Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,13 +6,11 @@ import os
|
|
6 |
# Mock object detection function
|
7 |
def detect_objects(image):
|
8 |
st.write("Detecting objects in the image...")
|
9 |
-
# Simulated output
|
10 |
return ["table", "chair", "lamp"]
|
11 |
|
12 |
# Mock context-aware filter function
|
13 |
def filter_relevant_objects(detected_objects, setting):
|
14 |
st.write(f"Filtering relevant objects for setting: {setting}")
|
15 |
-
# Simulated filtering based on setting
|
16 |
if setting == "indoor":
|
17 |
return [obj for obj in detected_objects if obj in ["table", "lamp"]]
|
18 |
return detected_objects
|
@@ -20,7 +18,6 @@ def filter_relevant_objects(detected_objects, setting):
|
|
20 |
# Mock summarization function
|
21 |
def generate_summary(relevant_objects):
|
22 |
st.write("Generating summary for relevant objects...")
|
23 |
-
# Simulated summary
|
24 |
summary = f"This is an {len(relevant_objects)}-item scene including: {', '.join(relevant_objects)}."
|
25 |
return summary
|
26 |
|
@@ -34,38 +31,30 @@ def text_to_speech(text):
|
|
34 |
# Mock GPS navigation function
|
35 |
def get_distance_to_object(address):
|
36 |
st.write(f"Calculating distance to address: {address}")
|
37 |
-
# Simulated output
|
38 |
return "5 km", "15 mins"
|
39 |
|
40 |
# Streamlit app main function
|
41 |
def main():
|
42 |
st.title("Context-Aware Object Detection App")
|
43 |
|
44 |
-
# Step 1: Capture Image from Camera
|
45 |
captured_image = st.camera_input("Take a picture")
|
46 |
|
47 |
if captured_image is not None:
|
48 |
-
# Open the captured image
|
49 |
image = Image.open(captured_image)
|
50 |
st.image(image, caption="Captured Image", use_column_width=True)
|
51 |
|
52 |
-
# Step 2: Detect Objects
|
53 |
detected_objects = detect_objects(image)
|
54 |
st.write(f"Detected Objects: {detected_objects}")
|
55 |
|
56 |
-
# Step 3: Filter Relevant Objects
|
57 |
setting = st.selectbox("Select Setting", ["indoor", "outdoor"], index=0)
|
58 |
relevant_objects = filter_relevant_objects(detected_objects, setting)
|
59 |
st.write(f"Relevant Objects: {relevant_objects}")
|
60 |
|
61 |
-
# Step 4: Generate Summary
|
62 |
summary = generate_summary(relevant_objects)
|
63 |
st.write(f"Summary: {summary}")
|
64 |
|
65 |
-
# Step 5: Convert Summary to Speech
|
66 |
text_to_speech(summary)
|
67 |
|
68 |
-
# Step 6: GPS Navigation (simulated)
|
69 |
address = st.text_input("Enter Object's Address", "1600 Amphitheatre Parkway, Mountain View, CA")
|
70 |
if st.button("Get Distance to Object"):
|
71 |
distance, duration = get_distance_to_object(address)
|
@@ -73,3 +62,4 @@ def main():
|
|
73 |
|
74 |
if __name__ == "__main__":
|
75 |
main()
|
|
|
|
6 |
# Mock object detection function
|
7 |
def detect_objects(image):
|
8 |
st.write("Detecting objects in the image...")
|
|
|
9 |
return ["table", "chair", "lamp"]
|
10 |
|
11 |
# Mock context-aware filter function
|
12 |
def filter_relevant_objects(detected_objects, setting):
|
13 |
st.write(f"Filtering relevant objects for setting: {setting}")
|
|
|
14 |
if setting == "indoor":
|
15 |
return [obj for obj in detected_objects if obj in ["table", "lamp"]]
|
16 |
return detected_objects
|
|
|
18 |
# Mock summarization function
|
19 |
def generate_summary(relevant_objects):
|
20 |
st.write("Generating summary for relevant objects...")
|
|
|
21 |
summary = f"This is an {len(relevant_objects)}-item scene including: {', '.join(relevant_objects)}."
|
22 |
return summary
|
23 |
|
|
|
31 |
# Mock GPS navigation function
|
32 |
def get_distance_to_object(address):
|
33 |
st.write(f"Calculating distance to address: {address}")
|
|
|
34 |
return "5 km", "15 mins"
|
35 |
|
36 |
# Streamlit app main function
|
37 |
def main():
|
38 |
st.title("Context-Aware Object Detection App")
|
39 |
|
|
|
40 |
captured_image = st.camera_input("Take a picture")
|
41 |
|
42 |
if captured_image is not None:
|
|
|
43 |
image = Image.open(captured_image)
|
44 |
st.image(image, caption="Captured Image", use_column_width=True)
|
45 |
|
|
|
46 |
detected_objects = detect_objects(image)
|
47 |
st.write(f"Detected Objects: {detected_objects}")
|
48 |
|
|
|
49 |
setting = st.selectbox("Select Setting", ["indoor", "outdoor"], index=0)
|
50 |
relevant_objects = filter_relevant_objects(detected_objects, setting)
|
51 |
st.write(f"Relevant Objects: {relevant_objects}")
|
52 |
|
|
|
53 |
summary = generate_summary(relevant_objects)
|
54 |
st.write(f"Summary: {summary}")
|
55 |
|
|
|
56 |
text_to_speech(summary)
|
57 |
|
|
|
58 |
address = st.text_input("Enter Object's Address", "1600 Amphitheatre Parkway, Mountain View, CA")
|
59 |
if st.button("Get Distance to Object"):
|
60 |
distance, duration = get_distance_to_object(address)
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
main()
|
65 |
+
|