean=mean, std=std)
|
38 |
+
|
39 |
+
def _forward(self, data):
|
40 |
+
image = self.norm_rgb(data["image"])
|
41 |
+
desc = self.net(image)
|
42 |
+
return {
|
43 |
+
"global_descriptor": desc,
|
44 |
+
}
|
hloc/extractors/d2net.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import sys
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from hloc import logger
|
8 |
+
|
9 |
+
from ..utils.base_model import BaseModel
|
10 |
+
|
11 |
+
d2net_path = Path(__file__).parent / "../../third_party/d2net"
|
12 |
+
sys.path.append(str(d2net_path))
|
13 |
+
from lib.model_test import D2Net as _D2Net
|
14 |
+
from lib.pyramid import process_multiscale
|
15 |
+
|
16 |
+
|
17 |
+
class D2Net(BaseModel):
|
18 |
+
default_conf = {
|
19 |
+
"model_name": "d2_tf.pth",
|
20 |
+
"checkpoint_dir": d2net_path / "models",
|
21 |
+
"use_relu": True,
|
22 |
+
"multiscale": False,
|
23 |
+
"max_keypoints": 1024,
|
24 |
+
}
|
25 |
+
required_inputs = ["image"]
|
26 |
+
|
27 |
+
def _init(self, conf):
|
28 |
+
model_file = conf["checkpoint_dir"] / conf["model_name"]
|
29 |
+
if not model_file.exists():
|
30 |
+
model_file.parent.mkdir(exist_ok=True)
|
31 |
+
cmd = [
|
32 |
+
"wget",
|
33 |
+
"--quiet",
|
34 |
+
"https://dusmanu.com/files/d2-net/" + conf["model_name"],
|
35 |
+
"-O",
|
36 |
+
str(model_file),
|
37 |
+
]
|
38 |
+
subprocess.run(cmd, check=True)
|
39 |
+
|
40 |
+
self.net = _D2Net(
|
41 |
+
model_file=model_file, use_relu=conf["use_relu"], use_cuda=False
|
42 |
+
)
|
43 |
+
logger.info("Load D2Net model done.")
|
44 |
+
|
45 |
+
def _forward(self, data):
|
46 |
+
image = data["image"]
|
47 |
+
image = image.flip(1) # RGB -> BGR
|
48 |
+
norm = image.new_tensor([103.939, 116.779, 123.68])
|
49 |
+
image = image * 255 - norm.view(1, 3, 1, 1) # caffe normalization
|
50 |
+
|
51 |
+
if self.conf["multiscale"]:
|
52 |
+
keypoints, scores, descriptors = process_multiscale(image, self.net)
|
53 |
+
else:
|
54 |
+
keypoints, scores, descriptors = process_multiscale(
|
55 |
+
image, self.net, scales=[1]
|
56 |
+
)
|
57 |
+
keypoints = keypoints[:, [1, 0]] # (x, y) and remove the scale
|
58 |
+
|
59 |
+
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :]
|
60 |
+
keypoints = keypoints[idxs, :2]
|
61 |
+
descriptors = descriptors[idxs]
|
62 |
+
scores = scores[idxs]
|
63 |
+
|
64 |
+
return {
|
65 |
+
"keypoints": torch.from_numpy(keypoints)[None],
|
66 |
+
"scores": torch.from_numpy(scores)[None],
|
67 |
+
"descriptors": torch.from_numpy(descriptors.T)[None],
|
68 |
+
}
|
hloc/extractors/darkfeat.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import sys
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
from hloc import logger
|
6 |
+
|
7 |
+
from ..utils.base_model import BaseModel
|
8 |
+
|
9 |
+
darkfeat_path = Path(__file__).parent / "../../third_party/DarkFeat"
|
10 |
+
sys.path.append(str(darkfeat_path))
|
11 |
+
from darkfeat import DarkFeat as DarkFeat_
|
12 |
+
|
13 |
+
|
14 |
+
class DarkFeat(BaseModel):
|
15 |
+
default_conf = {
|
16 |
+
"model_name": "DarkFeat.pth",
|
17 |
+
"max_keypoints": 1000,
|
18 |
+
"detection_threshold": 0.5,
|
19 |
+
"sub_pixel": False,
|
20 |
+
}
|
21 |
+
weight_urls = {
|
22 |
+
"DarkFeat.pth": "https://drive.google.com/uc?id=1Thl6m8NcmQ7zSAF-1_xaFs3F4H8UU6HX&confirm=t",
|
23 |
+
}
|
24 |
+
proxy = "http://localhost:1080"
|
25 |
+
required_inputs = ["image"]
|
26 |
+
|
27 |
+
def _init(self, conf):
|
28 |
+
model_path = darkfeat_path / "checkpoints" / conf["model_name"]
|
29 |
+
link = self.weight_urls[conf["model_name"]]
|
30 |
+
if not model_path.exists():
|
31 |
+
model_path.parent.mkdir(exist_ok=True)
|
32 |
+
cmd_wo_proxy = ["gdown", link, "-O", str(model_path)]
|
33 |
+
cmd = ["gdown", link, "-O", str(model_path), "--proxy", self.proxy]
|
34 |
+
logger.info(
|
35 |
+
f"Downloading the DarkFeat model with `{cmd_wo_proxy}`."
|
36 |
+
)
|
37 |
+
try:
|
38 |
+
subprocess.run(cmd_wo_proxy, check=True)
|
39 |
+
except subprocess.CalledProcessError as e:
|
40 |
+
logger.info(f"Downloading the model failed `{e}`.")
|
41 |
+
logger.info(f"Downloading the DarkFeat model with `{cmd}`.")
|
42 |
+
try:
|
43 |
+
subprocess.run(cmd, check=True)
|
44 |
+
except subprocess.CalledProcessError as e:
|
45 |
+
logger.error("Failed to download the DarkFeat model.")
|
46 |
+
raise e
|
47 |
+
|
48 |
+
self.net = DarkFeat_(model_path)
|
49 |
+
logger.info("Load DarkFeat model done.")
|
50 |
+
|
51 |
+
def _forward(self, data):
|
52 |
+
pred = self.net({"image": data["image"]})
|
53 |
+
keypoints = pred["keypoints"]
|
54 |
+
descriptors = pred["descriptors"]
|
55 |
+
scores = pred["scores"]
|
56 |
+
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :]
|
57 |
+
keypoints = keypoints[idxs, :2]
|
58 |
+
descriptors = descriptors[:, idxs]
|
59 |
+
scores = scores[idxs]
|
60 |
+
return {
|
61 |
+
"keypoints": keypoints[None], # 1 x N x 2
|
62 |
+
"scores": scores[None], # 1 x N
|
63 |
+
"descriptors": descriptors[None], # 1 x 128 x N
|
64 |
+
}
|
hloc/extractors/dedode.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import sys
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
|
8 |
+
from hloc import logger
|
9 |
+
|
10 |
+
from ..utils.base_model import BaseModel
|
11 |
+
|
12 |
+
dedode_path = Path(__file__).parent / "../../third_party/DeDoDe"
|
13 |
+
sys.path.append(str(dedode_path))
|
14 |
+
|
15 |
+
from DeDoDe import dedode_descriptor_B, dedode_detector_L
|
16 |
+
from DeDoDe.utils import to_pixel_coords
|
17 |
+
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
|
21 |
+
class DeDoDe(BaseModel):
|
22 |
+
default_conf = {
|
23 |
+
"name": "dedode",
|
24 |
+
"model_detector_name": "dedode_detector_L.pth",
|
25 |
+
"model_descriptor_name": "dedode_descriptor_B.pth",
|
26 |
+
"max_keypoints": 2000,
|
27 |
+
"match_threshold": 0.2,
|
28 |
+
"dense": False, # Now fixed to be false
|
29 |
+
}
|
30 |
+
required_inputs = [
|
31 |
+
"image",
|
32 |
+
]
|
33 |
+
weight_urls = {
|
34 |
+
"dedode_detector_L.pth": "https://github.com/Parskatt/DeDoDe/releases/download/dedode_pretrained_models/dedode_detector_L.pth",
|
35 |
+
"dedode_descriptor_B.pth": "https://github.com/Parskatt/DeDoDe/releases/download/dedode_pretrained_models/dedode_descriptor_B.pth",
|
36 |
+
}
|
37 |
+
|
38 |
+
# Initialize the line matcher
|
39 |
+
def _init(self, conf):
|
40 |
+
model_detector_path = (
|
41 |
+
dedode_path / "pretrained" / conf["model_detector_name"]
|
42 |
+
)
|
43 |
+
model_descriptor_path = (
|
44 |
+
dedode_path / "pretrained" / conf["model_descriptor_name"]
|
45 |
+
)
|
46 |
+
|
47 |
+
self.normalizer = transforms.Normalize(
|
48 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
49 |
+
)
|
50 |
+
# Download the model.
|
51 |
+
if not model_detector_path.exists():
|
52 |
+
model_detector_path.parent.mkdir(exist_ok=True)
|
53 |
+
link = self.weight_urls[conf["model_detector_name"]]
|
54 |
+
cmd = ["wget", "--quiet", link, "-O", str(model_detector_path)]
|
55 |
+
logger.info(f"Downloading the DeDoDe detector model with `{cmd}`.")
|
56 |
+
subprocess.run(cmd, check=True)
|
57 |
+
|
58 |
+
if not model_descriptor_path.exists():
|
59 |
+
model_descriptor_path.parent.mkdir(exist_ok=True)
|
60 |
+
link = self.weight_urls[conf["model_descriptor_name"]]
|
61 |
+
cmd = ["wget", "--quiet", link, "-O", str(model_descriptor_path)]
|
62 |
+
logger.info(
|
63 |
+
f"Downloading the DeDoDe descriptor model with `{cmd}`."
|
64 |
+
)
|
65 |
+
subprocess.run(cmd, check=True)
|
66 |
+
|
67 |
+
# load the model
|
68 |
+
weights_detector = torch.load(model_detector_path, map_location="cpu")
|
69 |
+
weights_descriptor = torch.load(
|
70 |
+
model_descriptor_path, map_location="cpu"
|
71 |
+
)
|
72 |
+
self.detector = dedode_detector_L(
|
73 |
+
weights=weights_detector, device=device
|
74 |
+
)
|
75 |
+
self.descriptor = dedode_descriptor_B(
|
76 |
+
weights=weights_descriptor, device=device
|
77 |
+
)
|
78 |
+
logger.info("Load DeDoDe model done.")
|
79 |
+
|
80 |
+
def _forward(self, data):
|
81 |
+
"""
|
82 |
+
data: dict, keys: {'image0','image1'}
|
83 |
+
image shape: N x C x H x W
|
84 |
+
color mode: RGB
|
85 |
+
"""
|
86 |
+
img0 = self.normalizer(data["image"].squeeze()).float()[None]
|
87 |
+
H_A, W_A = img0.shape[2:]
|
88 |
+
|
89 |
+
# step 1: detect keypoints
|
90 |
+
detections_A = None
|
91 |
+
batch_A = {"image": img0}
|
92 |
+
if self.conf["dense"]:
|
93 |
+
detections_A = self.detector.detect_dense(batch_A)
|
94 |
+
else:
|
95 |
+
detections_A = self.detector.detect(
|
96 |
+
batch_A, num_keypoints=self.conf["max_keypoints"]
|
97 |
+
)
|
98 |
+
keypoints_A, P_A = detections_A["keypoints"], detections_A["confidence"]
|
99 |
+
|
100 |
+
# step 2: describe keypoints
|
101 |
+
# dim: 1 x N x 256
|
102 |
+
description_A = self.descriptor.describe_keypoints(
|
103 |
+
batch_A, keypoints_A
|
104 |
+
)["descriptions"]
|
105 |
+
keypoints_A = to_pixel_coords(keypoints_A, H_A, W_A)
|
106 |
+
|
107 |
+
return {
|
108 |
+
"keypoints": keypoints_A, # 1 x N x 2
|
109 |
+
"descriptors": description_A.permute(0, 2, 1), # 1 x 256 x N
|
110 |
+
"scores": P_A, # 1 x N
|
111 |
+
}
|
hloc/extractors/dir.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from pathlib import Path
|
4 |
+
from zipfile import ZipFile
|
5 |
+
|
6 |
+
import gdown
|
7 |
+
import sklearn
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from ..utils.base_model import BaseModel
|
11 |
+
|
12 |
+
sys.path.append(
|
13 |
+
str(Path(__file__).parent / "../../third_party/deep-image-retrieval")
|
14 |
+
)
|
15 |
+
os.environ["DB_ROOT"] = "" # required by dirtorch
|
16 |
+
|
17 |
+
from dirtorch.extract_features import load_model # noqa: E402
|
18 |
+
from dirtorch.utils import common # noqa: E402
|
19 |
+
|
20 |
+
# The DIR model checkpoints (pickle files) include sklearn.decomposition.pca,
|
21 |
+
# which has been deprecated in sklearn v0.24
|
22 |
+
# and must be explicitly imported with `from sklearn.decomposition import PCA`.
|
23 |
+
# This is a hacky workaround to maintain forward compatibility.
|
24 |
+
sys.modules["sklearn.decomposition.pca"] = sklearn.decomposition._pca
|
25 |
+
|
26 |
+
|
27 |
+
class DIR(BaseModel):
|
28 |
+
default_conf = {
|
29 |
+
"model_name": "Resnet-101-AP-GeM",
|
30 |
+
"whiten_name": "Landmarks_clean",
|
31 |
+
"whiten_params": {
|
32 |
+
"whitenp": 0.25,
|
33 |
+
"whitenv": None,
|
34 |
+
"whitenm": 1.0,
|
35 |
+
},
|
36 |
+
"pooling": "gem",
|
37 |
+
"gemp": 3,
|
38 |
+
}
|
39 |
+
required_inputs = ["image"]
|
40 |
+
|
41 |
+
dir_models = {
|
42 |
+
"Resnet-101-AP-GeM": "https://docs.google.com/uc?export=download&id=1UWJGDuHtzaQdFhSMojoYVQjmCXhIwVvy",
|
43 |
+
}
|
44 |
+
|
45 |
+
def _init(self, conf):
|
46 |
+
checkpoint = Path(
|
47 |
+
torch.hub.get_dir(), "dirtorch", conf["model_name"] + ".pt"
|
48 |
+
)
|
49 |
+
if not checkpoint.exists():
|
50 |
+
checkpoint.parent.mkdir(exist_ok=True, parents=True)
|
51 |
+
link = self.dir_models[conf["model_name"]]
|
52 |
+
gdown.download(str(link), str(checkpoint) + ".zip", quiet=False)
|
53 |
+
zf = ZipFile(str(checkpoint) + ".zip", "r")
|
54 |
+
zf.extractall(checkpoint.parent)
|
55 |
+
zf.close()
|
56 |
+
os.remove(str(checkpoint) + ".zip")
|
57 |
+
|
58 |
+
self.net = load_model(checkpoint, False) # first load on CPU
|
59 |
+
if conf["whiten_name"]:
|
60 |
+
assert conf["whiten_name"] in self.net.pca
|
61 |
+
|
62 |
+
def _forward(self, data):
|
63 |
+
image = data["image"]
|
64 |
+
assert image.shape[1] == 3
|
65 |
+
mean = self.net.preprocess["mean"]
|
66 |
+
std = self.net.preprocess["std"]
|
67 |
+
image = image - image.new_tensor(mean)[:, None, None]
|
68 |
+
image = image / image.new_tensor(std)[:, None, None]
|
69 |
+
|
70 |
+
desc = self.net(image)
|
71 |
+
desc = desc.unsqueeze(0) # batch dimension
|
72 |
+
if self.conf["whiten_name"]:
|
73 |
+
pca = self.net.pca[self.conf["whiten_name"]]
|
74 |
+
desc = common.whiten_features(
|
75 |
+
desc.cpu().numpy(), pca, **self.conf["whiten_params"]
|
76 |
+
)
|
77 |
+
desc = torch.from_numpy(desc)
|
78 |
+
|
79 |
+
return {
|
80 |
+
"global_descriptor": desc,
|
81 |
+
}
|
hloc/extractors/disk.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import kornia
|
2 |
+
|
3 |
+
from hloc import logger
|
4 |
+
|
5 |
+
from ..utils.base_model import BaseModel
|
6 |
+
|
7 |
+
|
8 |
+
class DISK(BaseModel):
|
9 |
+
default_conf = {
|
10 |
+
"weights": "depth",
|
11 |
+
"max_keypoints": None,
|
12 |
+
"nms_window_size": 5,
|
13 |
+
"detection_threshold": 0.0,
|
14 |
+
"pad_if_not_divisible": True,
|
15 |
+
}
|
16 |
+
required_inputs = ["image"]
|
17 |
+
|
18 |
+
def _init(self, conf):
|
19 |
+
self.model = kornia.feature.DISK.from_pretrained(conf["weights"])
|
20 |
+
logger.info("Load DISK model done.")
|
21 |
+
|
22 |
+
def _forward(self, data):
|
23 |
+
image = data["image"]
|
24 |
+
features = self.model(
|
25 |
+
image,
|
26 |
+
n=self.conf["max_keypoints"],
|
27 |
+
window_size=self.conf["nms_window_size"],
|
28 |
+
score_threshold=self.conf["detection_threshold"],
|
29 |
+
pad_if_not_divisible=self.conf["pad_if_not_divisible"],
|
30 |
+
)
|
31 |
+
return {
|
32 |
+
"keypoints": [f.keypoints for f in features][0][None],
|
33 |
+
"scores": [f.detection_scores for f in features][0][None],
|
34 |
+
"descriptors": [f.descriptors.t() for f in features][0][None],
|
35 |
+
}
|
hloc/extractors/dog.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import kornia
|
2 |
+
import numpy as np
|
3 |
+
import pycolmap
|
4 |
+
import torch
|
5 |
+
from kornia.feature.laf import (
|
6 |
+
extract_patches_from_pyramid,
|
7 |
+
laf_from_center_scale_ori,
|
8 |
+
)
|
9 |
+
|
10 |
+
from ..utils.base_model import BaseModel
|
11 |
+
|
12 |
+
EPS = 1e-6
|
13 |
+
|
14 |
+
|
15 |
+
def sift_to_rootsift(x):
|
16 |
+
x = x / (np.linalg.norm(x, ord=1, axis=-1, keepdims=True) + EPS)
|
17 |
+
x = np.sqrt(x.clip(min=EPS))
|
18 |
+
x = x / (np.linalg.norm(x, axis=-1, keepdims=True) + EPS)
|
19 |
+
return x
|
20 |
+
|
21 |
+
|
22 |
+
class DoG(BaseModel):
|
23 |
+
default_conf = {
|
24 |
+
"options": {
|
25 |
+
"first_octave": 0,
|
26 |
+
"peak_threshold": 0.01,
|
27 |
+
},
|
28 |
+
"descriptor": "rootsift",
|
29 |
+
"max_keypoints": -1,
|
30 |
+
"patch_size": 32,
|
31 |
+
"mr_size": 12,
|
32 |
+
}
|
33 |
+
required_inputs = ["image"]
|
34 |
+
detection_noise = 1.0
|
35 |
+
max_batch_size = 1024
|
36 |
+
|
37 |
+
def _init(self, conf):
|
38 |
+
if conf["descriptor"] == "sosnet":
|
39 |
+
self.describe = kornia.feature.SOSNet(pretrained=True)
|
40 |
+
elif conf["descriptor"] == "hardnet":
|
41 |
+
self.describe = kornia.feature.HardNet(pretrained=True)
|
42 |
+
elif conf["descriptor"] not in ["sift", "rootsift"]:
|
43 |
+
raise ValueError(f'Unknown descriptor: {conf["descriptor"]}')
|
44 |
+
|
45 |
+
self.sift = None # lazily instantiated on the first image
|
46 |
+
self.dummy_param = torch.nn.Parameter(torch.empty(0))
|
47 |
+
self.device = torch.device("cpu")
|
48 |
+
|
49 |
+
def to(self, *args, **kwargs):
|
50 |
+
device = kwargs.get("device")
|
51 |
+
if device is None:
|
52 |
+
match = [a for a in args if isinstance(a, (torch.device, str))]
|
53 |
+
if len(match) > 0:
|
54 |
+
device = match[0]
|
55 |
+
if device is not None:
|
56 |
+
self.device = torch.device(device)
|
57 |
+
return super().to(*args, **kwargs)
|
58 |
+
|
59 |
+
def _forward(self, data):
|
60 |
+
image = data["image"]
|
61 |
+
image_np = image.cpu().numpy()[0, 0]
|
62 |
+
assert image.shape[1] == 1
|
63 |
+
assert image_np.min() >= -EPS and image_np.max() <= 1 + EPS
|
64 |
+
|
65 |
+
if self.sift is None:
|
66 |
+
device = self.dummy_param.device
|
67 |
+
use_gpu = pycolmap.has_cuda and device.type == "cuda"
|
68 |
+
options = {**self.conf["options"]}
|
69 |
+
if self.conf["descriptor"] == "rootsift":
|
70 |
+
options["normalization"] = pycolmap.Normalization.L1_ROOT
|
71 |
+
else:
|
72 |
+
options["normalization"] = pycolmap.Normalization.L2
|
73 |
+
self.sift = pycolmap.Sift(
|
74 |
+
options=pycolmap.SiftExtractionOptions(options),
|
75 |
+
device=getattr(pycolmap.Device, "cuda" if use_gpu else "cpu"),
|
76 |
+
)
|
77 |
+
keypoints, descriptors = self.sift.extract(image_np)
|
78 |
+
scales = keypoints[:, 2]
|
79 |
+
oris = np.rad2deg(keypoints[:, 3])
|
80 |
+
|
81 |
+
if self.conf["descriptor"] in ["sift", "rootsift"]:
|
82 |
+
# We still renormalize because COLMAP does not normalize well,
|
83 |
+
# maybe due to numerical errors
|
84 |
+
if self.conf["descriptor"] == "rootsift":
|
85 |
+
descriptors = sift_to_rootsift(descriptors)
|
86 |
+
descriptors = torch.from_numpy(descriptors)
|
87 |
+
elif self.conf["descriptor"] in ("sosnet", "hardnet"):
|
88 |
+
center = keypoints[:, :2] + 0.5
|
89 |
+
laf_scale = scales * self.conf["mr_size"] / 2
|
90 |
+
laf_ori = -oris
|
91 |
+
lafs = laf_from_center_scale_ori(
|
92 |
+
torch.from_numpy(center)[None],
|
93 |
+
torch.from_numpy(laf_scale)[None, :, None, None],
|
94 |
+
torch.from_numpy(laf_ori)[None, :, None],
|
95 |
+
).to(image.device)
|
96 |
+
patches = extract_patches_from_pyramid(
|
97 |
+
image, lafs, PS=self.conf["patch_size"]
|
98 |
+
)[0]
|
99 |
+
descriptors = patches.new_zeros((len(patches), 128))
|
100 |
+
if len(patches) > 0:
|
101 |
+
for start_idx in range(0, len(patches), self.max_batch_size):
|
102 |
+
end_idx = min(len(patches), start_idx + self.max_batch_size)
|
103 |
+
descriptors[start_idx:end_idx] = self.describe(
|
104 |
+
patches[start_idx:end_idx]
|
105 |
+
)
|
106 |
+
else:
|
107 |
+
raise ValueError(f'Unknown descriptor: {self.conf["descriptor"]}')
|
108 |
+
|
109 |
+
keypoints = torch.from_numpy(keypoints[:, :2]) # keep only x, y
|
110 |
+
scales = torch.from_numpy(scales)
|
111 |
+
oris = torch.from_numpy(oris)
|
112 |
+
scores = keypoints.new_zeros(len(keypoints)) # no scores for SIFT yet
|
113 |
+
|
114 |
+
if self.conf["max_keypoints"] != -1:
|
115 |
+
# TODO: check that the scores from PyCOLMAP are 100% correct,
|
116 |
+
# follow https://github.com/mihaidusmanu/pycolmap/issues/8
|
117 |
+
max_number = (
|
118 |
+
scores.shape[0]
|
119 |
+
if scores.shape[0] < self.conf["max_keypoints"]
|
120 |
+
else self.conf["max_keypoints"]
|
121 |
+
)
|
122 |
+
values, indices = torch.topk(scores, max_number)
|
123 |
+
keypoints = keypoints[indices]
|
124 |
+
scales = scales[indices]
|
125 |
+
oris = oris[indices]
|
126 |
+
scores = scores[indices]
|
127 |
+
descriptors = descriptors[indices]
|
128 |
+
|
129 |
+
return {
|
130 |
+
"keypoints": keypoints[None],
|
131 |
+
"scales": scales[None],
|
132 |
+
"oris": oris[None],
|
133 |
+
"scores": scores[None],
|
134 |
+
"descriptors": descriptors.T[None],
|
135 |
+
}
|
hloc/extractors/eigenplaces.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Code for loading models trained with EigenPlaces (or CosPlace) as a global
|
3 |
+
features extractor for geolocalization through image retrieval.
|
4 |
+
Multiple models are available with different backbones. Below is a summary of
|
5 |
+
models available (backbone : list of available output descriptors
|
6 |
+
dimensionality). For example you can use a model based on a ResNet50 with
|
7 |
+
descriptors dimensionality 1024.
|
8 |
+
|
9 |
+
EigenPlaces trained models:
|
10 |
+
ResNet18: [ 256, 512]
|
11 |
+
ResNet50: [128, 256, 512, 2048]
|
12 |
+
ResNet101: [128, 256, 512, 2048]
|
13 |
+
VGG16: [ 512]
|
14 |
+
|
15 |
+
CosPlace trained models:
|
16 |
+
ResNet18: [32, 64, 128, 256, 512]
|
17 |
+
ResNet50: [32, 64, 128, 256, 512, 1024, 2048]
|
18 |
+
ResNet101: [32, 64, 128, 256, 512, 1024, 2048]
|
19 |
+
ResNet152: [32, 64, 128, 256, 512, 1024, 2048]
|
20 |
+
VGG16: [ 64, 128, 256, 512]
|
21 |
+
|
22 |
+
EigenPlaces paper (ICCV 2023): https://arxiv.org/abs/2308.10832
|
23 |
+
CosPlace paper (CVPR 2022): https://arxiv.org/abs/2204.02287
|
24 |
+
"""
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torchvision.transforms as tvf
|
28 |
+
|
29 |
+
from ..utils.base_model import BaseModel
|
30 |
+
|
31 |
+
|
32 |
+
class EigenPlaces(BaseModel):
|
33 |
+
default_conf = {
|
34 |
+
"variant": "EigenPlaces",
|
35 |
+
"backbone": "ResNet101",
|
36 |
+
"fc_output_dim": 2048,
|
37 |
+
}
|
38 |
+
required_inputs = ["image"]
|
39 |
+
|
40 |
+
def _init(self, conf):
|
41 |
+
self.net = torch.hub.load(
|
42 |
+
"gmberton/" + conf["variant"],
|
43 |
+
"get_trained_model",
|
44 |
+
backbone=conf["backbone"],
|
45 |
+
fc_output_dim=conf["fc_output_dim"],
|
46 |
+
).eval()
|
47 |
+
|
48 |
+
mean = [0.485, 0.456, 0.406]
|
49 |
+
std = [0.229, 0.224, 0.225]
|
50 |
+
self.norm_rgb = tvf.Normalize(mean=mean, std=std)
|
51 |
+
|
52 |
+
def _forward(self, data):
|
53 |
+
image = self.norm_rgb(data["image"])
|
54 |
+
desc = self.net(image)
|
55 |
+
return {
|
56 |
+
"global_descriptor": desc,
|
57 |
+
}
|
hloc/extractors/example.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from .. import logger
|
7 |
+
from ..utils.base_model import BaseModel
|
8 |
+
|
9 |
+
example_path = Path(__file__).parent / "../../third_party/example"
|
10 |
+
sys.path.append(str(example_path))
|
11 |
+
|
12 |
+
# import some modules here
|
13 |
+
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
|
17 |
+
class Example(BaseModel):
|
18 |
+
# change to your default configs
|
19 |
+
default_conf = {
|
20 |
+
"name": "example",
|
21 |
+
"keypoint_threshold": 0.1,
|
22 |
+
"max_keypoints": 2000,
|
23 |
+
"model_name": "model.pth",
|
24 |
+
}
|
25 |
+
required_inputs = ["image"]
|
26 |
+
|
27 |
+
def _init(self, conf):
|
28 |
+
# set checkpoints paths if needed
|
29 |
+
model_path = example_path / "checkpoints" / f'{conf["model_name"]}'
|
30 |
+
if not model_path.exists():
|
31 |
+
logger.info(f"No model found at {model_path}")
|
32 |
+
|
33 |
+
# init model
|
34 |
+
self.net = callable
|
35 |
+
# self.net = ExampleNet(is_test=True)
|
36 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
37 |
+
self.net.load_state_dict(state_dict["model_state"])
|
38 |
+
logger.info("Load example model done.")
|
39 |
+
|
40 |
+
def _forward(self, data):
|
41 |
+
# data: dict, keys: 'image'
|
42 |
+
# image color mode: RGB
|
43 |
+
# image value range in [0, 1]
|
44 |
+
image = data["image"]
|
45 |
+
|
46 |
+
# B: batch size, N: number of keypoints
|
47 |
+
# keypoints shape: B x N x 2, type: torch tensor
|
48 |
+
# scores shape: B x N, type: torch tensor
|
49 |
+
# descriptors shape: B x 128 x N, type: torch tensor
|
50 |
+
keypoints, scores, descriptors = self.net(image)
|
51 |
+
|
52 |
+
return {
|
53 |
+
"keypoints": keypoints,
|
54 |
+
"scores": scores,
|
55 |
+
"descriptors": descriptors,
|
56 |
+
}
|
hloc/extractors/fire.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import subprocess
|
3 |
+
import sys
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms as tvf
|
8 |
+
|
9 |
+
from ..utils.base_model import BaseModel
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
fire_path = Path(__file__).parent / "../../third_party/fire"
|
13 |
+
sys.path.append(str(fire_path))
|
14 |
+
|
15 |
+
|
16 |
+
import fire_network
|
17 |
+
|
18 |
+
|
19 |
+
class FIRe(BaseModel):
|
20 |
+
default_conf = {
|
21 |
+
"global": True,
|
22 |
+
"asmk": False,
|
23 |
+
"model_name": "fire_SfM_120k.pth",
|
24 |
+
"scales": [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25], # default params
|
25 |
+
"features_num": 1000, # TODO:not supported now
|
26 |
+
"asmk_name": "asmk_codebook.bin", # TODO:not supported now
|
27 |
+
"config_name": "eval_fire.yml",
|
28 |
+
}
|
29 |
+
required_inputs = ["image"]
|
30 |
+
|
31 |
+
# Models exported using
|
32 |
+
fire_models = {
|
33 |
+
"fire_SfM_120k.pth": "http://download.europe.naverlabs.com/ComputerVision/FIRe/official/fire.pth",
|
34 |
+
"fire_imagenet.pth": "http://download.europe.naverlabs.com/ComputerVision/FIRe/pretraining/fire_imagenet.pth",
|
35 |
+
}
|
36 |
+
|
37 |
+
def _init(self, conf):
|
38 |
+
assert conf["model_name"] in self.fire_models.keys()
|
39 |
+
# Config paths
|
40 |
+
model_path = fire_path / "model" / conf["model_name"]
|
41 |
+
|
42 |
+
# Download the model.
|
43 |
+
if not model_path.exists():
|
44 |
+
model_path.parent.mkdir(exist_ok=True)
|
45 |
+
link = self.fire_models[conf["model_name"]]
|
46 |
+
cmd = ["wget", "--quiet", link, "-O", str(model_path)]
|
47 |
+
logger.info(f"Downloading the FIRe model with `{cmd}`.")
|
48 |
+
subprocess.run(cmd, check=True)
|
49 |
+
|
50 |
+
logger.info("Loading fire model...")
|
51 |
+
|
52 |
+
# Load net
|
53 |
+
state = torch.load(model_path)
|
54 |
+
state["net_params"]["pretrained"] = None
|
55 |
+
net = fire_network.init_network(**state["net_params"])
|
56 |
+
net.load_state_dict(state["state_dict"])
|
57 |
+
self.net = net
|
58 |
+
|
59 |
+
self.norm_rgb = tvf.Normalize(
|
60 |
+
**dict(zip(["mean", "std"], net.runtime["mean_std"]))
|
61 |
+
)
|
62 |
+
|
63 |
+
# params
|
64 |
+
self.scales = conf["scales"]
|
65 |
+
|
66 |
+
def _forward(self, data):
|
67 |
+
image = self.norm_rgb(data["image"])
|
68 |
+
|
69 |
+
# Feature extraction.
|
70 |
+
desc = self.net.forward_global(image, scales=self.scales)
|
71 |
+
|
72 |
+
return {"global_descriptor": desc}
|
hloc/extractors/fire_local.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import sys
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torchvision.transforms as tvf
|
7 |
+
|
8 |
+
from .. import logger
|
9 |
+
from ..utils.base_model import BaseModel
|
10 |
+
|
11 |
+
fire_path = Path(__file__).parent / "../../third_party/fire"
|
12 |
+
|
13 |
+
sys.path.append(str(fire_path))
|
14 |
+
|
15 |
+
|
16 |
+
import fire_network
|
17 |
+
|
18 |
+
EPS = 1e-6
|
19 |
+
|
20 |
+
|
21 |
+
class FIRe(BaseModel):
|
22 |
+
default_conf = {
|
23 |
+
"global": True,
|
24 |
+
"asmk": False,
|
25 |
+
"model_name": "fire_SfM_120k.pth",
|
26 |
+
"scales": [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25], # default params
|
27 |
+
"features_num": 1000,
|
28 |
+
"asmk_name": "asmk_codebook.bin",
|
29 |
+
"config_name": "eval_fire.yml",
|
30 |
+
}
|
31 |
+
required_inputs = ["image"]
|
32 |
+
|
33 |
+
# Models exported using
|
34 |
+
fire_models = {
|
35 |
+
"fire_SfM_120k.pth": "http://download.europe.naverlabs.com/ComputerVision/FIRe/official/fire.pth",
|
36 |
+
"fire_imagenet.pth": "http://download.europe.naverlabs.com/ComputerVision/FIRe/pretraining/fire_imagenet.pth",
|
37 |
+
}
|
38 |
+
|
39 |
+
def _init(self, conf):
|
40 |
+
assert conf["model_name"] in self.fire_models.keys()
|
41 |
+
|
42 |
+
# Config paths
|
43 |
+
model_path = fire_path / "model" / conf["model_name"]
|
44 |
+
config_path = fire_path / conf["config_name"] # noqa: F841
|
45 |
+
asmk_bin_path = fire_path / "model" / conf["asmk_name"] # noqa: F841
|
46 |
+
|
47 |
+
# Download the model.
|
48 |
+
if not model_path.exists():
|
49 |
+
model_path.parent.mkdir(exist_ok=True)
|
50 |
+
link = self.fire_models[conf["model_name"]]
|
51 |
+
cmd = ["wget", "--quiet", link, "-O", str(model_path)]
|
52 |
+
logger.info(f"Downloading the FIRe model with `{cmd}`.")
|
53 |
+
subprocess.run(cmd, check=True)
|
54 |
+
|
55 |
+
logger.info("Loading fire model...")
|
56 |
+
|
57 |
+
# Load net
|
58 |
+
state = torch.load(model_path)
|
59 |
+
state["net_params"]["pretrained"] = None
|
60 |
+
net = fire_network.init_network(**state["net_params"])
|
61 |
+
net.load_state_dict(state["state_dict"])
|
62 |
+
self.net = net
|
63 |
+
|
64 |
+
self.norm_rgb = tvf.Normalize(
|
65 |
+
**dict(zip(["mean", "std"], net.runtime["mean_std"]))
|
66 |
+
)
|
67 |
+
|
68 |
+
# params
|
69 |
+
self.scales = conf["scales"]
|
70 |
+
self.features_num = conf["features_num"]
|
71 |
+
|
72 |
+
def _forward(self, data):
|
73 |
+
image = self.norm_rgb(data["image"])
|
74 |
+
|
75 |
+
local_desc = self.net.forward_local(
|
76 |
+
image, features_num=self.features_num, scales=self.scales
|
77 |
+
)
|
78 |
+
|
79 |
+
logger.info(f"output[0].shape = {local_desc[0].shape}\n")
|
80 |
+
|
81 |
+
return {
|
82 |
+
# 'global_descriptor': desc
|
83 |
+
"local_descriptor": local_desc
|
84 |
+
}
|
hloc/extractors/lanet.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from hloc import logger
|
7 |
+
|
8 |
+
from ..utils.base_model import BaseModel
|
9 |
+
|
10 |
+
lib_path = Path(__file__).parent / "../../third_party"
|
11 |
+
sys.path.append(str(lib_path))
|
12 |
+
from lanet.network_v0.model import PointModel
|
13 |
+
|
14 |
+
lanet_path = Path(__file__).parent / "../../third_party/lanet"
|
15 |
+
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
|
18 |
+
|
19 |
+
class LANet(BaseModel):
|
20 |
+
default_conf = {
|
21 |
+
"model_name": "v0",
|
22 |
+
"keypoint_threshold": 0.1,
|
23 |
+
"max_keypoints": 1024,
|
24 |
+
}
|
25 |
+
required_inputs = ["image"]
|
26 |
+
|
27 |
+
def _init(self, conf):
|
28 |
+
model_path = (
|
29 |
+
lanet_path / "checkpoints" / f'PointModel_{conf["model_name"]}.pth'
|
30 |
+
)
|
31 |
+
if not model_path.exists():
|
32 |
+
logger.warning(f"No model found at {model_path}, start downloading")
|
33 |
+
self.net = PointModel(is_test=True)
|
34 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
35 |
+
self.net.load_state_dict(state_dict["model_state"])
|
36 |
+
logger.info("Load LANet model done.")
|
37 |
+
|
38 |
+
def _forward(self, data):
|
39 |
+
image = data["image"]
|
40 |
+
keypoints, scores, descriptors = self.net(image)
|
41 |
+
_, _, Hc, Wc = descriptors.shape
|
42 |
+
|
43 |
+
# Scores & Descriptors
|
44 |
+
kpts_score = torch.cat([keypoints, scores], dim=1).view(3, -1).t()
|
45 |
+
descriptors = descriptors.view(256, Hc, Wc).view(256, -1).t()
|
46 |
+
|
47 |
+
# Filter based on confidence threshold
|
48 |
+
descriptors = descriptors[
|
49 |
+
kpts_score[:, 0] > self.conf["keypoint_threshold"], :
|
50 |
+
]
|
51 |
+
kpts_score = kpts_score[
|
52 |
+
kpts_score[:, 0] > self.conf["keypoint_threshold"], :
|
53 |
+
]
|
54 |
+
keypoints = kpts_score[:, 1:]
|
55 |
+
scores = kpts_score[:, 0]
|
56 |
+
|
57 |
+
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :]
|
58 |
+
keypoints = keypoints[idxs, :2]
|
59 |
+
descriptors = descriptors[idxs]
|
60 |
+
scores = scores[idxs]
|
61 |
+
|
62 |
+
return {
|
63 |
+
"keypoints": keypoints[None],
|
64 |
+
"scores": scores[None],
|
65 |
+
"descriptors": descriptors.T[None],
|
66 |
+
}
|
hloc/extractors/netvlad.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torchvision.models as models
|
9 |
+
from scipy.io import loadmat
|
10 |
+
|
11 |
+
from .. import logger
|
12 |
+
from ..utils.base_model import BaseModel
|
13 |
+
|
14 |
+
EPS = 1e-6
|
15 |
+
|
16 |
+
|
17 |
+
class NetVLADLayer(nn.Module):
|
18 |
+
def __init__(self, input_dim=512, K=64, score_bias=False, intranorm=True):
|
19 |
+
super().__init__()
|
20 |
+
self.score_proj = nn.Conv1d(
|
21 |
+
input_dim, K, kernel_size=1, bias=score_bias
|
22 |
+
)
|
23 |
+
centers = nn.parameter.Parameter(torch.empty([input_dim, K]))
|
24 |
+
nn.init.xavier_uniform_(centers)
|
25 |
+
self.register_parameter("centers", centers)
|
26 |
+
self.intranorm = intranorm
|
27 |
+
self.output_dim = input_dim * K
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
b = x.size(0)
|
31 |
+
scores = self.score_proj(x)
|
32 |
+
scores = F.softmax(scores, dim=1)
|
33 |
+
diff = x.unsqueeze(2) - self.centers.unsqueeze(0).unsqueeze(-1)
|
34 |
+
desc = (scores.unsqueeze(1) * diff).sum(dim=-1)
|
35 |
+
if self.intranorm:
|
36 |
+
# From the official MATLAB implementation.
|
37 |
+
desc = F.normalize(desc, dim=1)
|
38 |
+
desc = desc.view(b, -1)
|
39 |
+
desc = F.normalize(desc, dim=1)
|
40 |
+
return desc
|
41 |
+
|
42 |
+
|
43 |
+
class NetVLAD(BaseModel):
|
44 |
+
default_conf = {"model_name": "VGG16-NetVLAD-Pitts30K", "whiten": True}
|
45 |
+
required_inputs = ["image"]
|
46 |
+
|
47 |
+
# Models exported using
|
48 |
+
# https://github.com/uzh-rpg/netvlad_tf_open/blob/master/matlab/net_class2struct.m.
|
49 |
+
dir_models = {
|
50 |
+
"VGG16-NetVLAD-Pitts30K": "https://cvg-data.inf.ethz.ch/hloc/netvlad/Pitts30K_struct.mat",
|
51 |
+
"VGG16-NetVLAD-TokyoTM": "https://cvg-data.inf.ethz.ch/hloc/netvlad/TokyoTM_struct.mat",
|
52 |
+
}
|
53 |
+
|
54 |
+
def _init(self, conf):
|
55 |
+
assert conf["model_name"] in self.dir_models.keys()
|
56 |
+
|
57 |
+
# Download the checkpoint.
|
58 |
+
checkpoint = Path(
|
59 |
+
torch.hub.get_dir(), "netvlad", conf["model_name"] + ".mat"
|
60 |
+
)
|
61 |
+
if not checkpoint.exists():
|
62 |
+
checkpoint.parent.mkdir(exist_ok=True, parents=True)
|
63 |
+
link = self.dir_models[conf["model_name"]]
|
64 |
+
cmd = ["wget", "--quiet", link, "-O", str(checkpoint)]
|
65 |
+
logger.info(f"Downloading the NetVLAD model with `{cmd}`.")
|
66 |
+
subprocess.run(cmd, check=True)
|
67 |
+
|
68 |
+
# Create the network.
|
69 |
+
# Remove classification head.
|
70 |
+
backbone = list(models.vgg16().children())[0]
|
71 |
+
# Remove last ReLU + MaxPool2d.
|
72 |
+
self.backbone = nn.Sequential(*list(backbone.children())[:-2])
|
73 |
+
|
74 |
+
self.netvlad = NetVLADLayer()
|
75 |
+
|
76 |
+
if conf["whiten"]:
|
77 |
+
self.whiten = nn.Linear(self.netvlad.output_dim, 4096)
|
78 |
+
|
79 |
+
# Parse MATLAB weights using https://github.com/uzh-rpg/netvlad_tf_open
|
80 |
+
mat = loadmat(checkpoint, struct_as_record=False, squeeze_me=True)
|
81 |
+
|
82 |
+
# CNN weights.
|
83 |
+
for layer, mat_layer in zip(
|
84 |
+
self.backbone.children(), mat["net"].layers
|
85 |
+
):
|
86 |
+
if isinstance(layer, nn.Conv2d):
|
87 |
+
w = mat_layer.weights[0] # Shape: S x S x IN x OUT
|
88 |
+
b = mat_layer.weights[1] # Shape: OUT
|
89 |
+
# Prepare for PyTorch - enforce float32 and right shape.
|
90 |
+
# w should have shape: OUT x IN x S x S
|
91 |
+
# b should have shape: OUT
|
92 |
+
w = torch.tensor(w).float().permute([3, 2, 0, 1])
|
93 |
+
b = torch.tensor(b).float()
|
94 |
+
# Update layer weights.
|
95 |
+
layer.weight = nn.Parameter(w)
|
96 |
+
layer.bias = nn.Parameter(b)
|
97 |
+
|
98 |
+
# NetVLAD weights.
|
99 |
+
score_w = mat["net"].layers[30].weights[0] # D x K
|
100 |
+
# centers are stored as opposite in official MATLAB code
|
101 |
+
center_w = -mat["net"].layers[30].weights[1] # D x K
|
102 |
+
# Prepare for PyTorch - make sure it is float32 and has right shape.
|
103 |
+
# score_w should have shape K x D x 1
|
104 |
+
# center_w should have shape D x K
|
105 |
+
score_w = torch.tensor(score_w).float().permute([1, 0]).unsqueeze(-1)
|
106 |
+
center_w = torch.tensor(center_w).float()
|
107 |
+
# Update layer weights.
|
108 |
+
self.netvlad.score_proj.weight = nn.Parameter(score_w)
|
109 |
+
self.netvlad.centers = nn.Parameter(center_w)
|
110 |
+
|
111 |
+
# Whitening weights.
|
112 |
+
if conf["whiten"]:
|
113 |
+
w = mat["net"].layers[33].weights[0] # Shape: 1 x 1 x IN x OUT
|
114 |
+
b = mat["net"].layers[33].weights[1] # Shape: OUT
|
115 |
+
# Prepare for PyTorch - make sure it is float32 and has right shape
|
116 |
+
w = torch.tensor(w).float().squeeze().permute([1, 0]) # OUT x IN
|
117 |
+
b = torch.tensor(b.squeeze()).float() # Shape: OUT
|
118 |
+
# Update layer weights.
|
119 |
+
self.whiten.weight = nn.Parameter(w)
|
120 |
+
self.whiten.bias = nn.Parameter(b)
|
121 |
+
|
122 |
+
# Preprocessing parameters.
|
123 |
+
self.preprocess = {
|
124 |
+
"mean": mat["net"].meta.normalization.averageImage[0, 0],
|
125 |
+
"std": np.array([1, 1, 1], dtype=np.float32),
|
126 |
+
}
|
127 |
+
|
128 |
+
def _forward(self, data):
|
129 |
+
image = data["image"]
|
130 |
+
assert image.shape[1] == 3
|
131 |
+
assert image.min() >= -EPS and image.max() <= 1 + EPS
|
132 |
+
image = torch.clamp(image * 255, 0.0, 255.0) # Input should be 0-255.
|
133 |
+
mean = self.preprocess["mean"]
|
134 |
+
std = self.preprocess["std"]
|
135 |
+
image = image - image.new_tensor(mean).view(1, -1, 1, 1)
|
136 |
+
image = image / image.new_tensor(std).view(1, -1, 1, 1)
|
137 |
+
|
138 |
+
# Feature extraction.
|
139 |
+
descriptors = self.backbone(image)
|
140 |
+
b, c, _, _ = descriptors.size()
|
141 |
+
descriptors = descriptors.view(b, c, -1)
|
142 |
+
|
143 |
+
# NetVLAD layer.
|
144 |
+
descriptors = F.normalize(descriptors, dim=1) # Pre-normalization.
|
145 |
+
desc = self.netvlad(descriptors)
|
146 |
+
|
147 |
+
# Whiten if needed.
|
148 |
+
if hasattr(self, "whiten"):
|
149 |
+
desc = self.whiten(desc)
|
150 |
+
desc = F.normalize(desc, dim=1) # Final L2 normalization.
|
151 |
+
|
152 |
+
return {"global_descriptor": desc}
|
hloc/extractors/openibl.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision.transforms as tvf
|
3 |
+
|
4 |
+
from ..utils.base_model import BaseModel
|
5 |
+
|
6 |
+
|
7 |
+
class OpenIBL(BaseModel):
|
8 |
+
default_conf = {
|
9 |
+
"model_name": "vgg16_netvlad",
|
10 |
+
}
|
11 |
+
required_inputs = ["image"]
|
12 |
+
|
13 |
+
def _init(self, conf):
|
14 |
+
self.net = torch.hub.load(
|
15 |
+
"yxgeee/OpenIBL", conf["model_name"], pretrained=True
|
16 |
+
).eval()
|
17 |
+
mean = [0.48501960784313836, 0.4579568627450961, 0.4076039215686255]
|
18 |
+
std = [0.00392156862745098, 0.00392156862745098, 0.00392156862745098]
|
19 |
+
self.norm_rgb = tvf.Normalize(mean=mean, std=std)
|
20 |
+
|
21 |
+
def _forward(self, data):
|
22 |
+
image = self.norm_rgb(data["image"])
|
23 |
+
desc = self.net(image)
|
24 |
+
return {
|
25 |
+
"global_descriptor": desc,
|
26 |
+
}
|
hloc/extractors/r2d2.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import torchvision.transforms as tvf
|
5 |
+
|
6 |
+
from hloc import logger
|
7 |
+
|
8 |
+
from ..utils.base_model import BaseModel
|
9 |
+
|
10 |
+
r2d2_path = Path(__file__).parent / "../../third_party/r2d2"
|
11 |
+
sys.path.append(str(r2d2_path))
|
12 |
+
from extract import NonMaxSuppression, extract_multiscale, load_network
|
13 |
+
|
14 |
+
|
15 |
+
class R2D2(BaseModel):
|
16 |
+
default_conf = {
|
17 |
+
"model_name": "r2d2_WASF_N16.pt",
|
18 |
+
"max_keypoints": 5000,
|
19 |
+
"scale_factor": 2**0.25,
|
20 |
+
"min_size": 256,
|
21 |
+
"max_size": 1024,
|
22 |
+
"min_scale": 0,
|
23 |
+
"max_scale": 1,
|
24 |
+
"reliability_threshold": 0.7,
|
25 |
+
"repetability_threshold": 0.7,
|
26 |
+
}
|
27 |
+
required_inputs = ["image"]
|
28 |
+
|
29 |
+
def _init(self, conf):
|
30 |
+
model_fn = r2d2_path / "models" / conf["model_name"]
|
31 |
+
self.norm_rgb = tvf.Normalize(
|
32 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
33 |
+
)
|
34 |
+
self.net = load_network(model_fn)
|
35 |
+
self.detector = NonMaxSuppression(
|
36 |
+
rel_thr=conf["reliability_threshold"],
|
37 |
+
rep_thr=conf["repetability_threshold"],
|
38 |
+
)
|
39 |
+
logger.info("Load R2D2 model done.")
|
40 |
+
|
41 |
+
def _forward(self, data):
|
42 |
+
img = data["image"]
|
43 |
+
img = self.norm_rgb(img)
|
44 |
+
|
45 |
+
xys, desc, scores = extract_multiscale(
|
46 |
+
self.net,
|
47 |
+
img,
|
48 |
+
self.detector,
|
49 |
+
scale_f=self.conf["scale_factor"],
|
50 |
+
min_size=self.conf["min_size"],
|
51 |
+
max_size=self.conf["max_size"],
|
52 |
+
min_scale=self.conf["min_scale"],
|
53 |
+
max_scale=self.conf["max_scale"],
|
54 |
+
)
|
55 |
+
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :]
|
56 |
+
xy = xys[idxs, :2]
|
57 |
+
desc = desc[idxs].t()
|
58 |
+
scores = scores[idxs]
|
59 |
+
|
60 |
+
pred = {
|
61 |
+
"keypoints": xy[None],
|
62 |
+
"descriptors": desc[None],
|
63 |
+
"scores": scores[None],
|
64 |
+
}
|
65 |
+
return pred
|
hloc/extractors/rekd.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from hloc import logger
|
7 |
+
|
8 |
+
from ..utils.base_model import BaseModel
|
9 |
+
|
10 |
+
rekd_path = Path(__file__).parent / "../../third_party"
|
11 |
+
sys.path.append(str(rekd_path))
|
12 |
+
from REKD.training.model.REKD import REKD as REKD_
|
13 |
+
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
|
17 |
+
class REKD(BaseModel):
|
18 |
+
default_conf = {
|
19 |
+
"model_name": "v0",
|
20 |
+
"keypoint_threshold": 0.1,
|
21 |
+
}
|
22 |
+
required_inputs = ["image"]
|
23 |
+
|
24 |
+
def _init(self, conf):
|
25 |
+
model_path = (
|
26 |
+
rekd_path / "checkpoints" / f'PointModel_{conf["model_name"]}.pth'
|
27 |
+
)
|
28 |
+
if not model_path.exists():
|
29 |
+
print(f"No model found at {model_path}")
|
30 |
+
self.net = REKD_(is_test=True)
|
31 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
32 |
+
self.net.load_state_dict(state_dict["model_state"])
|
33 |
+
logger.info("Load REKD model done.")
|
34 |
+
|
35 |
+
def _forward(self, data):
|
36 |
+
image = data["image"]
|
37 |
+
keypoints, scores, descriptors = self.net(image)
|
38 |
+
_, _, Hc, Wc = descriptors.shape
|
39 |
+
|
40 |
+
# Scores & Descriptors
|
41 |
+
kpts_score = (
|
42 |
+
torch.cat([keypoints, scores], dim=1)
|
43 |
+
.view(3, -1)
|
44 |
+
.t()
|
45 |
+
.cpu()
|
46 |
+
.detach()
|
47 |
+
.numpy()
|
48 |
+
)
|
49 |
+
descriptors = (
|
50 |
+
descriptors.view(256, Hc, Wc)
|
51 |
+
.view(256, -1)
|
52 |
+
.t()
|
53 |
+
.cpu()
|
54 |
+
.detach()
|
55 |
+
.numpy()
|
56 |
+
)
|
57 |
+
|
58 |
+
# Filter based on confidence threshold
|
59 |
+
descriptors = descriptors[
|
60 |
+
kpts_score[:, 0] > self.conf["keypoint_threshold"], :
|
61 |
+
]
|
62 |
+
kpts_score = kpts_score[
|
63 |
+
kpts_score[:, 0] > self.conf["keypoint_threshold"], :
|
64 |
+
]
|
65 |
+
keypoints = kpts_score[:, 1:]
|
66 |
+
scores = kpts_score[:, 0]
|
67 |
+
|
68 |
+
return {
|
69 |
+
"keypoints": torch.from_numpy(keypoints)[None],
|
70 |
+
"scores": torch.from_numpy(scores)[None],
|
71 |
+
"descriptors": torch.from_numpy(descriptors.T)[None],
|
72 |
+
}
|
hloc/extractors/rord.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import sys
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from hloc import logger
|
8 |
+
|
9 |
+
from ..utils.base_model import BaseModel
|
10 |
+
|
11 |
+
rord_path = Path(__file__).parent / "../../third_party"
|
12 |
+
sys.path.append(str(rord_path))
|
13 |
+
from RoRD.lib.model_test import D2Net as _RoRD
|
14 |
+
from RoRD.lib.pyramid import process_multiscale
|
15 |
+
|
16 |
+
|
17 |
+
class RoRD(BaseModel):
|
18 |
+
default_conf = {
|
19 |
+
"model_name": "rord.pth",
|
20 |
+
"checkpoint_dir": rord_path / "RoRD" / "models",
|
21 |
+
"use_relu": True,
|
22 |
+
"multiscale": False,
|
23 |
+
"max_keypoints": 1024,
|
24 |
+
}
|
25 |
+
required_inputs = ["image"]
|
26 |
+
weight_urls = {
|
27 |
+
"rord.pth": "https://drive.google.com/uc?id=12414ZGKwgPAjNTGtNrlB4VV9l7W76B2o&confirm=t",
|
28 |
+
}
|
29 |
+
proxy = "http://localhost:1080"
|
30 |
+
|
31 |
+
def _init(self, conf):
|
32 |
+
model_path = conf["checkpoint_dir"] / conf["model_name"]
|
33 |
+
link = self.weight_urls[conf["model_name"]]
|
34 |
+
if not model_path.exists():
|
35 |
+
model_path.parent.mkdir(exist_ok=True)
|
36 |
+
cmd_wo_proxy = ["gdown", link, "-O", str(model_path)]
|
37 |
+
cmd = ["gdown", link, "-O", str(model_path), "--proxy", self.proxy]
|
38 |
+
logger.info(f"Downloading the RoRD model with `{cmd_wo_proxy}`.")
|
39 |
+
try:
|
40 |
+
subprocess.run(cmd_wo_proxy, check=True)
|
41 |
+
except subprocess.CalledProcessError as e:
|
42 |
+
logger.info(f"Downloading failed {e}.")
|
43 |
+
logger.info(f"Downloading the RoRD model with {cmd}.")
|
44 |
+
try:
|
45 |
+
subprocess.run(cmd, check=True)
|
46 |
+
except subprocess.CalledProcessError as e:
|
47 |
+
logger.error(f"Failed to download the RoRD model: {e}")
|
48 |
+
self.net = _RoRD(
|
49 |
+
model_file=model_path, use_relu=conf["use_relu"], use_cuda=False
|
50 |
+
)
|
51 |
+
logger.info("Load RoRD model done.")
|
52 |
+
|
53 |
+
def _forward(self, data):
|
54 |
+
image = data["image"]
|
55 |
+
image = image.flip(1) # RGB -> BGR
|
56 |
+
norm = image.new_tensor([103.939, 116.779, 123.68])
|
57 |
+
image = image * 255 - norm.view(1, 3, 1, 1) # caffe normalization
|
58 |
+
|
59 |
+
if self.conf["multiscale"]:
|
60 |
+
keypoints, scores, descriptors = process_multiscale(image, self.net)
|
61 |
+
else:
|
62 |
+
keypoints, scores, descriptors = process_multiscale(
|
63 |
+
image, self.net, scales=[1]
|
64 |
+
)
|
65 |
+
keypoints = keypoints[:, [1, 0]] # (x, y) and remove the scale
|
66 |
+
|
67 |
+
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :]
|
68 |
+
keypoints = keypoints[idxs, :2]
|
69 |
+
descriptors = descriptors[idxs]
|
70 |
+
scores = scores[idxs]
|
71 |
+
|
72 |
+
return {
|
73 |
+
"keypoints": torch.from_numpy(keypoints)[None],
|
74 |
+
"scores": torch.from_numpy(scores)[None],
|
75 |
+
"descriptors": torch.from_numpy(descriptors.T)[None],
|
76 |
+
}
|
hloc/extractors/sfd2.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import torchvision.transforms as tvf
|
5 |
+
|
6 |
+
from .. import logger
|
7 |
+
from ..utils.base_model import BaseModel
|
8 |
+
|
9 |
+
tp_path = Path(__file__).parent / "../../third_party"
|
10 |
+
sys.path.append(str(tp_path))
|
11 |
+
from pram.nets.sfd2 import load_sfd2
|
12 |
+
|
13 |
+
|
14 |
+
class SFD2(BaseModel):
|
15 |
+
default_conf = {
|
16 |
+
"max_keypoints": 4096,
|
17 |
+
"model_name": "sfd2_20230511_210205_resnet4x.79.pth",
|
18 |
+
"conf_th": 0.001,
|
19 |
+
}
|
20 |
+
required_inputs = ["image"]
|
21 |
+
|
22 |
+
def _init(self, conf):
|
23 |
+
self.conf = {**self.default_conf, **conf}
|
24 |
+
self.norm_rgb = tvf.Normalize(
|
25 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
26 |
+
)
|
27 |
+
model_path = tp_path / "pram" / "weights" / self.conf["model_name"]
|
28 |
+
self.net = load_sfd2(weight_path=model_path).eval()
|
29 |
+
|
30 |
+
logger.info("Load SFD2 model done.")
|
31 |
+
|
32 |
+
def _forward(self, data):
|
33 |
+
pred = self.net.extract_local_global(
|
34 |
+
data={"image": self.norm_rgb(data["image"])}, config=self.conf
|
35 |
+
)
|
36 |
+
out = {
|
37 |
+
"keypoints": pred["keypoints"][0][None],
|
38 |
+
"scores": pred["scores"][0][None],
|
39 |
+
"descriptors": pred["descriptors"][0][None],
|
40 |
+
}
|
41 |
+
return out
|
hloc/extractors/sift.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from kornia.color import rgb_to_grayscale
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from packaging import version
|
9 |
+
|
10 |
+
try:
|
11 |
+
import pycolmap
|
12 |
+
except ImportError:
|
13 |
+
pycolmap = None
|
14 |
+
from hloc import logger
|
15 |
+
|
16 |
+
from ..utils.base_model import BaseModel
|
17 |
+
|
18 |
+
|
19 |
+
def filter_dog_point(
|
20 |
+
points, scales, angles, image_shape, nms_radius, scores=None
|
21 |
+
):
|
22 |
+
h, w = image_shape
|
23 |
+
ij = np.round(points - 0.5).astype(int).T[::-1]
|
24 |
+
|
25 |
+
# Remove duplicate points (identical coordinates).
|
26 |
+
# Pick highest scale or score
|
27 |
+
s = scales if scores is None else scores
|
28 |
+
buffer = np.zeros((h, w))
|
29 |
+
np.maximum.at(buffer, tuple(ij), s)
|
30 |
+
keep = np.where(buffer[tuple(ij)] == s)[0]
|
31 |
+
|
32 |
+
# Pick lowest angle (arbitrary).
|
33 |
+
ij = ij[:, keep]
|
34 |
+
buffer[:] = np.inf
|
35 |
+
o_abs = np.abs(angles[keep])
|
36 |
+
np.minimum.at(buffer, tuple(ij), o_abs)
|
37 |
+
mask = buffer[tuple(ij)] == o_abs
|
38 |
+
ij = ij[:, mask]
|
39 |
+
keep = keep[mask]
|
40 |
+
|
41 |
+
if nms_radius > 0:
|
42 |
+
# Apply NMS on the remaining points
|
43 |
+
buffer[:] = 0
|
44 |
+
buffer[tuple(ij)] = s[keep] # scores or scale
|
45 |
+
|
46 |
+
local_max = torch.nn.functional.max_pool2d(
|
47 |
+
torch.from_numpy(buffer).unsqueeze(0),
|
48 |
+
kernel_size=nms_radius * 2 + 1,
|
49 |
+
stride=1,
|
50 |
+
padding=nms_radius,
|
51 |
+
).squeeze(0)
|
52 |
+
is_local_max = buffer == local_max.numpy()
|
53 |
+
keep = keep[is_local_max[tuple(ij)]]
|
54 |
+
return keep
|
55 |
+
|
56 |
+
|
57 |
+
def sift_to_rootsift(x: torch.Tensor, eps=1e-6) -> torch.Tensor:
|
58 |
+
x = torch.nn.functional.normalize(x, p=1, dim=-1, eps=eps)
|
59 |
+
x.clip_(min=eps).sqrt_()
|
60 |
+
return torch.nn.functional.normalize(x, p=2, dim=-1, eps=eps)
|
61 |
+
|
62 |
+
|
63 |
+
def run_opencv_sift(features: cv2.Feature2D, image: np.ndarray) -> np.ndarray:
|
64 |
+
"""
|
65 |
+
Detect keypoints using OpenCV Detector.
|
66 |
+
Optionally, perform description.
|
67 |
+
Args:
|
68 |
+
features: OpenCV based keypoints detector and descriptor
|
69 |
+
image: Grayscale image of uint8 data type
|
70 |
+
Returns:
|
71 |
+
keypoints: 1D array of detected cv2.KeyPoint
|
72 |
+
scores: 1D array of responses
|
73 |
+
descriptors: 1D array of descriptors
|
74 |
+
"""
|
75 |
+
detections, descriptors = features.detectAndCompute(image, None)
|
76 |
+
points = np.array([k.pt for k in detections], dtype=np.float32)
|
77 |
+
scores = np.array([k.response for k in detections], dtype=np.float32)
|
78 |
+
scales = np.array([k.size for k in detections], dtype=np.float32)
|
79 |
+
angles = np.deg2rad(
|
80 |
+
np.array([k.angle for k in detections], dtype=np.float32)
|
81 |
+
)
|
82 |
+
return points, scores, scales, angles, descriptors
|
83 |
+
|
84 |
+
|
85 |
+
class SIFT(BaseModel):
|
86 |
+
default_conf = {
|
87 |
+
"rootsift": True,
|
88 |
+
"nms_radius": 0, # None to disable filtering entirely.
|
89 |
+
"max_keypoints": 4096,
|
90 |
+
"backend": "opencv", # in {opencv, pycolmap, pycolmap_cpu, pycolmap_cuda}
|
91 |
+
"detection_threshold": 0.0066667, # from COLMAP
|
92 |
+
"edge_threshold": 10,
|
93 |
+
"first_octave": -1, # only used by pycolmap, the default of COLMAP
|
94 |
+
"num_octaves": 4,
|
95 |
+
}
|
96 |
+
|
97 |
+
required_data_keys = ["image"]
|
98 |
+
|
99 |
+
def _init(self, conf):
|
100 |
+
self.conf = OmegaConf.create(self.conf)
|
101 |
+
backend = self.conf.backend
|
102 |
+
if backend.startswith("pycolmap"):
|
103 |
+
if pycolmap is None:
|
104 |
+
raise ImportError(
|
105 |
+
"Cannot find module pycolmap: install it with pip"
|
106 |
+
"or use backend=opencv."
|
107 |
+
)
|
108 |
+
options = {
|
109 |
+
"peak_threshold": self.conf.detection_threshold,
|
110 |
+
"edge_threshold": self.conf.edge_threshold,
|
111 |
+
"first_octave": self.conf.first_octave,
|
112 |
+
"num_octaves": self.conf.num_octaves,
|
113 |
+
"normalization": pycolmap.Normalization.L2, # L1_ROOT is buggy.
|
114 |
+
}
|
115 |
+
device = (
|
116 |
+
"auto"
|
117 |
+
if backend == "pycolmap"
|
118 |
+
else backend.replace("pycolmap_", "")
|
119 |
+
)
|
120 |
+
if (
|
121 |
+
backend == "pycolmap_cpu" or not pycolmap.has_cuda
|
122 |
+
) and pycolmap.__version__ < "0.5.0":
|
123 |
+
warnings.warn(
|
124 |
+
"The pycolmap CPU SIFT is buggy in version < 0.5.0, "
|
125 |
+
"consider upgrading pycolmap or use the CUDA version.",
|
126 |
+
stacklevel=1,
|
127 |
+
)
|
128 |
+
else:
|
129 |
+
options["max_num_features"] = self.conf.max_keypoints
|
130 |
+
self.sift = pycolmap.Sift(options=options, device=device)
|
131 |
+
elif backend == "opencv":
|
132 |
+
self.sift = cv2.SIFT_create(
|
133 |
+
contrastThreshold=self.conf.detection_threshold,
|
134 |
+
nfeatures=self.conf.max_keypoints,
|
135 |
+
edgeThreshold=self.conf.edge_threshold,
|
136 |
+
nOctaveLayers=self.conf.num_octaves,
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
backends = {"opencv", "pycolmap", "pycolmap_cpu", "pycolmap_cuda"}
|
140 |
+
raise ValueError(
|
141 |
+
f"Unknown backend: {backend} not in "
|
142 |
+
f"{{{','.join(backends)}}}."
|
143 |
+
)
|
144 |
+
logger.info("Load SIFT model done.")
|
145 |
+
|
146 |
+
def extract_single_image(self, image: torch.Tensor):
|
147 |
+
image_np = image.cpu().numpy().squeeze(0)
|
148 |
+
|
149 |
+
if self.conf.backend.startswith("pycolmap"):
|
150 |
+
if version.parse(pycolmap.__version__) >= version.parse("0.5.0"):
|
151 |
+
detections, descriptors = self.sift.extract(image_np)
|
152 |
+
scores = None # Scores are not exposed by COLMAP anymore.
|
153 |
+
else:
|
154 |
+
detections, scores, descriptors = self.sift.extract(image_np)
|
155 |
+
keypoints = detections[:, :2] # Keep only (x, y).
|
156 |
+
scales, angles = detections[:, -2:].T
|
157 |
+
if scores is not None and (
|
158 |
+
self.conf.backend == "pycolmap_cpu" or not pycolmap.has_cuda
|
159 |
+
):
|
160 |
+
# Set the scores as a combination of abs. response and scale.
|
161 |
+
scores = np.abs(scores) * scales
|
162 |
+
elif self.conf.backend == "opencv":
|
163 |
+
# TODO: Check if opencv keypoints are already in corner convention
|
164 |
+
keypoints, scores, scales, angles, descriptors = run_opencv_sift(
|
165 |
+
self.sift, (image_np * 255.0).astype(np.uint8)
|
166 |
+
)
|
167 |
+
pred = {
|
168 |
+
"keypoints": keypoints,
|
169 |
+
"scales": scales,
|
170 |
+
"oris": angles,
|
171 |
+
"descriptors": descriptors,
|
172 |
+
}
|
173 |
+
if scores is not None:
|
174 |
+
pred["scores"] = scores
|
175 |
+
|
176 |
+
# sometimes pycolmap returns points outside the image. We remove them
|
177 |
+
if self.conf.backend.startswith("pycolmap"):
|
178 |
+
is_inside = (
|
179 |
+
pred["keypoints"] + 0.5 < np.array([image_np.shape[-2:][::-1]])
|
180 |
+
).all(-1)
|
181 |
+
pred = {k: v[is_inside] for k, v in pred.items()}
|
182 |
+
|
183 |
+
if self.conf.nms_radius is not None:
|
184 |
+
keep = filter_dog_point(
|
185 |
+
pred["keypoints"],
|
186 |
+
pred["scales"],
|
187 |
+
pred["oris"],
|
188 |
+
image_np.shape,
|
189 |
+
self.conf.nms_radius,
|
190 |
+
scores=pred.get("scores"),
|
191 |
+
)
|
192 |
+
pred = {k: v[keep] for k, v in pred.items()}
|
193 |
+
|
194 |
+
pred = {k: torch.from_numpy(v) for k, v in pred.items()}
|
195 |
+
if scores is not None:
|
196 |
+
# Keep the k keypoints with highest score
|
197 |
+
num_points = self.conf.max_keypoints
|
198 |
+
if num_points is not None and len(pred["keypoints"]) > num_points:
|
199 |
+
indices = torch.topk(pred["scores"], num_points).indices
|
200 |
+
pred = {k: v[indices] for k, v in pred.items()}
|
201 |
+
return pred
|
202 |
+
|
203 |
+
def _forward(self, data: dict) -> dict:
|
204 |
+
image = data["image"]
|
205 |
+
if image.shape[1] == 3:
|
206 |
+
image = rgb_to_grayscale(image)
|
207 |
+
device = image.device
|
208 |
+
image = image.cpu()
|
209 |
+
pred = []
|
210 |
+
for k in range(len(image)):
|
211 |
+
img = image[k]
|
212 |
+
if "image_size" in data.keys():
|
213 |
+
# avoid extracting points in padded areas
|
214 |
+
w, h = data["image_size"][k]
|
215 |
+
img = img[:, :h, :w]
|
216 |
+
p = self.extract_single_image(img)
|
217 |
+
pred.append(p)
|
218 |
+
pred = {
|
219 |
+
k: torch.stack([p[k] for p in pred], 0).to(device) for k in pred[0]
|
220 |
+
}
|
221 |
+
if self.conf.rootsift:
|
222 |
+
pred["descriptors"] = sift_to_rootsift(pred["descriptors"])
|
223 |
+
pred["descriptors"] = pred["descriptors"].permute(0, 2, 1)
|
224 |
+
pred["keypoint_scores"] = pred["scores"].clone()
|
225 |
+
return pred
|
hloc/extractors/superpoint.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from hloc import logger
|
7 |
+
|
8 |
+
from ..utils.base_model import BaseModel
|
9 |
+
|
10 |
+
sys.path.append(str(Path(__file__).parent / "../../third_party"))
|
11 |
+
from SuperGluePretrainedNetwork.models import superpoint # noqa E402
|
12 |
+
|
13 |
+
|
14 |
+
# The original keypoint sampling is incorrect. We patch it here but
|
15 |
+
# we don't fix it upstream to not impact exisiting evaluations.
|
16 |
+
def sample_descriptors_fix_sampling(keypoints, descriptors, s: int = 8):
|
17 |
+
"""Interpolate descriptors at keypoint locations"""
|
18 |
+
b, c, h, w = descriptors.shape
|
19 |
+
keypoints = (keypoints + 0.5) / (keypoints.new_tensor([w, h]) * s)
|
20 |
+
keypoints = keypoints * 2 - 1 # normalize to (-1, 1)
|
21 |
+
descriptors = torch.nn.functional.grid_sample(
|
22 |
+
descriptors,
|
23 |
+
keypoints.view(b, 1, -1, 2),
|
24 |
+
mode="bilinear",
|
25 |
+
align_corners=False,
|
26 |
+
)
|
27 |
+
descriptors = torch.nn.functional.normalize(
|
28 |
+
descriptors.reshape(b, c, -1), p=2, dim=1
|
29 |
+
)
|
30 |
+
return descriptors
|
31 |
+
|
32 |
+
|
33 |
+
class SuperPoint(BaseModel):
|
34 |
+
default_conf = {
|
35 |
+
"nms_radius": 4,
|
36 |
+
"keypoint_threshold": 0.005,
|
37 |
+
"max_keypoints": -1,
|
38 |
+
"remove_borders": 4,
|
39 |
+
"fix_sampling": False,
|
40 |
+
}
|
41 |
+
required_inputs = ["image"]
|
42 |
+
detection_noise = 2.0
|
43 |
+
|
44 |
+
def _init(self, conf):
|
45 |
+
if conf["fix_sampling"]:
|
46 |
+
superpoint.sample_descriptors = sample_descriptors_fix_sampling
|
47 |
+
self.net = superpoint.SuperPoint(conf)
|
48 |
+
logger.info("Load SuperPoint model done.")
|
49 |
+
|
50 |
+
def _forward(self, data):
|
51 |
+
return self.net(data, self.conf)
|
hloc/extractors/xfeat.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from hloc import logger
|
4 |
+
|
5 |
+
from ..utils.base_model import BaseModel
|
6 |
+
|
7 |
+
|
8 |
+
class XFeat(BaseModel):
|
9 |
+
default_conf = {
|
10 |
+
"keypoint_threshold": 0.005,
|
11 |
+
"max_keypoints": -1,
|
12 |
+
}
|
13 |
+
required_inputs = ["image"]
|
14 |
+
|
15 |
+
def _init(self, conf):
|
16 |
+
self.net = torch.hub.load(
|
17 |
+
"verlab/accelerated_features",
|
18 |
+
"XFeat",
|
19 |
+
pretrained=True,
|
20 |
+
top_k=self.conf["max_keypoints"],
|
21 |
+
)
|
22 |
+
logger.info("Load XFeat(sparse) model done.")
|
23 |
+
|
24 |
+
def _forward(self, data):
|
25 |
+
pred = self.net.detectAndCompute(
|
26 |
+
data["image"], top_k=self.conf["max_keypoints"]
|
27 |
+
)[0]
|
28 |
+
pred = {
|
29 |
+
"keypoints": pred["keypoints"][None],
|
30 |
+
"scores": pred["scores"][None],
|
31 |
+
"descriptors": pred["descriptors"].T[None],
|
32 |
+
}
|
33 |
+
return pred
|
hloc/localize_inloc.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import pickle
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import h5py
|
7 |
+
import numpy as np
|
8 |
+
import pycolmap
|
9 |
+
import torch
|
10 |
+
from scipy.io import loadmat
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
from . import logger
|
14 |
+
from .utils.parsers import names_to_pair, parse_retrieval
|
15 |
+
|
16 |
+
|
17 |
+
def interpolate_scan(scan, kp):
|
18 |
+
h, w, c = scan.shape
|
19 |
+
kp = kp / np.array([[w - 1, h - 1]]) * 2 - 1
|
20 |
+
assert np.all(kp > -1) and np.all(kp < 1)
|
21 |
+
scan = torch.from_numpy(scan).permute(2, 0, 1)[None]
|
22 |
+
kp = torch.from_numpy(kp)[None, None]
|
23 |
+
grid_sample = torch.nn.functional.grid_sample
|
24 |
+
|
25 |
+
# To maximize the number of points that have depth:
|
26 |
+
# do bilinear interpolation first and then nearest for the remaining points
|
27 |
+
interp_lin = grid_sample(scan, kp, align_corners=True, mode="bilinear")[
|
28 |
+
0, :, 0
|
29 |
+
]
|
30 |
+
interp_nn = torch.nn.functional.grid_sample(
|
31 |
+
scan, kp, align_corners=True, mode="nearest"
|
32 |
+
)[0, :, 0]
|
33 |
+
interp = torch.where(torch.isnan(interp_lin), interp_nn, interp_lin)
|
34 |
+
valid = ~torch.any(torch.isnan(interp), 0)
|
35 |
+
|
36 |
+
kp3d = interp.T.numpy()
|
37 |
+
valid = valid.numpy()
|
38 |
+
return kp3d, valid
|
39 |
+
|
40 |
+
|
41 |
+
def get_scan_pose(dataset_dir, rpath):
|
42 |
+
split_image_rpath = rpath.split("/")
|
43 |
+
floor_name = split_image_rpath[-3]
|
44 |
+
scan_id = split_image_rpath[-2]
|
45 |
+
image_name = split_image_rpath[-1]
|
46 |
+
building_name = image_name[:3]
|
47 |
+
|
48 |
+
path = Path(
|
49 |
+
dataset_dir,
|
50 |
+
"database/alignments",
|
51 |
+
floor_name,
|
52 |
+
f"transformations/{building_name}_trans_{scan_id}.txt",
|
53 |
+
)
|
54 |
+
with open(path) as f:
|
55 |
+
raw_lines = f.readlines()
|
56 |
+
|
57 |
+
P_after_GICP = np.array(
|
58 |
+
[
|
59 |
+
np.fromstring(raw_lines[7], sep=" "),
|
60 |
+
np.fromstring(raw_lines[8], sep=" "),
|
61 |
+
np.fromstring(raw_lines[9], sep=" "),
|
62 |
+
np.fromstring(raw_lines[10], sep=" "),
|
63 |
+
]
|
64 |
+
)
|
65 |
+
|
66 |
+
return P_after_GICP
|
67 |
+
|
68 |
+
|
69 |
+
def pose_from_cluster(
|
70 |
+
dataset_dir, q, retrieved, feature_file, match_file, skip=None
|
71 |
+
):
|
72 |
+
height, width = cv2.imread(str(dataset_dir / q)).shape[:2]
|
73 |
+
cx = 0.5 * width
|
74 |
+
cy = 0.5 * height
|
75 |
+
focal_length = 4032.0 * 28.0 / 36.0
|
76 |
+
|
77 |
+
all_mkpq = []
|
78 |
+
all_mkpr = []
|
79 |
+
all_mkp3d = []
|
80 |
+
all_indices = []
|
81 |
+
kpq = feature_file[q]["keypoints"].__array__()
|
82 |
+
num_matches = 0
|
83 |
+
|
84 |
+
for i, r in enumerate(retrieved):
|
85 |
+
kpr = feature_file[r]["keypoints"].__array__()
|
86 |
+
pair = names_to_pair(q, r)
|
87 |
+
m = match_file[pair]["matches0"].__array__()
|
88 |
+
v = m > -1
|
89 |
+
|
90 |
+
if skip and (np.count_nonzero(v) < skip):
|
91 |
+
continue
|
92 |
+
|
93 |
+
mkpq, mkpr = kpq[v], kpr[m[v]]
|
94 |
+
num_matches += len(mkpq)
|
95 |
+
|
96 |
+
scan_r = loadmat(Path(dataset_dir, r + ".mat"))["XYZcut"]
|
97 |
+
mkp3d, valid = interpolate_scan(scan_r, mkpr)
|
98 |
+
Tr = get_scan_pose(dataset_dir, r)
|
99 |
+
mkp3d = (Tr[:3, :3] @ mkp3d.T + Tr[:3, -1:]).T
|
100 |
+
|
101 |
+
all_mkpq.append(mkpq[valid])
|
102 |
+
all_mkpr.append(mkpr[valid])
|
103 |
+
all_mkp3d.append(mkp3d[valid])
|
104 |
+
all_indices.append(np.full(np.count_nonzero(valid), i))
|
105 |
+
|
106 |
+
all_mkpq = np.concatenate(all_mkpq, 0)
|
107 |
+
all_mkpr = np.concatenate(all_mkpr, 0)
|
108 |
+
all_mkp3d = np.concatenate(all_mkp3d, 0)
|
109 |
+
all_indices = np.concatenate(all_indices, 0)
|
110 |
+
|
111 |
+
cfg = {
|
112 |
+
"model": "SIMPLE_PINHOLE",
|
113 |
+
"width": width,
|
114 |
+
"height": height,
|
115 |
+
"params": [focal_length, cx, cy],
|
116 |
+
}
|
117 |
+
ret = pycolmap.absolute_pose_estimation(all_mkpq, all_mkp3d, cfg, 48.00)
|
118 |
+
ret["cfg"] = cfg
|
119 |
+
return ret, all_mkpq, all_mkpr, all_mkp3d, all_indices, num_matches
|
120 |
+
|
121 |
+
|
122 |
+
def main(dataset_dir, retrieval, features, matches, results, skip_matches=None):
|
123 |
+
assert retrieval.exists(), retrieval
|
124 |
+
assert features.exists(), features
|
125 |
+
assert matches.exists(), matches
|
126 |
+
|
127 |
+
retrieval_dict = parse_retrieval(retrieval)
|
128 |
+
queries = list(retrieval_dict.keys())
|
129 |
+
|
130 |
+
feature_file = h5py.File(features, "r", libver="latest")
|
131 |
+
match_file = h5py.File(matches, "r", libver="latest")
|
132 |
+
|
133 |
+
poses = {}
|
134 |
+
logs = {
|
135 |
+
"features": features,
|
136 |
+
"matches": matches,
|
137 |
+
"retrieval": retrieval,
|
138 |
+
"loc": {},
|
139 |
+
}
|
140 |
+
logger.info("Starting localization...")
|
141 |
+
for q in tqdm(queries):
|
142 |
+
db = retrieval_dict[q]
|
143 |
+
ret, mkpq, mkpr, mkp3d, indices, num_matches = pose_from_cluster(
|
144 |
+
dataset_dir, q, db, feature_file, match_file, skip_matches
|
145 |
+
)
|
146 |
+
|
147 |
+
poses[q] = (ret["qvec"], ret["tvec"])
|
148 |
+
logs["loc"][q] = {
|
149 |
+
"db": db,
|
150 |
+
"PnP_ret": ret,
|
151 |
+
"keypoints_query": mkpq,
|
152 |
+
"keypoints_db": mkpr,
|
153 |
+
"3d_points": mkp3d,
|
154 |
+
"indices_db": indices,
|
155 |
+
"num_matches": num_matches,
|
156 |
+
}
|
157 |
+
|
158 |
+
logger.info(f"Writing poses to {results}...")
|
159 |
+
with open(results, "w") as f:
|
160 |
+
for q in queries:
|
161 |
+
qvec, tvec = poses[q]
|
162 |
+
qvec = " ".join(map(str, qvec))
|
163 |
+
tvec = " ".join(map(str, tvec))
|
164 |
+
name = q.split("/")[-1]
|
165 |
+
f.write(f"{name} {qvec} {tvec}\n")
|
166 |
+
|
167 |
+
logs_path = f"{results}_logs.pkl"
|
168 |
+
logger.info(f"Writing logs to {logs_path}...")
|
169 |
+
with open(logs_path, "wb") as f:
|
170 |
+
pickle.dump(logs, f)
|
171 |
+
logger.info("Done!")
|
172 |
+
|
173 |
+
|
174 |
+
if __name__ == "__main__":
|
175 |
+
parser = argparse.ArgumentParser()
|
176 |
+
parser.add_argument("--dataset_dir", type=Path, required=True)
|
177 |
+
parser.add_argument("--retrieval", type=Path, required=True)
|
178 |
+
parser.add_argument("--features", type=Path, required=True)
|
179 |
+
parser.add_argument("--matches", type=Path, required=True)
|
180 |
+
parser.add_argument("--results", type=Path, required=True)
|
181 |
+
parser.add_argument("--skip_matches", type=int)
|
182 |
+
args = parser.parse_args()
|
183 |
+
main(**args.__dict__)
|
hloc/localize_sfm.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import pickle
|
3 |
+
from collections import defaultdict
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Dict, List, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pycolmap
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
from . import logger
|
12 |
+
from .utils.io import get_keypoints, get_matches
|
13 |
+
from .utils.parsers import parse_image_lists, parse_retrieval
|
14 |
+
|
15 |
+
|
16 |
+
def do_covisibility_clustering(
|
17 |
+
frame_ids: List[int], reconstruction: pycolmap.Reconstruction
|
18 |
+
):
|
19 |
+
clusters = []
|
20 |
+
visited = set()
|
21 |
+
for frame_id in frame_ids:
|
22 |
+
# Check if already labeled
|
23 |
+
if frame_id in visited:
|
24 |
+
continue
|
25 |
+
|
26 |
+
# New component
|
27 |
+
clusters.append([])
|
28 |
+
queue = {frame_id}
|
29 |
+
while len(queue):
|
30 |
+
exploration_frame = queue.pop()
|
31 |
+
|
32 |
+
# Already part of the component
|
33 |
+
if exploration_frame in visited:
|
34 |
+
continue
|
35 |
+
visited.add(exploration_frame)
|
36 |
+
clusters[-1].append(exploration_frame)
|
37 |
+
|
38 |
+
observed = reconstruction.images[exploration_frame].points2D
|
39 |
+
connected_frames = {
|
40 |
+
obs.image_id
|
41 |
+
for p2D in observed
|
42 |
+
if p2D.has_point3D()
|
43 |
+
for obs in reconstruction.points3D[
|
44 |
+
p2D.point3D_id
|
45 |
+
].track.elements
|
46 |
+
}
|
47 |
+
connected_frames &= set(frame_ids)
|
48 |
+
connected_frames -= visited
|
49 |
+
queue |= connected_frames
|
50 |
+
|
51 |
+
clusters = sorted(clusters, key=len, reverse=True)
|
52 |
+
return clusters
|
53 |
+
|
54 |
+
|
55 |
+
class QueryLocalizer:
|
56 |
+
def __init__(self, reconstruction, config=None):
|
57 |
+
self.reconstruction = reconstruction
|
58 |
+
self.config = config or {}
|
59 |
+
|
60 |
+
def localize(self, points2D_all, points2D_idxs, points3D_id, query_camera):
|
61 |
+
points2D = points2D_all[points2D_idxs]
|
62 |
+
points3D = [self.reconstruction.points3D[j].xyz for j in points3D_id]
|
63 |
+
ret = pycolmap.absolute_pose_estimation(
|
64 |
+
points2D,
|
65 |
+
points3D,
|
66 |
+
query_camera,
|
67 |
+
estimation_options=self.config.get("estimation", {}),
|
68 |
+
refinement_options=self.config.get("refinement", {}),
|
69 |
+
)
|
70 |
+
return ret
|
71 |
+
|
72 |
+
|
73 |
+
def pose_from_cluster(
|
74 |
+
localizer: QueryLocalizer,
|
75 |
+
qname: str,
|
76 |
+
query_camera: pycolmap.Camera,
|
77 |
+
db_ids: List[int],
|
78 |
+
features_path: Path,
|
79 |
+
matches_path: Path,
|
80 |
+
**kwargs,
|
81 |
+
):
|
82 |
+
kpq = get_keypoints(features_path, qname)
|
83 |
+
kpq += 0.5 # COLMAP coordinates
|
84 |
+
|
85 |
+
kp_idx_to_3D = defaultdict(list)
|
86 |
+
kp_idx_to_3D_to_db = defaultdict(lambda: defaultdict(list))
|
87 |
+
num_matches = 0
|
88 |
+
for i, db_id in enumerate(db_ids):
|
89 |
+
image = localizer.reconstruction.images[db_id]
|
90 |
+
if image.num_points3D == 0:
|
91 |
+
logger.debug(f"No 3D points found for {image.name}.")
|
92 |
+
continue
|
93 |
+
points3D_ids = np.array(
|
94 |
+
[p.point3D_id if p.has_point3D() else -1 for p in image.points2D]
|
95 |
+
)
|
96 |
+
|
97 |
+
matches, _ = get_matches(matches_path, qname, image.name)
|
98 |
+
matches = matches[points3D_ids[matches[:, 1]] != -1]
|
99 |
+
num_matches += len(matches)
|
100 |
+
for idx, m in matches:
|
101 |
+
id_3D = points3D_ids[m]
|
102 |
+
kp_idx_to_3D_to_db[idx][id_3D].append(i)
|
103 |
+
# avoid duplicate observations
|
104 |
+
if id_3D not in kp_idx_to_3D[idx]:
|
105 |
+
kp_idx_to_3D[idx].append(id_3D)
|
106 |
+
|
107 |
+
idxs = list(kp_idx_to_3D.keys())
|
108 |
+
mkp_idxs = [i for i in idxs for _ in kp_idx_to_3D[i]]
|
109 |
+
mp3d_ids = [j for i in idxs for j in kp_idx_to_3D[i]]
|
110 |
+
ret = localizer.localize(kpq, mkp_idxs, mp3d_ids, query_camera, **kwargs)
|
111 |
+
if ret is not None:
|
112 |
+
ret["camera"] = query_camera
|
113 |
+
|
114 |
+
# mostly for logging and post-processing
|
115 |
+
mkp_to_3D_to_db = [
|
116 |
+
(j, kp_idx_to_3D_to_db[i][j]) for i in idxs for j in kp_idx_to_3D[i]
|
117 |
+
]
|
118 |
+
log = {
|
119 |
+
"db": db_ids,
|
120 |
+
"PnP_ret": ret,
|
121 |
+
"keypoints_query": kpq[mkp_idxs],
|
122 |
+
"points3D_ids": mp3d_ids,
|
123 |
+
"points3D_xyz": None, # we don't log xyz anymore because of file size
|
124 |
+
"num_matches": num_matches,
|
125 |
+
"keypoint_index_to_db": (mkp_idxs, mkp_to_3D_to_db),
|
126 |
+
}
|
127 |
+
return ret, log
|
128 |
+
|
129 |
+
|
130 |
+
def main(
|
131 |
+
reference_sfm: Union[Path, pycolmap.Reconstruction],
|
132 |
+
queries: Path,
|
133 |
+
retrieval: Path,
|
134 |
+
features: Path,
|
135 |
+
matches: Path,
|
136 |
+
results: Path,
|
137 |
+
ransac_thresh: int = 12,
|
138 |
+
covisibility_clustering: bool = False,
|
139 |
+
prepend_camera_name: bool = False,
|
140 |
+
config: Dict = None,
|
141 |
+
):
|
142 |
+
assert retrieval.exists(), retrieval
|
143 |
+
assert features.exists(), features
|
144 |
+
assert matches.exists(), matches
|
145 |
+
|
146 |
+
queries = parse_image_lists(queries, with_intrinsics=True)
|
147 |
+
retrieval_dict = parse_retrieval(retrieval)
|
148 |
+
|
149 |
+
logger.info("Reading the 3D model...")
|
150 |
+
if not isinstance(reference_sfm, pycolmap.Reconstruction):
|
151 |
+
reference_sfm = pycolmap.Reconstruction(reference_sfm)
|
152 |
+
db_name_to_id = {img.name: i for i, img in reference_sfm.images.items()}
|
153 |
+
|
154 |
+
config = {
|
155 |
+
"estimation": {"ransac": {"max_error": ransac_thresh}},
|
156 |
+
**(config or {}),
|
157 |
+
}
|
158 |
+
localizer = QueryLocalizer(reference_sfm, config)
|
159 |
+
|
160 |
+
cam_from_world = {}
|
161 |
+
logs = {
|
162 |
+
"features": features,
|
163 |
+
"matches": matches,
|
164 |
+
"retrieval": retrieval,
|
165 |
+
"loc": {},
|
166 |
+
}
|
167 |
+
logger.info("Starting localization...")
|
168 |
+
for qname, qcam in tqdm(queries):
|
169 |
+
if qname not in retrieval_dict:
|
170 |
+
logger.warning(
|
171 |
+
f"No images retrieved for query image {qname}. Skipping..."
|
172 |
+
)
|
173 |
+
continue
|
174 |
+
db_names = retrieval_dict[qname]
|
175 |
+
db_ids = []
|
176 |
+
for n in db_names:
|
177 |
+
if n not in db_name_to_id:
|
178 |
+
logger.warning(f"Image {n} was retrieved but not in database")
|
179 |
+
continue
|
180 |
+
db_ids.append(db_name_to_id[n])
|
181 |
+
|
182 |
+
if covisibility_clustering:
|
183 |
+
clusters = do_covisibility_clustering(db_ids, reference_sfm)
|
184 |
+
best_inliers = 0
|
185 |
+
best_cluster = None
|
186 |
+
logs_clusters = []
|
187 |
+
for i, cluster_ids in enumerate(clusters):
|
188 |
+
ret, log = pose_from_cluster(
|
189 |
+
localizer, qname, qcam, cluster_ids, features, matches
|
190 |
+
)
|
191 |
+
if ret is not None and ret["num_inliers"] > best_inliers:
|
192 |
+
best_cluster = i
|
193 |
+
best_inliers = ret["num_inliers"]
|
194 |
+
logs_clusters.append(log)
|
195 |
+
if best_cluster is not None:
|
196 |
+
ret = logs_clusters[best_cluster]["PnP_ret"]
|
197 |
+
cam_from_world[qname] = ret["cam_from_world"]
|
198 |
+
logs["loc"][qname] = {
|
199 |
+
"db": db_ids,
|
200 |
+
"best_cluster": best_cluster,
|
201 |
+
"log_clusters": logs_clusters,
|
202 |
+
"covisibility_clustering": covisibility_clustering,
|
203 |
+
}
|
204 |
+
else:
|
205 |
+
ret, log = pose_from_cluster(
|
206 |
+
localizer, qname, qcam, db_ids, features, matches
|
207 |
+
)
|
208 |
+
if ret is not None:
|
209 |
+
cam_from_world[qname] = ret["cam_from_world"]
|
210 |
+
else:
|
211 |
+
closest = reference_sfm.images[db_ids[0]]
|
212 |
+
cam_from_world[qname] = closest.cam_from_world
|
213 |
+
log["covisibility_clustering"] = covisibility_clustering
|
214 |
+
logs["loc"][qname] = log
|
215 |
+
|
216 |
+
logger.info(f"Localized {len(cam_from_world)} / {len(queries)} images.")
|
217 |
+
logger.info(f"Writing poses to {results}...")
|
218 |
+
with open(results, "w") as f:
|
219 |
+
for query, t in cam_from_world.items():
|
220 |
+
qvec = " ".join(map(str, t.rotation.quat[[3, 0, 1, 2]]))
|
221 |
+
tvec = " ".join(map(str, t.translation))
|
222 |
+
name = query.split("/")[-1]
|
223 |
+
if prepend_camera_name:
|
224 |
+
name = query.split("/")[-2] + "/" + name
|
225 |
+
f.write(f"{name} {qvec} {tvec}\n")
|
226 |
+
|
227 |
+
logs_path = f"{results}_logs.pkl"
|
228 |
+
logger.info(f"Writing logs to {logs_path}...")
|
229 |
+
# TODO: Resolve pickling issue with pycolmap objects.
|
230 |
+
with open(logs_path, "wb") as f:
|
231 |
+
pickle.dump(logs, f)
|
232 |
+
logger.info("Done!")
|
233 |
+
|
234 |
+
|
235 |
+
if __name__ == "__main__":
|
236 |
+
parser = argparse.ArgumentParser()
|
237 |
+
parser.add_argument("--reference_sfm", type=Path, required=True)
|
238 |
+
parser.add_argument("--queries", type=Path, required=True)
|
239 |
+
parser.add_argument("--features", type=Path, required=True)
|
240 |
+
parser.add_argument("--matches", type=Path, required=True)
|
241 |
+
parser.add_argument("--retrieval", type=Path, required=True)
|
242 |
+
parser.add_argument("--results", type=Path, required=True)
|
243 |
+
parser.add_argument("--ransac_thresh", type=float, default=12.0)
|
244 |
+
parser.add_argument("--covisibility_clustering", action="store_true")
|
245 |
+
parser.add_argument("--prepend_camera_name", action="store_true")
|
246 |
+
args = parser.parse_args()
|
247 |
+
main(**args.__dict__)
|
hloc/match_dense.py
ADDED
@@ -0,0 +1,1121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import pprint
|
3 |
+
from collections import Counter, defaultdict
|
4 |
+
from itertools import chain
|
5 |
+
from pathlib import Path
|
6 |
+
from types import SimpleNamespace
|
7 |
+
from typing import Dict, Iterable, List, Optional, Set, Tuple, Union
|
8 |
+
|
9 |
+
import cv2
|
10 |
+
import h5py
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torchvision.transforms.functional as F
|
14 |
+
from scipy.spatial import KDTree
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
from . import logger, matchers
|
18 |
+
from .extract_features import read_image, resize_image
|
19 |
+
from .match_features import find_unique_new_pairs
|
20 |
+
from .utils.base_model import dynamic_load
|
21 |
+
from .utils.io import list_h5_names
|
22 |
+
from .utils.parsers import names_to_pair, parse_retrieval
|
23 |
+
|
24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
+
|
26 |
+
confs = {
|
27 |
+
# Best quality but loads of points. Only use for small scenes
|
28 |
+
"loftr": {
|
29 |
+
"output": "matches-loftr",
|
30 |
+
"model": {
|
31 |
+
"name": "loftr",
|
32 |
+
"weights": "outdoor",
|
33 |
+
"max_keypoints": 2000,
|
34 |
+
"match_threshold": 0.2,
|
35 |
+
},
|
36 |
+
"preprocessing": {
|
37 |
+
"grayscale": True,
|
38 |
+
"resize_max": 1024,
|
39 |
+
"dfactor": 8,
|
40 |
+
"width": 640,
|
41 |
+
"height": 480,
|
42 |
+
"force_resize": True,
|
43 |
+
},
|
44 |
+
"max_error": 1, # max error for assigned keypoints (in px)
|
45 |
+
"cell_size": 1, # size of quantization patch (max 1 kp/patch)
|
46 |
+
},
|
47 |
+
"eloftr": {
|
48 |
+
"output": "matches-eloftr",
|
49 |
+
"model": {
|
50 |
+
"name": "eloftr",
|
51 |
+
"weights": "weights/eloftr_outdoor.ckpt",
|
52 |
+
"max_keypoints": 2000,
|
53 |
+
"match_threshold": 0.2,
|
54 |
+
},
|
55 |
+
"preprocessing": {
|
56 |
+
"grayscale": True,
|
57 |
+
"resize_max": 1024,
|
58 |
+
"dfactor": 32,
|
59 |
+
"width": 640,
|
60 |
+
"height": 480,
|
61 |
+
"force_resize": True,
|
62 |
+
},
|
63 |
+
"max_error": 1, # max error for assigned keypoints (in px)
|
64 |
+
"cell_size": 1, # size of quantization patch (max 1 kp/patch)
|
65 |
+
},
|
66 |
+
# "loftr_quadtree": {
|
67 |
+
# "output": "matches-loftr-quadtree",
|
68 |
+
# "model": {
|
69 |
+
# "name": "quadtree",
|
70 |
+
# "weights": "outdoor",
|
71 |
+
# "max_keypoints": 2000,
|
72 |
+
# "match_threshold": 0.2,
|
73 |
+
# },
|
74 |
+
# "preprocessing": {
|
75 |
+
# "grayscale": True,
|
76 |
+
# "resize_max": 1024,
|
77 |
+
# "dfactor": 8,
|
78 |
+
# "width": 640,
|
79 |
+
# "height": 480,
|
80 |
+
# "force_resize": True,
|
81 |
+
# },
|
82 |
+
# "max_error": 1, # max error for assigned keypoints (in px)
|
83 |
+
# "cell_size": 1, # size of quantization patch (max 1 kp/patch)
|
84 |
+
# },
|
85 |
+
"cotr": {
|
86 |
+
"output": "matches-cotr",
|
87 |
+
"model": {
|
88 |
+
"name": "cotr",
|
89 |
+
"weights": "out/default",
|
90 |
+
"max_keypoints": 2000,
|
91 |
+
"match_threshold": 0.2,
|
92 |
+
},
|
93 |
+
"preprocessing": {
|
94 |
+
"grayscale": False,
|
95 |
+
"resize_max": 1024,
|
96 |
+
"dfactor": 8,
|
97 |
+
"width": 640,
|
98 |
+
"height": 480,
|
99 |
+
"force_resize": True,
|
100 |
+
},
|
101 |
+
"max_error": 1, # max error for assigned keypoints (in px)
|
102 |
+
"cell_size": 1, # size of quantization patch (max 1 kp/patch)
|
103 |
+
},
|
104 |
+
# Semi-scalable loftr which limits detected keypoints
|
105 |
+
"loftr_aachen": {
|
106 |
+
"output": "matches-loftr_aachen",
|
107 |
+
"model": {
|
108 |
+
"name": "loftr",
|
109 |
+
"weights": "outdoor",
|
110 |
+
"max_keypoints": 2000,
|
111 |
+
"match_threshold": 0.2,
|
112 |
+
},
|
113 |
+
"preprocessing": {
|
114 |
+
"grayscale": True,
|
115 |
+
"resize_max": 1024,
|
116 |
+
"dfactor": 8,
|
117 |
+
"width": 640,
|
118 |
+
"height": 480,
|
119 |
+
"force_resize": True,
|
120 |
+
},
|
121 |
+
"max_error": 2, # max error for assigned keypoints (in px)
|
122 |
+
"cell_size": 8, # size of quantization patch (max 1 kp/patch)
|
123 |
+
},
|
124 |
+
# Use for matching superpoint feats with loftr
|
125 |
+
"loftr_superpoint": {
|
126 |
+
"output": "matches-loftr_aachen",
|
127 |
+
"model": {
|
128 |
+
"name": "loftr",
|
129 |
+
"weights": "outdoor",
|
130 |
+
"max_keypoints": 2000,
|
131 |
+
"match_threshold": 0.2,
|
132 |
+
},
|
133 |
+
"preprocessing": {
|
134 |
+
"grayscale": True,
|
135 |
+
"resize_max": 1024,
|
136 |
+
"dfactor": 8,
|
137 |
+
"width": 640,
|
138 |
+
"height": 480,
|
139 |
+
"force_resize": True,
|
140 |
+
},
|
141 |
+
"max_error": 4, # max error for assigned keypoints (in px)
|
142 |
+
"cell_size": 4, # size of quantization patch (max 1 kp/patch)
|
143 |
+
},
|
144 |
+
# Use topicfm for matching feats
|
145 |
+
"topicfm": {
|
146 |
+
"output": "matches-topicfm",
|
147 |
+
"model": {
|
148 |
+
"name": "topicfm",
|
149 |
+
"weights": "outdoor",
|
150 |
+
"max_keypoints": 2000,
|
151 |
+
"match_threshold": 0.2,
|
152 |
+
},
|
153 |
+
"preprocessing": {
|
154 |
+
"grayscale": True,
|
155 |
+
"force_resize": True,
|
156 |
+
"resize_max": 1024,
|
157 |
+
"dfactor": 8,
|
158 |
+
"width": 640,
|
159 |
+
"height": 480,
|
160 |
+
},
|
161 |
+
},
|
162 |
+
# Use aspanformer for matching feats
|
163 |
+
"aspanformer": {
|
164 |
+
"output": "matches-aspanformer",
|
165 |
+
"model": {
|
166 |
+
"name": "aspanformer",
|
167 |
+
"weights": "outdoor",
|
168 |
+
"max_keypoints": 2000,
|
169 |
+
"match_threshold": 0.2,
|
170 |
+
},
|
171 |
+
"preprocessing": {
|
172 |
+
"grayscale": True,
|
173 |
+
"force_resize": True,
|
174 |
+
"resize_max": 1024,
|
175 |
+
"width": 640,
|
176 |
+
"height": 480,
|
177 |
+
"dfactor": 8,
|
178 |
+
},
|
179 |
+
},
|
180 |
+
"duster": {
|
181 |
+
"output": "matches-duster",
|
182 |
+
"model": {
|
183 |
+
"name": "duster",
|
184 |
+
"weights": "vit_large",
|
185 |
+
"max_keypoints": 2000,
|
186 |
+
"match_threshold": 0.2,
|
187 |
+
},
|
188 |
+
"preprocessing": {
|
189 |
+
"grayscale": False,
|
190 |
+
"resize_max": 512,
|
191 |
+
"dfactor": 16,
|
192 |
+
},
|
193 |
+
},
|
194 |
+
"mast3r": {
|
195 |
+
"output": "matches-mast3r",
|
196 |
+
"model": {
|
197 |
+
"name": "mast3r",
|
198 |
+
"weights": "vit_large",
|
199 |
+
"max_keypoints": 2000,
|
200 |
+
"match_threshold": 0.2,
|
201 |
+
},
|
202 |
+
"preprocessing": {
|
203 |
+
"grayscale": False,
|
204 |
+
"resize_max": 512,
|
205 |
+
"dfactor": 16,
|
206 |
+
},
|
207 |
+
},
|
208 |
+
"xfeat_lightglue": {
|
209 |
+
"output": "matches-xfeat_lightglue",
|
210 |
+
"model": {
|
211 |
+
"name": "xfeat_lightglue",
|
212 |
+
"max_keypoints": 8000,
|
213 |
+
},
|
214 |
+
"preprocessing": {
|
215 |
+
"grayscale": False,
|
216 |
+
"force_resize": False,
|
217 |
+
"resize_max": 1024,
|
218 |
+
"width": 640,
|
219 |
+
"height": 480,
|
220 |
+
"dfactor": 8,
|
221 |
+
},
|
222 |
+
},
|
223 |
+
"xfeat_dense": {
|
224 |
+
"output": "matches-xfeat_dense",
|
225 |
+
"model": {
|
226 |
+
"name": "xfeat_dense",
|
227 |
+
"max_keypoints": 8000,
|
228 |
+
},
|
229 |
+
"preprocessing": {
|
230 |
+
"grayscale": False,
|
231 |
+
"force_resize": False,
|
232 |
+
"resize_max": 1024,
|
233 |
+
"width": 640,
|
234 |
+
"height": 480,
|
235 |
+
"dfactor": 8,
|
236 |
+
},
|
237 |
+
},
|
238 |
+
"dkm": {
|
239 |
+
"output": "matches-dkm",
|
240 |
+
"model": {
|
241 |
+
"name": "dkm",
|
242 |
+
"weights": "outdoor",
|
243 |
+
"max_keypoints": 2000,
|
244 |
+
"match_threshold": 0.2,
|
245 |
+
},
|
246 |
+
"preprocessing": {
|
247 |
+
"grayscale": False,
|
248 |
+
"force_resize": True,
|
249 |
+
"resize_max": 1024,
|
250 |
+
"width": 80,
|
251 |
+
"height": 60,
|
252 |
+
"dfactor": 8,
|
253 |
+
},
|
254 |
+
},
|
255 |
+
"roma": {
|
256 |
+
"output": "matches-roma",
|
257 |
+
"model": {
|
258 |
+
"name": "roma",
|
259 |
+
"weights": "outdoor",
|
260 |
+
"max_keypoints": 2000,
|
261 |
+
"match_threshold": 0.2,
|
262 |
+
},
|
263 |
+
"preprocessing": {
|
264 |
+
"grayscale": False,
|
265 |
+
"force_resize": True,
|
266 |
+
"resize_max": 1024,
|
267 |
+
"width": 320,
|
268 |
+
"height": 240,
|
269 |
+
"dfactor": 8,
|
270 |
+
},
|
271 |
+
},
|
272 |
+
"gim(dkm)": {
|
273 |
+
"output": "matches-gim",
|
274 |
+
"model": {
|
275 |
+
"name": "gim",
|
276 |
+
"weights": "gim_dkm_100h.ckpt",
|
277 |
+
"max_keypoints": 2000,
|
278 |
+
"match_threshold": 0.2,
|
279 |
+
},
|
280 |
+
"preprocessing": {
|
281 |
+
"grayscale": False,
|
282 |
+
"force_resize": True,
|
283 |
+
"resize_max": 1024,
|
284 |
+
"width": 320,
|
285 |
+
"height": 240,
|
286 |
+
"dfactor": 8,
|
287 |
+
},
|
288 |
+
},
|
289 |
+
"omniglue": {
|
290 |
+
"output": "matches-omniglue",
|
291 |
+
"model": {
|
292 |
+
"name": "omniglue",
|
293 |
+
"match_threshold": 0.2,
|
294 |
+
"max_keypoints": 2000,
|
295 |
+
"features": "null",
|
296 |
+
},
|
297 |
+
"preprocessing": {
|
298 |
+
"grayscale": False,
|
299 |
+
"resize_max": 1024,
|
300 |
+
"dfactor": 8,
|
301 |
+
"force_resize": False,
|
302 |
+
"resize_max": 1024,
|
303 |
+
"width": 640,
|
304 |
+
"height": 480,
|
305 |
+
"dfactor": 8,
|
306 |
+
},
|
307 |
+
},
|
308 |
+
"sold2": {
|
309 |
+
"output": "matches-sold2",
|
310 |
+
"model": {
|
311 |
+
"name": "sold2",
|
312 |
+
"max_keypoints": 2000,
|
313 |
+
"match_threshold": 0.2,
|
314 |
+
},
|
315 |
+
"preprocessing": {
|
316 |
+
"grayscale": True,
|
317 |
+
"force_resize": True,
|
318 |
+
"resize_max": 1024,
|
319 |
+
"width": 640,
|
320 |
+
"height": 480,
|
321 |
+
"dfactor": 8,
|
322 |
+
},
|
323 |
+
},
|
324 |
+
"gluestick": {
|
325 |
+
"output": "matches-gluestick",
|
326 |
+
"model": {
|
327 |
+
"name": "gluestick",
|
328 |
+
"use_lines": True,
|
329 |
+
"max_keypoints": 1000,
|
330 |
+
"max_lines": 300,
|
331 |
+
"force_num_keypoints": False,
|
332 |
+
},
|
333 |
+
"preprocessing": {
|
334 |
+
"grayscale": True,
|
335 |
+
"force_resize": True,
|
336 |
+
"resize_max": 1024,
|
337 |
+
"width": 640,
|
338 |
+
"height": 480,
|
339 |
+
"dfactor": 8,
|
340 |
+
},
|
341 |
+
},
|
342 |
+
}
|
343 |
+
|
344 |
+
|
345 |
+
def to_cpts(kpts, ps):
|
346 |
+
if ps > 0.0:
|
347 |
+
kpts = np.round(np.round((kpts + 0.5) / ps) * ps - 0.5, 2)
|
348 |
+
return [tuple(cpt) for cpt in kpts]
|
349 |
+
|
350 |
+
|
351 |
+
def assign_keypoints(
|
352 |
+
kpts: np.ndarray,
|
353 |
+
other_cpts: Union[List[Tuple], np.ndarray],
|
354 |
+
max_error: float,
|
355 |
+
update: bool = False,
|
356 |
+
ref_bins: Optional[List[Counter]] = None,
|
357 |
+
scores: Optional[np.ndarray] = None,
|
358 |
+
cell_size: Optional[int] = None,
|
359 |
+
):
|
360 |
+
if not update:
|
361 |
+
# Without update this is just a NN search
|
362 |
+
if len(other_cpts) == 0 or len(kpts) == 0:
|
363 |
+
return np.full(len(kpts), -1)
|
364 |
+
dist, kpt_ids = KDTree(np.array(other_cpts)).query(kpts)
|
365 |
+
valid = dist <= max_error
|
366 |
+
kpt_ids[~valid] = -1
|
367 |
+
return kpt_ids
|
368 |
+
else:
|
369 |
+
ps = cell_size if cell_size is not None else max_error
|
370 |
+
ps = max(ps, max_error)
|
371 |
+
# With update we quantize and bin (optionally)
|
372 |
+
assert isinstance(other_cpts, list)
|
373 |
+
kpt_ids = []
|
374 |
+
cpts = to_cpts(kpts, ps)
|
375 |
+
bpts = to_cpts(kpts, int(max_error))
|
376 |
+
cp_to_id = {val: i for i, val in enumerate(other_cpts)}
|
377 |
+
for i, (cpt, bpt) in enumerate(zip(cpts, bpts)):
|
378 |
+
try:
|
379 |
+
kid = cp_to_id[cpt]
|
380 |
+
except KeyError:
|
381 |
+
kid = len(cp_to_id)
|
382 |
+
cp_to_id[cpt] = kid
|
383 |
+
other_cpts.append(cpt)
|
384 |
+
if ref_bins is not None:
|
385 |
+
ref_bins.append(Counter())
|
386 |
+
if ref_bins is not None:
|
387 |
+
score = scores[i] if scores is not None else 1
|
388 |
+
ref_bins[cp_to_id[cpt]][bpt] += score
|
389 |
+
kpt_ids.append(kid)
|
390 |
+
return np.array(kpt_ids)
|
391 |
+
|
392 |
+
|
393 |
+
def get_grouped_ids(array):
|
394 |
+
# Group array indices based on its values
|
395 |
+
# all duplicates are grouped as a set
|
396 |
+
idx_sort = np.argsort(array)
|
397 |
+
sorted_array = array[idx_sort]
|
398 |
+
_, ids, _ = np.unique(sorted_array, return_counts=True, return_index=True)
|
399 |
+
res = np.split(idx_sort, ids[1:])
|
400 |
+
return res
|
401 |
+
|
402 |
+
|
403 |
+
def get_unique_matches(match_ids, scores):
|
404 |
+
if len(match_ids.shape) == 1:
|
405 |
+
return [0]
|
406 |
+
|
407 |
+
isets1 = get_grouped_ids(match_ids[:, 0])
|
408 |
+
isets2 = get_grouped_ids(match_ids[:, 1])
|
409 |
+
uid1s = [ids[scores[ids].argmax()] for ids in isets1 if len(ids) > 0]
|
410 |
+
uid2s = [ids[scores[ids].argmax()] for ids in isets2 if len(ids) > 0]
|
411 |
+
uids = list(set(uid1s).intersection(uid2s))
|
412 |
+
return match_ids[uids], scores[uids]
|
413 |
+
|
414 |
+
|
415 |
+
def matches_to_matches0(matches, scores):
|
416 |
+
if len(matches) == 0:
|
417 |
+
return np.zeros(0, dtype=np.int32), np.zeros(0, dtype=np.float16)
|
418 |
+
n_kps0 = np.max(matches[:, 0]) + 1
|
419 |
+
matches0 = -np.ones((n_kps0,))
|
420 |
+
scores0 = np.zeros((n_kps0,))
|
421 |
+
matches0[matches[:, 0]] = matches[:, 1]
|
422 |
+
scores0[matches[:, 0]] = scores
|
423 |
+
return matches0.astype(np.int32), scores0.astype(np.float16)
|
424 |
+
|
425 |
+
|
426 |
+
def kpids_to_matches0(kpt_ids0, kpt_ids1, scores):
|
427 |
+
valid = (kpt_ids0 != -1) & (kpt_ids1 != -1)
|
428 |
+
matches = np.dstack([kpt_ids0[valid], kpt_ids1[valid]])
|
429 |
+
matches = matches.reshape(-1, 2)
|
430 |
+
scores = scores[valid]
|
431 |
+
|
432 |
+
# Remove n-to-1 matches
|
433 |
+
matches, scores = get_unique_matches(matches, scores)
|
434 |
+
return matches_to_matches0(matches, scores)
|
435 |
+
|
436 |
+
|
437 |
+
def scale_keypoints(kpts, scale):
|
438 |
+
if np.any(scale != 1.0):
|
439 |
+
kpts *= kpts.new_tensor(scale)
|
440 |
+
return kpts
|
441 |
+
|
442 |
+
|
443 |
+
class ImagePairDataset(torch.utils.data.Dataset):
|
444 |
+
default_conf = {
|
445 |
+
"grayscale": True,
|
446 |
+
"resize_max": 1024,
|
447 |
+
"dfactor": 8,
|
448 |
+
"cache_images": False,
|
449 |
+
}
|
450 |
+
|
451 |
+
def __init__(self, image_dir, conf, pairs):
|
452 |
+
self.image_dir = image_dir
|
453 |
+
self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
|
454 |
+
self.pairs = pairs
|
455 |
+
if self.conf.cache_images:
|
456 |
+
image_names = set(sum(pairs, ())) # unique image names in pairs
|
457 |
+
logger.info(
|
458 |
+
f"Loading and caching {len(image_names)} unique images."
|
459 |
+
)
|
460 |
+
self.images = {}
|
461 |
+
self.scales = {}
|
462 |
+
for name in tqdm(image_names):
|
463 |
+
image = read_image(self.image_dir / name, self.conf.grayscale)
|
464 |
+
self.images[name], self.scales[name] = self.preprocess(image)
|
465 |
+
|
466 |
+
def preprocess(self, image: np.ndarray):
|
467 |
+
image = image.astype(np.float32, copy=False)
|
468 |
+
size = image.shape[:2][::-1]
|
469 |
+
scale = np.array([1.0, 1.0])
|
470 |
+
|
471 |
+
if self.conf.resize_max:
|
472 |
+
scale = self.conf.resize_max / max(size)
|
473 |
+
if scale < 1.0:
|
474 |
+
size_new = tuple(int(round(x * scale)) for x in size)
|
475 |
+
image = resize_image(image, size_new, "cv2_area")
|
476 |
+
scale = np.array(size) / np.array(size_new)
|
477 |
+
|
478 |
+
if self.conf.grayscale:
|
479 |
+
assert image.ndim == 2, image.shape
|
480 |
+
image = image[None]
|
481 |
+
else:
|
482 |
+
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
|
483 |
+
image = torch.from_numpy(image / 255.0).float()
|
484 |
+
|
485 |
+
# assure that the size is divisible by dfactor
|
486 |
+
size_new = tuple(
|
487 |
+
map(
|
488 |
+
lambda x: int(x // self.conf.dfactor * self.conf.dfactor),
|
489 |
+
image.shape[-2:],
|
490 |
+
)
|
491 |
+
)
|
492 |
+
image = F.resize(image, size=size_new)
|
493 |
+
scale = np.array(size) / np.array(size_new)[::-1]
|
494 |
+
return image, scale
|
495 |
+
|
496 |
+
def __len__(self):
|
497 |
+
return len(self.pairs)
|
498 |
+
|
499 |
+
def __getitem__(self, idx):
|
500 |
+
name0, name1 = self.pairs[idx]
|
501 |
+
if self.conf.cache_images:
|
502 |
+
image0, scale0 = self.images[name0], self.scales[name0]
|
503 |
+
image1, scale1 = self.images[name1], self.scales[name1]
|
504 |
+
else:
|
505 |
+
image0 = read_image(self.image_dir / name0, self.conf.grayscale)
|
506 |
+
image1 = read_image(self.image_dir / name1, self.conf.grayscale)
|
507 |
+
image0, scale0 = self.preprocess(image0)
|
508 |
+
image1, scale1 = self.preprocess(image1)
|
509 |
+
return image0, image1, scale0, scale1, name0, name1
|
510 |
+
|
511 |
+
|
512 |
+
@torch.no_grad()
|
513 |
+
def match_dense(
|
514 |
+
conf: Dict,
|
515 |
+
pairs: List[Tuple[str, str]],
|
516 |
+
image_dir: Path,
|
517 |
+
match_path: Path, # out
|
518 |
+
existing_refs: Optional[List] = [],
|
519 |
+
):
|
520 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
521 |
+
Model = dynamic_load(matchers, conf["model"]["name"])
|
522 |
+
model = Model(conf["model"]).eval().to(device)
|
523 |
+
|
524 |
+
dataset = ImagePairDataset(image_dir, conf["preprocessing"], pairs)
|
525 |
+
loader = torch.utils.data.DataLoader(
|
526 |
+
dataset, num_workers=16, batch_size=1, shuffle=False
|
527 |
+
)
|
528 |
+
|
529 |
+
logger.info("Performing dense matching...")
|
530 |
+
with h5py.File(str(match_path), "a") as fd:
|
531 |
+
for data in tqdm(loader, smoothing=0.1):
|
532 |
+
# load image-pair data
|
533 |
+
image0, image1, scale0, scale1, (name0,), (name1,) = data
|
534 |
+
scale0, scale1 = scale0[0].numpy(), scale1[0].numpy()
|
535 |
+
image0, image1 = image0.to(device), image1.to(device)
|
536 |
+
|
537 |
+
# match semi-dense
|
538 |
+
# for consistency with pairs_from_*: refine kpts of image0
|
539 |
+
if name0 in existing_refs:
|
540 |
+
# special case: flip to enable refinement in query image
|
541 |
+
pred = model({"image0": image1, "image1": image0})
|
542 |
+
pred = {
|
543 |
+
**pred,
|
544 |
+
"keypoints0": pred["keypoints1"],
|
545 |
+
"keypoints1": pred["keypoints0"],
|
546 |
+
}
|
547 |
+
else:
|
548 |
+
# usual case
|
549 |
+
pred = model({"image0": image0, "image1": image1})
|
550 |
+
|
551 |
+
# Rescale keypoints and move to cpu
|
552 |
+
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
|
553 |
+
kpts0 = scale_keypoints(kpts0 + 0.5, scale0) - 0.5
|
554 |
+
kpts1 = scale_keypoints(kpts1 + 0.5, scale1) - 0.5
|
555 |
+
kpts0 = kpts0.cpu().numpy()
|
556 |
+
kpts1 = kpts1.cpu().numpy()
|
557 |
+
scores = pred["scores"].cpu().numpy()
|
558 |
+
|
559 |
+
# Write matches and matching scores in hloc format
|
560 |
+
pair = names_to_pair(name0, name1)
|
561 |
+
if pair in fd:
|
562 |
+
del fd[pair]
|
563 |
+
grp = fd.create_group(pair)
|
564 |
+
|
565 |
+
# Write dense matching output
|
566 |
+
grp.create_dataset("keypoints0", data=kpts0)
|
567 |
+
grp.create_dataset("keypoints1", data=kpts1)
|
568 |
+
grp.create_dataset("scores", data=scores)
|
569 |
+
del model, loader
|
570 |
+
|
571 |
+
|
572 |
+
# default: quantize all!
|
573 |
+
def load_keypoints(
|
574 |
+
conf: Dict, feature_paths_refs: List[Path], quantize: Optional[set] = None
|
575 |
+
):
|
576 |
+
name2ref = {
|
577 |
+
n: i for i, p in enumerate(feature_paths_refs) for n in list_h5_names(p)
|
578 |
+
}
|
579 |
+
|
580 |
+
existing_refs = set(name2ref.keys())
|
581 |
+
if quantize is None:
|
582 |
+
quantize = existing_refs # quantize all
|
583 |
+
if len(existing_refs) > 0:
|
584 |
+
logger.info(f"Loading keypoints from {len(existing_refs)} images.")
|
585 |
+
|
586 |
+
# Load query keypoints
|
587 |
+
cpdict = defaultdict(list)
|
588 |
+
bindict = defaultdict(list)
|
589 |
+
for name in existing_refs:
|
590 |
+
with h5py.File(str(feature_paths_refs[name2ref[name]]), "r") as fd:
|
591 |
+
kps = fd[name]["keypoints"].__array__()
|
592 |
+
if name not in quantize:
|
593 |
+
cpdict[name] = kps
|
594 |
+
else:
|
595 |
+
if "scores" in fd[name].keys():
|
596 |
+
kp_scores = fd[name]["scores"].__array__()
|
597 |
+
else:
|
598 |
+
# we set the score to 1.0 if not provided
|
599 |
+
# increase for more weight on reference keypoints for
|
600 |
+
# stronger anchoring
|
601 |
+
kp_scores = [1.0 for _ in range(kps.shape[0])]
|
602 |
+
# bin existing keypoints of reference images for association
|
603 |
+
assign_keypoints(
|
604 |
+
kps,
|
605 |
+
cpdict[name],
|
606 |
+
conf["max_error"],
|
607 |
+
True,
|
608 |
+
bindict[name],
|
609 |
+
kp_scores,
|
610 |
+
conf["cell_size"],
|
611 |
+
)
|
612 |
+
return cpdict, bindict
|
613 |
+
|
614 |
+
|
615 |
+
def aggregate_matches(
|
616 |
+
conf: Dict,
|
617 |
+
pairs: List[Tuple[str, str]],
|
618 |
+
match_path: Path,
|
619 |
+
feature_path: Path,
|
620 |
+
required_queries: Optional[Set[str]] = None,
|
621 |
+
max_kps: Optional[int] = None,
|
622 |
+
cpdict: Dict[str, Iterable] = defaultdict(list),
|
623 |
+
bindict: Dict[str, List[Counter]] = defaultdict(list),
|
624 |
+
):
|
625 |
+
if required_queries is None:
|
626 |
+
required_queries = set(sum(pairs, ()))
|
627 |
+
# default: do not overwrite existing features in feature_path!
|
628 |
+
required_queries -= set(list_h5_names(feature_path))
|
629 |
+
|
630 |
+
# if an entry in cpdict is provided as np.ndarray we assume it is fixed
|
631 |
+
required_queries -= set(
|
632 |
+
[k for k, v in cpdict.items() if isinstance(v, np.ndarray)]
|
633 |
+
)
|
634 |
+
|
635 |
+
# sort pairs for reduced RAM
|
636 |
+
pairs_per_q = Counter(list(chain(*pairs)))
|
637 |
+
pairs_score = [min(pairs_per_q[i], pairs_per_q[j]) for i, j in pairs]
|
638 |
+
pairs = [p for _, p in sorted(zip(pairs_score, pairs))]
|
639 |
+
|
640 |
+
if len(required_queries) > 0:
|
641 |
+
logger.info(
|
642 |
+
f"Aggregating keypoints for {len(required_queries)} images."
|
643 |
+
)
|
644 |
+
n_kps = 0
|
645 |
+
with h5py.File(str(match_path), "a") as fd:
|
646 |
+
for name0, name1 in tqdm(pairs, smoothing=0.1):
|
647 |
+
pair = names_to_pair(name0, name1)
|
648 |
+
grp = fd[pair]
|
649 |
+
kpts0 = grp["keypoints0"].__array__()
|
650 |
+
kpts1 = grp["keypoints1"].__array__()
|
651 |
+
scores = grp["scores"].__array__()
|
652 |
+
|
653 |
+
# Aggregate local features
|
654 |
+
update0 = name0 in required_queries
|
655 |
+
update1 = name1 in required_queries
|
656 |
+
|
657 |
+
# in localization we do not want to bin the query kp
|
658 |
+
# assumes that the query is name0!
|
659 |
+
if update0 and not update1 and max_kps is None:
|
660 |
+
max_error0 = cell_size0 = 0.0
|
661 |
+
else:
|
662 |
+
max_error0 = conf["max_error"]
|
663 |
+
cell_size0 = conf["cell_size"]
|
664 |
+
|
665 |
+
# Get match ids and extend query keypoints (cpdict)
|
666 |
+
mkp_ids0 = assign_keypoints(
|
667 |
+
kpts0,
|
668 |
+
cpdict[name0],
|
669 |
+
max_error0,
|
670 |
+
update0,
|
671 |
+
bindict[name0],
|
672 |
+
scores,
|
673 |
+
cell_size0,
|
674 |
+
)
|
675 |
+
mkp_ids1 = assign_keypoints(
|
676 |
+
kpts1,
|
677 |
+
cpdict[name1],
|
678 |
+
conf["max_error"],
|
679 |
+
update1,
|
680 |
+
bindict[name1],
|
681 |
+
scores,
|
682 |
+
conf["cell_size"],
|
683 |
+
)
|
684 |
+
|
685 |
+
# Build matches from assignments
|
686 |
+
matches0, scores0 = kpids_to_matches0(mkp_ids0, mkp_ids1, scores)
|
687 |
+
|
688 |
+
assert kpts0.shape[0] == scores.shape[0]
|
689 |
+
grp.create_dataset("matches0", data=matches0)
|
690 |
+
grp.create_dataset("matching_scores0", data=scores0)
|
691 |
+
|
692 |
+
# Convert bins to kps if finished, and store them
|
693 |
+
for name in (name0, name1):
|
694 |
+
pairs_per_q[name] -= 1
|
695 |
+
if pairs_per_q[name] > 0 or name not in required_queries:
|
696 |
+
continue
|
697 |
+
kp_score = [c.most_common(1)[0][1] for c in bindict[name]]
|
698 |
+
cpdict[name] = [c.most_common(1)[0][0] for c in bindict[name]]
|
699 |
+
cpdict[name] = np.array(cpdict[name], dtype=np.float32)
|
700 |
+
|
701 |
+
# Select top-k query kps by score (reassign matches later)
|
702 |
+
if max_kps:
|
703 |
+
top_k = min(max_kps, cpdict[name].shape[0])
|
704 |
+
top_k = np.argsort(kp_score)[::-1][:top_k]
|
705 |
+
cpdict[name] = cpdict[name][top_k]
|
706 |
+
kp_score = np.array(kp_score)[top_k]
|
707 |
+
|
708 |
+
# Write query keypoints
|
709 |
+
with h5py.File(feature_path, "a") as kfd:
|
710 |
+
if name in kfd:
|
711 |
+
del kfd[name]
|
712 |
+
kgrp = kfd.create_group(name)
|
713 |
+
kgrp.create_dataset("keypoints", data=cpdict[name])
|
714 |
+
kgrp.create_dataset("score", data=kp_score)
|
715 |
+
n_kps += cpdict[name].shape[0]
|
716 |
+
del bindict[name]
|
717 |
+
|
718 |
+
if len(required_queries) > 0:
|
719 |
+
avg_kp_per_image = round(n_kps / len(required_queries), 1)
|
720 |
+
logger.info(
|
721 |
+
f"Finished assignment, found {avg_kp_per_image} "
|
722 |
+
f"keypoints/image (avg.), total {n_kps}."
|
723 |
+
)
|
724 |
+
return cpdict
|
725 |
+
|
726 |
+
|
727 |
+
def assign_matches(
|
728 |
+
pairs: List[Tuple[str, str]],
|
729 |
+
match_path: Path,
|
730 |
+
keypoints: Union[List[Path], Dict[str, np.array]],
|
731 |
+
max_error: float,
|
732 |
+
):
|
733 |
+
if isinstance(keypoints, list):
|
734 |
+
keypoints = load_keypoints({}, keypoints, kpts_as_bin=set([]))
|
735 |
+
assert len(set(sum(pairs, ())) - set(keypoints.keys())) == 0
|
736 |
+
with h5py.File(str(match_path), "a") as fd:
|
737 |
+
for name0, name1 in tqdm(pairs):
|
738 |
+
pair = names_to_pair(name0, name1)
|
739 |
+
grp = fd[pair]
|
740 |
+
kpts0 = grp["keypoints0"].__array__()
|
741 |
+
kpts1 = grp["keypoints1"].__array__()
|
742 |
+
scores = grp["scores"].__array__()
|
743 |
+
|
744 |
+
# NN search across cell boundaries
|
745 |
+
mkp_ids0 = assign_keypoints(kpts0, keypoints[name0], max_error)
|
746 |
+
mkp_ids1 = assign_keypoints(kpts1, keypoints[name1], max_error)
|
747 |
+
|
748 |
+
matches0, scores0 = kpids_to_matches0(mkp_ids0, mkp_ids1, scores)
|
749 |
+
|
750 |
+
# overwrite matches0 and matching_scores0
|
751 |
+
del grp["matches0"], grp["matching_scores0"]
|
752 |
+
grp.create_dataset("matches0", data=matches0)
|
753 |
+
grp.create_dataset("matching_scores0", data=scores0)
|
754 |
+
|
755 |
+
|
756 |
+
@torch.no_grad()
|
757 |
+
def match_and_assign(
|
758 |
+
conf: Dict,
|
759 |
+
pairs_path: Path,
|
760 |
+
image_dir: Path,
|
761 |
+
match_path: Path, # out
|
762 |
+
feature_path_q: Path, # out
|
763 |
+
feature_paths_refs: Optional[List[Path]] = [],
|
764 |
+
max_kps: Optional[int] = 8192,
|
765 |
+
overwrite: bool = False,
|
766 |
+
) -> Path:
|
767 |
+
for path in feature_paths_refs:
|
768 |
+
if not path.exists():
|
769 |
+
raise FileNotFoundError(f"Reference feature file {path}.")
|
770 |
+
pairs = parse_retrieval(pairs_path)
|
771 |
+
pairs = [(q, r) for q, rs in pairs.items() for r in rs]
|
772 |
+
pairs = find_unique_new_pairs(pairs, None if overwrite else match_path)
|
773 |
+
required_queries = set(sum(pairs, ()))
|
774 |
+
|
775 |
+
name2ref = {
|
776 |
+
n: i for i, p in enumerate(feature_paths_refs) for n in list_h5_names(p)
|
777 |
+
}
|
778 |
+
existing_refs = required_queries.intersection(set(name2ref.keys()))
|
779 |
+
|
780 |
+
# images which require feature extraction
|
781 |
+
required_queries = required_queries - existing_refs
|
782 |
+
|
783 |
+
if feature_path_q.exists():
|
784 |
+
existing_queries = set(list_h5_names(feature_path_q))
|
785 |
+
feature_paths_refs.append(feature_path_q)
|
786 |
+
existing_refs = set.union(existing_refs, existing_queries)
|
787 |
+
if not overwrite:
|
788 |
+
required_queries = required_queries - existing_queries
|
789 |
+
|
790 |
+
if len(pairs) == 0 and len(required_queries) == 0:
|
791 |
+
logger.info("All pairs exist. Skipping dense matching.")
|
792 |
+
return
|
793 |
+
|
794 |
+
# extract semi-dense matches
|
795 |
+
match_dense(conf, pairs, image_dir, match_path, existing_refs=existing_refs)
|
796 |
+
|
797 |
+
logger.info("Assigning matches...")
|
798 |
+
|
799 |
+
# Pre-load existing keypoints
|
800 |
+
cpdict, bindict = load_keypoints(
|
801 |
+
conf, feature_paths_refs, quantize=required_queries
|
802 |
+
)
|
803 |
+
|
804 |
+
# Reassign matches by aggregation
|
805 |
+
cpdict = aggregate_matches(
|
806 |
+
conf,
|
807 |
+
pairs,
|
808 |
+
match_path,
|
809 |
+
feature_path=feature_path_q,
|
810 |
+
required_queries=required_queries,
|
811 |
+
max_kps=max_kps,
|
812 |
+
cpdict=cpdict,
|
813 |
+
bindict=bindict,
|
814 |
+
)
|
815 |
+
|
816 |
+
# Invalidate matches that are far from selected bin by reassignment
|
817 |
+
if max_kps is not None:
|
818 |
+
logger.info(f'Reassign matches with max_error={conf["max_error"]}.')
|
819 |
+
assign_matches(pairs, match_path, cpdict, max_error=conf["max_error"])
|
820 |
+
|
821 |
+
|
822 |
+
def scale_lines(lines, scale):
|
823 |
+
if np.any(scale != 1.0):
|
824 |
+
lines *= lines.new_tensor(scale)
|
825 |
+
return lines
|
826 |
+
|
827 |
+
|
828 |
+
def match(model, path_0, path_1, conf):
|
829 |
+
default_conf = {
|
830 |
+
"grayscale": True,
|
831 |
+
"resize_max": 1024,
|
832 |
+
"dfactor": 8,
|
833 |
+
"cache_images": False,
|
834 |
+
"force_resize": False,
|
835 |
+
"width": 320,
|
836 |
+
"height": 240,
|
837 |
+
}
|
838 |
+
|
839 |
+
def preprocess(image: np.ndarray):
|
840 |
+
image = image.astype(np.float32, copy=False)
|
841 |
+
size = image.shape[:2][::-1]
|
842 |
+
scale = np.array([1.0, 1.0])
|
843 |
+
if conf.resize_max:
|
844 |
+
scale = conf.resize_max / max(size)
|
845 |
+
if scale < 1.0:
|
846 |
+
size_new = tuple(int(round(x * scale)) for x in size)
|
847 |
+
image = resize_image(image, size_new, "cv2_area")
|
848 |
+
scale = np.array(size) / np.array(size_new)
|
849 |
+
if conf.force_resize:
|
850 |
+
size = image.shape[:2][::-1]
|
851 |
+
image = resize_image(image, (conf.width, conf.height), "cv2_area")
|
852 |
+
size_new = (conf.width, conf.height)
|
853 |
+
scale = np.array(size) / np.array(size_new)
|
854 |
+
if conf.grayscale:
|
855 |
+
assert image.ndim == 2, image.shape
|
856 |
+
image = image[None]
|
857 |
+
else:
|
858 |
+
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
|
859 |
+
image = torch.from_numpy(image / 255.0).float()
|
860 |
+
# assure that the size is divisible by dfactor
|
861 |
+
size_new = tuple(
|
862 |
+
map(
|
863 |
+
lambda x: int(x // conf.dfactor * conf.dfactor),
|
864 |
+
image.shape[-2:],
|
865 |
+
)
|
866 |
+
)
|
867 |
+
image = F.resize(image, size=size_new, antialias=True)
|
868 |
+
scale = np.array(size) / np.array(size_new)[::-1]
|
869 |
+
return image, scale
|
870 |
+
|
871 |
+
conf = SimpleNamespace(**{**default_conf, **conf})
|
872 |
+
image0 = read_image(path_0, conf.grayscale)
|
873 |
+
image1 = read_image(path_1, conf.grayscale)
|
874 |
+
image0, scale0 = preprocess(image0)
|
875 |
+
image1, scale1 = preprocess(image1)
|
876 |
+
image0 = image0.to(device)[None]
|
877 |
+
image1 = image1.to(device)[None]
|
878 |
+
pred = model({"image0": image0, "image1": image1})
|
879 |
+
|
880 |
+
# Rescale keypoints and move to cpu
|
881 |
+
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
|
882 |
+
kpts0 = scale_keypoints(kpts0 + 0.5, scale0) - 0.5
|
883 |
+
kpts1 = scale_keypoints(kpts1 + 0.5, scale1) - 0.5
|
884 |
+
|
885 |
+
ret = {
|
886 |
+
"image0": image0.squeeze().cpu().numpy(),
|
887 |
+
"image1": image1.squeeze().cpu().numpy(),
|
888 |
+
"keypoints0": kpts0.cpu().numpy(),
|
889 |
+
"keypoints1": kpts1.cpu().numpy(),
|
890 |
+
}
|
891 |
+
if "mconf" in pred.keys():
|
892 |
+
ret["mconf"] = pred["mconf"].cpu().numpy()
|
893 |
+
return ret
|
894 |
+
|
895 |
+
|
896 |
+
@torch.no_grad()
|
897 |
+
def match_images(model, image_0, image_1, conf, device="cpu"):
|
898 |
+
default_conf = {
|
899 |
+
"grayscale": True,
|
900 |
+
"resize_max": 1024,
|
901 |
+
"dfactor": 8,
|
902 |
+
"cache_images": False,
|
903 |
+
"force_resize": False,
|
904 |
+
"width": 320,
|
905 |
+
"height": 240,
|
906 |
+
}
|
907 |
+
|
908 |
+
def preprocess(image: np.ndarray):
|
909 |
+
image = image.astype(np.float32, copy=False)
|
910 |
+
size = image.shape[:2][::-1]
|
911 |
+
scale = np.array([1.0, 1.0])
|
912 |
+
if conf.resize_max:
|
913 |
+
scale = conf.resize_max / max(size)
|
914 |
+
if scale < 1.0:
|
915 |
+
size_new = tuple(int(round(x * scale)) for x in size)
|
916 |
+
image = resize_image(image, size_new, "cv2_area")
|
917 |
+
scale = np.array(size) / np.array(size_new)
|
918 |
+
if conf.force_resize:
|
919 |
+
size = image.shape[:2][::-1]
|
920 |
+
image = resize_image(image, (conf.width, conf.height), "cv2_area")
|
921 |
+
size_new = (conf.width, conf.height)
|
922 |
+
scale = np.array(size) / np.array(size_new)
|
923 |
+
if conf.grayscale:
|
924 |
+
assert image.ndim == 2, image.shape
|
925 |
+
image = image[None]
|
926 |
+
else:
|
927 |
+
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
|
928 |
+
image = torch.from_numpy(image / 255.0).float()
|
929 |
+
|
930 |
+
# assure that the size is divisible by dfactor
|
931 |
+
size_new = tuple(
|
932 |
+
map(
|
933 |
+
lambda x: int(x // conf.dfactor * conf.dfactor),
|
934 |
+
image.shape[-2:],
|
935 |
+
)
|
936 |
+
)
|
937 |
+
image = F.resize(image, size=size_new)
|
938 |
+
scale = np.array(size) / np.array(size_new)[::-1]
|
939 |
+
return image, scale
|
940 |
+
|
941 |
+
conf = SimpleNamespace(**{**default_conf, **conf})
|
942 |
+
|
943 |
+
if len(image_0.shape) == 3 and conf.grayscale:
|
944 |
+
image0 = cv2.cvtColor(image_0, cv2.COLOR_RGB2GRAY)
|
945 |
+
else:
|
946 |
+
image0 = image_0
|
947 |
+
if len(image_0.shape) == 3 and conf.grayscale:
|
948 |
+
image1 = cv2.cvtColor(image_1, cv2.COLOR_RGB2GRAY)
|
949 |
+
else:
|
950 |
+
image1 = image_1
|
951 |
+
|
952 |
+
# comment following lines, image is always RGB mode
|
953 |
+
# if not conf.grayscale and len(image0.shape) == 3:
|
954 |
+
# image0 = image0[:, :, ::-1] # BGR to RGB
|
955 |
+
# if not conf.grayscale and len(image1.shape) == 3:
|
956 |
+
# image1 = image1[:, :, ::-1] # BGR to RGB
|
957 |
+
|
958 |
+
image0, scale0 = preprocess(image0)
|
959 |
+
image1, scale1 = preprocess(image1)
|
960 |
+
image0 = image0.to(device)[None]
|
961 |
+
image1 = image1.to(device)[None]
|
962 |
+
pred = model({"image0": image0, "image1": image1})
|
963 |
+
|
964 |
+
s0 = np.array(image_0.shape[:2][::-1]) / np.array(image0.shape[-2:][::-1])
|
965 |
+
s1 = np.array(image_1.shape[:2][::-1]) / np.array(image1.shape[-2:][::-1])
|
966 |
+
|
967 |
+
# Rescale keypoints and move to cpu
|
968 |
+
if "keypoints0" in pred.keys() and "keypoints1" in pred.keys():
|
969 |
+
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
|
970 |
+
kpts0_origin = scale_keypoints(kpts0 + 0.5, s0) - 0.5
|
971 |
+
kpts1_origin = scale_keypoints(kpts1 + 0.5, s1) - 0.5
|
972 |
+
|
973 |
+
ret = {
|
974 |
+
"image0": image0.squeeze().cpu().numpy(),
|
975 |
+
"image1": image1.squeeze().cpu().numpy(),
|
976 |
+
"image0_orig": image_0,
|
977 |
+
"image1_orig": image_1,
|
978 |
+
"keypoints0": kpts0.cpu().numpy(),
|
979 |
+
"keypoints1": kpts1.cpu().numpy(),
|
980 |
+
"keypoints0_orig": kpts0_origin.cpu().numpy(),
|
981 |
+
"keypoints1_orig": kpts1_origin.cpu().numpy(),
|
982 |
+
"mkeypoints0": kpts0.cpu().numpy(),
|
983 |
+
"mkeypoints1": kpts1.cpu().numpy(),
|
984 |
+
"mkeypoints0_orig": kpts0_origin.cpu().numpy(),
|
985 |
+
"mkeypoints1_orig": kpts1_origin.cpu().numpy(),
|
986 |
+
"original_size0": np.array(image_0.shape[:2][::-1]),
|
987 |
+
"original_size1": np.array(image_1.shape[:2][::-1]),
|
988 |
+
"new_size0": np.array(image0.shape[-2:][::-1]),
|
989 |
+
"new_size1": np.array(image1.shape[-2:][::-1]),
|
990 |
+
"scale0": s0,
|
991 |
+
"scale1": s1,
|
992 |
+
}
|
993 |
+
if "mconf" in pred.keys():
|
994 |
+
ret["mconf"] = pred["mconf"].cpu().numpy()
|
995 |
+
elif "scores" in pred.keys(): # adapting loftr
|
996 |
+
ret["mconf"] = pred["scores"].cpu().numpy()
|
997 |
+
else:
|
998 |
+
ret["mconf"] = np.ones_like(kpts0.cpu().numpy()[:, 0])
|
999 |
+
if "lines0" in pred.keys() and "lines1" in pred.keys():
|
1000 |
+
if "keypoints0" in pred.keys() and "keypoints1" in pred.keys():
|
1001 |
+
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
|
1002 |
+
kpts0_origin = scale_keypoints(kpts0 + 0.5, s0) - 0.5
|
1003 |
+
kpts1_origin = scale_keypoints(kpts1 + 0.5, s1) - 0.5
|
1004 |
+
kpts0_origin = kpts0_origin.cpu().numpy()
|
1005 |
+
kpts1_origin = kpts1_origin.cpu().numpy()
|
1006 |
+
else:
|
1007 |
+
kpts0_origin, kpts1_origin = (
|
1008 |
+
None,
|
1009 |
+
None,
|
1010 |
+
) # np.zeros([0]), np.zeros([0])
|
1011 |
+
lines0, lines1 = pred["lines0"], pred["lines1"]
|
1012 |
+
lines0_raw, lines1_raw = pred["raw_lines0"], pred["raw_lines1"]
|
1013 |
+
|
1014 |
+
lines0_raw = torch.from_numpy(lines0_raw.copy())
|
1015 |
+
lines1_raw = torch.from_numpy(lines1_raw.copy())
|
1016 |
+
lines0_raw = scale_lines(lines0_raw + 0.5, s0) - 0.5
|
1017 |
+
lines1_raw = scale_lines(lines1_raw + 0.5, s1) - 0.5
|
1018 |
+
|
1019 |
+
lines0 = torch.from_numpy(lines0.copy())
|
1020 |
+
lines1 = torch.from_numpy(lines1.copy())
|
1021 |
+
lines0 = scale_lines(lines0 + 0.5, s0) - 0.5
|
1022 |
+
lines1 = scale_lines(lines1 + 0.5, s1) - 0.5
|
1023 |
+
|
1024 |
+
ret = {
|
1025 |
+
"image0_orig": image_0,
|
1026 |
+
"image1_orig": image_1,
|
1027 |
+
"line0": lines0_raw.cpu().numpy(),
|
1028 |
+
"line1": lines1_raw.cpu().numpy(),
|
1029 |
+
"line0_orig": lines0.cpu().numpy(),
|
1030 |
+
"line1_orig": lines1.cpu().numpy(),
|
1031 |
+
"line_keypoints0_orig": kpts0_origin,
|
1032 |
+
"line_keypoints1_orig": kpts1_origin,
|
1033 |
+
}
|
1034 |
+
del pred
|
1035 |
+
torch.cuda.empty_cache()
|
1036 |
+
return ret
|
1037 |
+
|
1038 |
+
|
1039 |
+
@torch.no_grad()
|
1040 |
+
def main(
|
1041 |
+
conf: Dict,
|
1042 |
+
pairs: Path,
|
1043 |
+
image_dir: Path,
|
1044 |
+
export_dir: Optional[Path] = None,
|
1045 |
+
matches: Optional[Path] = None, # out
|
1046 |
+
features: Optional[Path] = None, # out
|
1047 |
+
features_ref: Optional[Path] = None,
|
1048 |
+
max_kps: Optional[int] = 8192,
|
1049 |
+
overwrite: bool = False,
|
1050 |
+
) -> Path:
|
1051 |
+
logger.info(
|
1052 |
+
"Extracting semi-dense features with configuration:"
|
1053 |
+
f"\n{pprint.pformat(conf)}"
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
if features is None:
|
1057 |
+
features = "feats_"
|
1058 |
+
|
1059 |
+
if isinstance(features, Path):
|
1060 |
+
features_q = features
|
1061 |
+
if matches is None:
|
1062 |
+
raise ValueError(
|
1063 |
+
"Either provide both features and matches as Path"
|
1064 |
+
" or both as names."
|
1065 |
+
)
|
1066 |
+
else:
|
1067 |
+
if export_dir is None:
|
1068 |
+
raise ValueError(
|
1069 |
+
"Provide an export_dir if features and matches"
|
1070 |
+
f" are not file paths: {features}, {matches}."
|
1071 |
+
)
|
1072 |
+
features_q = Path(export_dir, f'{features}{conf["output"]}.h5')
|
1073 |
+
if matches is None:
|
1074 |
+
matches = Path(export_dir, f'{conf["output"]}_{pairs.stem}.h5')
|
1075 |
+
|
1076 |
+
if features_ref is None:
|
1077 |
+
features_ref = []
|
1078 |
+
elif isinstance(features_ref, list):
|
1079 |
+
features_ref = list(features_ref)
|
1080 |
+
elif isinstance(features_ref, Path):
|
1081 |
+
features_ref = [features_ref]
|
1082 |
+
else:
|
1083 |
+
raise TypeError(str(features_ref))
|
1084 |
+
|
1085 |
+
match_and_assign(
|
1086 |
+
conf,
|
1087 |
+
pairs,
|
1088 |
+
image_dir,
|
1089 |
+
matches,
|
1090 |
+
features_q,
|
1091 |
+
features_ref,
|
1092 |
+
max_kps,
|
1093 |
+
overwrite,
|
1094 |
+
)
|
1095 |
+
|
1096 |
+
return features_q, matches
|
1097 |
+
|
1098 |
+
|
1099 |
+
if __name__ == "__main__":
|
1100 |
+
parser = argparse.ArgumentParser()
|
1101 |
+
parser.add_argument("--pairs", type=Path, required=True)
|
1102 |
+
parser.add_argument("--image_dir", type=Path, required=True)
|
1103 |
+
parser.add_argument("--export_dir", type=Path, required=True)
|
1104 |
+
parser.add_argument(
|
1105 |
+
"--matches", type=Path, default=confs["loftr"]["output"]
|
1106 |
+
)
|
1107 |
+
parser.add_argument(
|
1108 |
+
"--features", type=str, default="feats_" + confs["loftr"]["output"]
|
1109 |
+
)
|
1110 |
+
parser.add_argument(
|
1111 |
+
"--conf", type=str, default="loftr", choices=list(confs.keys())
|
1112 |
+
)
|
1113 |
+
args = parser.parse_args()
|
1114 |
+
main(
|
1115 |
+
confs[args.conf],
|
1116 |
+
args.pairs,
|
1117 |
+
args.image_dir,
|
1118 |
+
args.export_dir,
|
1119 |
+
args.matches,
|
1120 |
+
args.features,
|
1121 |
+
)
|
hloc/match_features.py
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import pprint
|
3 |
+
from functools import partial
|
4 |
+
from pathlib import Path
|
5 |
+
from queue import Queue
|
6 |
+
from threading import Thread
|
7 |
+
from typing import Dict, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import h5py
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
from . import logger, matchers
|
15 |
+
from .utils.base_model import dynamic_load
|
16 |
+
from .utils.parsers import names_to_pair, names_to_pair_old, parse_retrieval
|
17 |
+
|
18 |
+
"""
|
19 |
+
A set of standard configurations that can be directly selected from the command
|
20 |
+
line using their name. Each is a dictionary with the following entries:
|
21 |
+
- output: the name of the match file that will be generated.
|
22 |
+
- model: the model configuration, as passed to a feature matcher.
|
23 |
+
"""
|
24 |
+
confs = {
|
25 |
+
"superglue": {
|
26 |
+
"output": "matches-superglue",
|
27 |
+
"model": {
|
28 |
+
"name": "superglue",
|
29 |
+
"weights": "outdoor",
|
30 |
+
"sinkhorn_iterations": 50,
|
31 |
+
"match_threshold": 0.2,
|
32 |
+
},
|
33 |
+
"preprocessing": {
|
34 |
+
"grayscale": True,
|
35 |
+
"resize_max": 1024,
|
36 |
+
"dfactor": 8,
|
37 |
+
"force_resize": False,
|
38 |
+
},
|
39 |
+
},
|
40 |
+
"superglue-fast": {
|
41 |
+
"output": "matches-superglue-it5",
|
42 |
+
"model": {
|
43 |
+
"name": "superglue",
|
44 |
+
"weights": "outdoor",
|
45 |
+
"sinkhorn_iterations": 5,
|
46 |
+
"match_threshold": 0.2,
|
47 |
+
},
|
48 |
+
},
|
49 |
+
"superpoint-lightglue": {
|
50 |
+
"output": "matches-lightglue",
|
51 |
+
"model": {
|
52 |
+
"name": "lightglue",
|
53 |
+
"match_threshold": 0.2,
|
54 |
+
"width_confidence": 0.99, # for point pruning
|
55 |
+
"depth_confidence": 0.95, # for early stopping,
|
56 |
+
"features": "superpoint",
|
57 |
+
"model_name": "superpoint_lightglue.pth",
|
58 |
+
},
|
59 |
+
"preprocessing": {
|
60 |
+
"grayscale": True,
|
61 |
+
"resize_max": 1024,
|
62 |
+
"dfactor": 8,
|
63 |
+
"force_resize": False,
|
64 |
+
},
|
65 |
+
},
|
66 |
+
"disk-lightglue": {
|
67 |
+
"output": "matches-disk-lightglue",
|
68 |
+
"model": {
|
69 |
+
"name": "lightglue",
|
70 |
+
"match_threshold": 0.2,
|
71 |
+
"width_confidence": 0.99, # for point pruning
|
72 |
+
"depth_confidence": 0.95, # for early stopping,
|
73 |
+
"features": "disk",
|
74 |
+
"model_name": "disk_lightglue.pth",
|
75 |
+
},
|
76 |
+
"preprocessing": {
|
77 |
+
"grayscale": True,
|
78 |
+
"resize_max": 1024,
|
79 |
+
"dfactor": 8,
|
80 |
+
"force_resize": False,
|
81 |
+
},
|
82 |
+
},
|
83 |
+
"sift-lightglue": {
|
84 |
+
"output": "matches-sift-lightglue",
|
85 |
+
"model": {
|
86 |
+
"name": "lightglue",
|
87 |
+
"match_threshold": 0.2,
|
88 |
+
"width_confidence": 0.99, # for point pruning
|
89 |
+
"depth_confidence": 0.95, # for early stopping,
|
90 |
+
"features": "sift",
|
91 |
+
"add_scale_ori": True,
|
92 |
+
"model_name": "sift_lightglue.pth",
|
93 |
+
},
|
94 |
+
"preprocessing": {
|
95 |
+
"grayscale": True,
|
96 |
+
"resize_max": 1024,
|
97 |
+
"dfactor": 8,
|
98 |
+
"force_resize": False,
|
99 |
+
},
|
100 |
+
},
|
101 |
+
"sgmnet": {
|
102 |
+
"output": "matches-sgmnet",
|
103 |
+
"model": {
|
104 |
+
"name": "sgmnet",
|
105 |
+
"seed_top_k": [256, 256],
|
106 |
+
"seed_radius_coe": 0.01,
|
107 |
+
"net_channels": 128,
|
108 |
+
"layer_num": 9,
|
109 |
+
"head": 4,
|
110 |
+
"seedlayer": [0, 6],
|
111 |
+
"use_mc_seeding": True,
|
112 |
+
"use_score_encoding": False,
|
113 |
+
"conf_bar": [1.11, 0.1],
|
114 |
+
"sink_iter": [10, 100],
|
115 |
+
"detach_iter": 1000000,
|
116 |
+
"match_threshold": 0.2,
|
117 |
+
},
|
118 |
+
"preprocessing": {
|
119 |
+
"grayscale": True,
|
120 |
+
"resize_max": 1024,
|
121 |
+
"dfactor": 8,
|
122 |
+
"force_resize": False,
|
123 |
+
},
|
124 |
+
},
|
125 |
+
"NN-superpoint": {
|
126 |
+
"output": "matches-NN-mutual-dist.7",
|
127 |
+
"model": {
|
128 |
+
"name": "nearest_neighbor",
|
129 |
+
"do_mutual_check": True,
|
130 |
+
"distance_threshold": 0.7,
|
131 |
+
"match_threshold": 0.2,
|
132 |
+
},
|
133 |
+
},
|
134 |
+
"NN-ratio": {
|
135 |
+
"output": "matches-NN-mutual-ratio.8",
|
136 |
+
"model": {
|
137 |
+
"name": "nearest_neighbor",
|
138 |
+
"do_mutual_check": True,
|
139 |
+
"ratio_threshold": 0.8,
|
140 |
+
"match_threshold": 0.2,
|
141 |
+
},
|
142 |
+
},
|
143 |
+
"NN-mutual": {
|
144 |
+
"output": "matches-NN-mutual",
|
145 |
+
"model": {
|
146 |
+
"name": "nearest_neighbor",
|
147 |
+
"do_mutual_check": True,
|
148 |
+
"match_threshold": 0.2,
|
149 |
+
},
|
150 |
+
},
|
151 |
+
"Dual-Softmax": {
|
152 |
+
"output": "matches-Dual-Softmax",
|
153 |
+
"model": {
|
154 |
+
"name": "dual_softmax",
|
155 |
+
"match_threshold": 0.01,
|
156 |
+
"inv_temperature": 20,
|
157 |
+
},
|
158 |
+
},
|
159 |
+
"adalam": {
|
160 |
+
"output": "matches-adalam",
|
161 |
+
"model": {
|
162 |
+
"name": "adalam",
|
163 |
+
"match_threshold": 0.2,
|
164 |
+
},
|
165 |
+
},
|
166 |
+
"imp": {
|
167 |
+
"output": "matches-imp",
|
168 |
+
"model": {
|
169 |
+
"name": "imp",
|
170 |
+
"match_threshold": 0.2,
|
171 |
+
},
|
172 |
+
},
|
173 |
+
}
|
174 |
+
|
175 |
+
|
176 |
+
class WorkQueue:
|
177 |
+
def __init__(self, work_fn, num_threads=1):
|
178 |
+
self.queue = Queue(num_threads)
|
179 |
+
self.threads = [
|
180 |
+
Thread(target=self.thread_fn, args=(work_fn,))
|
181 |
+
for _ in range(num_threads)
|
182 |
+
]
|
183 |
+
for thread in self.threads:
|
184 |
+
thread.start()
|
185 |
+
|
186 |
+
def join(self):
|
187 |
+
for thread in self.threads:
|
188 |
+
self.queue.put(None)
|
189 |
+
for thread in self.threads:
|
190 |
+
thread.join()
|
191 |
+
|
192 |
+
def thread_fn(self, work_fn):
|
193 |
+
item = self.queue.get()
|
194 |
+
while item is not None:
|
195 |
+
work_fn(item)
|
196 |
+
item = self.queue.get()
|
197 |
+
|
198 |
+
def put(self, data):
|
199 |
+
self.queue.put(data)
|
200 |
+
|
201 |
+
|
202 |
+
class FeaturePairsDataset(torch.utils.data.Dataset):
|
203 |
+
def __init__(self, pairs, feature_path_q, feature_path_r):
|
204 |
+
self.pairs = pairs
|
205 |
+
self.feature_path_q = feature_path_q
|
206 |
+
self.feature_path_r = feature_path_r
|
207 |
+
|
208 |
+
def __getitem__(self, idx):
|
209 |
+
name0, name1 = self.pairs[idx]
|
210 |
+
data = {}
|
211 |
+
with h5py.File(self.feature_path_q, "r") as fd:
|
212 |
+
grp = fd[name0]
|
213 |
+
for k, v in grp.items():
|
214 |
+
data[k + "0"] = torch.from_numpy(v.__array__()).float()
|
215 |
+
# some matchers might expect an image but only use its size
|
216 |
+
data["image0"] = torch.empty((1,) + tuple(grp["image_size"])[::-1])
|
217 |
+
with h5py.File(self.feature_path_r, "r") as fd:
|
218 |
+
grp = fd[name1]
|
219 |
+
for k, v in grp.items():
|
220 |
+
data[k + "1"] = torch.from_numpy(v.__array__()).float()
|
221 |
+
data["image1"] = torch.empty((1,) + tuple(grp["image_size"])[::-1])
|
222 |
+
return data
|
223 |
+
|
224 |
+
def __len__(self):
|
225 |
+
return len(self.pairs)
|
226 |
+
|
227 |
+
|
228 |
+
def writer_fn(inp, match_path):
|
229 |
+
pair, pred = inp
|
230 |
+
with h5py.File(str(match_path), "a", libver="latest") as fd:
|
231 |
+
if pair in fd:
|
232 |
+
del fd[pair]
|
233 |
+
grp = fd.create_group(pair)
|
234 |
+
matches = pred["matches0"][0].cpu().short().numpy()
|
235 |
+
grp.create_dataset("matches0", data=matches)
|
236 |
+
if "matching_scores0" in pred:
|
237 |
+
scores = pred["matching_scores0"][0].cpu().half().numpy()
|
238 |
+
grp.create_dataset("matching_scores0", data=scores)
|
239 |
+
|
240 |
+
|
241 |
+
def main(
|
242 |
+
conf: Dict,
|
243 |
+
pairs: Path,
|
244 |
+
features: Union[Path, str],
|
245 |
+
export_dir: Optional[Path] = None,
|
246 |
+
matches: Optional[Path] = None,
|
247 |
+
features_ref: Optional[Path] = None,
|
248 |
+
overwrite: bool = False,
|
249 |
+
) -> Path:
|
250 |
+
if isinstance(features, Path) or Path(features).exists():
|
251 |
+
features_q = features
|
252 |
+
if matches is None:
|
253 |
+
raise ValueError(
|
254 |
+
"Either provide both features and matches as Path"
|
255 |
+
" or both as names."
|
256 |
+
)
|
257 |
+
else:
|
258 |
+
if export_dir is None:
|
259 |
+
raise ValueError(
|
260 |
+
"Provide an export_dir if features is not"
|
261 |
+
f" a file path: {features}."
|
262 |
+
)
|
263 |
+
features_q = Path(export_dir, features + ".h5")
|
264 |
+
if matches is None:
|
265 |
+
matches = Path(
|
266 |
+
export_dir, f'{features}_{conf["output"]}_{pairs.stem}.h5'
|
267 |
+
)
|
268 |
+
|
269 |
+
if features_ref is None:
|
270 |
+
features_ref = features_q
|
271 |
+
match_from_paths(conf, pairs, matches, features_q, features_ref, overwrite)
|
272 |
+
|
273 |
+
return matches
|
274 |
+
|
275 |
+
|
276 |
+
def find_unique_new_pairs(pairs_all: List[Tuple[str]], match_path: Path = None):
|
277 |
+
"""Avoid to recompute duplicates to save time."""
|
278 |
+
pairs = set()
|
279 |
+
for i, j in pairs_all:
|
280 |
+
if (j, i) not in pairs:
|
281 |
+
pairs.add((i, j))
|
282 |
+
pairs = list(pairs)
|
283 |
+
if match_path is not None and match_path.exists():
|
284 |
+
with h5py.File(str(match_path), "r", libver="latest") as fd:
|
285 |
+
pairs_filtered = []
|
286 |
+
for i, j in pairs:
|
287 |
+
if (
|
288 |
+
names_to_pair(i, j) in fd
|
289 |
+
or names_to_pair(j, i) in fd
|
290 |
+
or names_to_pair_old(i, j) in fd
|
291 |
+
or names_to_pair_old(j, i) in fd
|
292 |
+
):
|
293 |
+
continue
|
294 |
+
pairs_filtered.append((i, j))
|
295 |
+
return pairs_filtered
|
296 |
+
return pairs
|
297 |
+
|
298 |
+
|
299 |
+
@torch.no_grad()
|
300 |
+
def match_from_paths(
|
301 |
+
conf: Dict,
|
302 |
+
pairs_path: Path,
|
303 |
+
match_path: Path,
|
304 |
+
feature_path_q: Path,
|
305 |
+
feature_path_ref: Path,
|
306 |
+
overwrite: bool = False,
|
307 |
+
) -> Path:
|
308 |
+
logger.info(
|
309 |
+
"Matching local features with configuration:"
|
310 |
+
f"\n{pprint.pformat(conf)}"
|
311 |
+
)
|
312 |
+
|
313 |
+
if not feature_path_q.exists():
|
314 |
+
raise FileNotFoundError(f"Query feature file {feature_path_q}.")
|
315 |
+
if not feature_path_ref.exists():
|
316 |
+
raise FileNotFoundError(f"Reference feature file {feature_path_ref}.")
|
317 |
+
match_path.parent.mkdir(exist_ok=True, parents=True)
|
318 |
+
|
319 |
+
assert pairs_path.exists(), pairs_path
|
320 |
+
pairs = parse_retrieval(pairs_path)
|
321 |
+
pairs = [(q, r) for q, rs in pairs.items() for r in rs]
|
322 |
+
pairs = find_unique_new_pairs(pairs, None if overwrite else match_path)
|
323 |
+
if len(pairs) == 0:
|
324 |
+
logger.info("Skipping the matching.")
|
325 |
+
return
|
326 |
+
|
327 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
328 |
+
Model = dynamic_load(matchers, conf["model"]["name"])
|
329 |
+
model = Model(conf["model"]).eval().to(device)
|
330 |
+
|
331 |
+
dataset = FeaturePairsDataset(pairs, feature_path_q, feature_path_ref)
|
332 |
+
loader = torch.utils.data.DataLoader(
|
333 |
+
dataset, num_workers=5, batch_size=1, shuffle=False, pin_memory=True
|
334 |
+
)
|
335 |
+
writer_queue = WorkQueue(partial(writer_fn, match_path=match_path), 5)
|
336 |
+
|
337 |
+
for idx, data in enumerate(tqdm(loader, smoothing=0.1)):
|
338 |
+
data = {
|
339 |
+
k: v if k.startswith("image") else v.to(device, non_blocking=True)
|
340 |
+
for k, v in data.items()
|
341 |
+
}
|
342 |
+
pred = model(data)
|
343 |
+
pair = names_to_pair(*pairs[idx])
|
344 |
+
writer_queue.put((pair, pred))
|
345 |
+
writer_queue.join()
|
346 |
+
logger.info("Finished exporting matches.")
|
347 |
+
|
348 |
+
|
349 |
+
def scale_keypoints(kpts, scale):
|
350 |
+
if np.any(scale != 1.0):
|
351 |
+
kpts *= kpts.new_tensor(scale)
|
352 |
+
return kpts
|
353 |
+
|
354 |
+
|
355 |
+
@torch.no_grad()
|
356 |
+
def match_images(model, feat0, feat1):
|
357 |
+
# forward pass to match keypoints
|
358 |
+
desc0 = feat0["descriptors"][0]
|
359 |
+
desc1 = feat1["descriptors"][0]
|
360 |
+
if len(desc0.shape) == 2:
|
361 |
+
desc0 = desc0.unsqueeze(0)
|
362 |
+
if len(desc1.shape) == 2:
|
363 |
+
desc1 = desc1.unsqueeze(0)
|
364 |
+
if isinstance(feat0["keypoints"], list):
|
365 |
+
feat0["keypoints"] = feat0["keypoints"][0][None]
|
366 |
+
if isinstance(feat1["keypoints"], list):
|
367 |
+
feat1["keypoints"] = feat1["keypoints"][0][None]
|
368 |
+
input_dict = {
|
369 |
+
"image0": feat0["image"],
|
370 |
+
"keypoints0": feat0["keypoints"],
|
371 |
+
"scores0": feat0["scores"][0].unsqueeze(0),
|
372 |
+
"descriptors0": desc0,
|
373 |
+
"image1": feat1["image"],
|
374 |
+
"keypoints1": feat1["keypoints"],
|
375 |
+
"scores1": feat1["scores"][0].unsqueeze(0),
|
376 |
+
"descriptors1": desc1,
|
377 |
+
}
|
378 |
+
if "scales" in feat0:
|
379 |
+
input_dict = {**input_dict, "scales0": feat0["scales"]}
|
380 |
+
if "scales" in feat1:
|
381 |
+
input_dict = {**input_dict, "scales1": feat1["scales"]}
|
382 |
+
if "oris" in feat0:
|
383 |
+
input_dict = {**input_dict, "oris0": feat0["oris"]}
|
384 |
+
if "oris" in feat1:
|
385 |
+
input_dict = {**input_dict, "oris1": feat1["oris"]}
|
386 |
+
pred = model(input_dict)
|
387 |
+
pred = {
|
388 |
+
k: v.cpu().detach()[0] if isinstance(v, torch.Tensor) else v
|
389 |
+
for k, v in pred.items()
|
390 |
+
}
|
391 |
+
kpts0, kpts1 = (
|
392 |
+
feat0["keypoints"][0].cpu().numpy(),
|
393 |
+
feat1["keypoints"][0].cpu().numpy(),
|
394 |
+
)
|
395 |
+
matches, confid = pred["matches0"], pred["matching_scores0"]
|
396 |
+
# Keep the matching keypoints.
|
397 |
+
valid = matches > -1
|
398 |
+
mkpts0 = kpts0[valid]
|
399 |
+
mkpts1 = kpts1[matches[valid]]
|
400 |
+
mconfid = confid[valid]
|
401 |
+
# rescale the keypoints to their original size
|
402 |
+
s0 = feat0["original_size"] / feat0["size"]
|
403 |
+
s1 = feat1["original_size"] / feat1["size"]
|
404 |
+
kpts0_origin = scale_keypoints(torch.from_numpy(kpts0 + 0.5), s0) - 0.5
|
405 |
+
kpts1_origin = scale_keypoints(torch.from_numpy(kpts1 + 0.5), s1) - 0.5
|
406 |
+
|
407 |
+
mkpts0_origin = scale_keypoints(torch.from_numpy(mkpts0 + 0.5), s0) - 0.5
|
408 |
+
mkpts1_origin = scale_keypoints(torch.from_numpy(mkpts1 + 0.5), s1) - 0.5
|
409 |
+
|
410 |
+
ret = {
|
411 |
+
"image0_orig": feat0["image_orig"],
|
412 |
+
"image1_orig": feat1["image_orig"],
|
413 |
+
"keypoints0": kpts0,
|
414 |
+
"keypoints1": kpts1,
|
415 |
+
"keypoints0_orig": kpts0_origin.numpy(),
|
416 |
+
"keypoints1_orig": kpts1_origin.numpy(),
|
417 |
+
"mkeypoints0": mkpts0,
|
418 |
+
"mkeypoints1": mkpts1,
|
419 |
+
"mkeypoints0_orig": mkpts0_origin.numpy(),
|
420 |
+
"mkeypoints1_orig": mkpts1_origin.numpy(),
|
421 |
+
"mconf": mconfid.numpy(),
|
422 |
+
}
|
423 |
+
del feat0, feat1, desc0, desc1, kpts0, kpts1, kpts0_origin, kpts1_origin
|
424 |
+
torch.cuda.empty_cache()
|
425 |
+
|
426 |
+
return ret
|
427 |
+
|
428 |
+
|
429 |
+
if __name__ == "__main__":
|
430 |
+
parser = argparse.ArgumentParser()
|
431 |
+
parser.add_argument("--pairs", type=Path, required=True)
|
432 |
+
parser.add_argument("--export_dir", type=Path)
|
433 |
+
parser.add_argument(
|
434 |
+
"--features", type=str, default="feats-superpoint-n4096-r1024"
|
435 |
+
)
|
436 |
+
parser.add_argument("--matches", type=Path)
|
437 |
+
parser.add_argument(
|
438 |
+
"--conf", type=str, default="superglue", choices=list(confs.keys())
|
439 |
+
)
|
440 |
+
args = parser.parse_args()
|
441 |
+
main(confs[args.conf], args.pairs, args.features, args.export_dir)
|
hloc/matchers/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
def get_matcher(matcher):
|
2 |
+
mod = __import__(f"{__name__}.{matcher}", fromlist=[""])
|
3 |
+
return getattr(mod, "Model")
|