Reaper200 commited on
Commit
b0ca6ea
·
verified ·
1 Parent(s): fffea53

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -11
app.py CHANGED
@@ -6,13 +6,11 @@ import os
6
  # Mock object detection function
7
  def detect_objects(image):
8
  st.write("Detecting objects in the image...")
9
- # Simulated output
10
  return ["table", "chair", "lamp"]
11
 
12
  # Mock context-aware filter function
13
  def filter_relevant_objects(detected_objects, setting):
14
  st.write(f"Filtering relevant objects for setting: {setting}")
15
- # Simulated filtering based on setting
16
  if setting == "indoor":
17
  return [obj for obj in detected_objects if obj in ["table", "lamp"]]
18
  return detected_objects
@@ -20,7 +18,6 @@ def filter_relevant_objects(detected_objects, setting):
20
  # Mock summarization function
21
  def generate_summary(relevant_objects):
22
  st.write("Generating summary for relevant objects...")
23
- # Simulated summary
24
  summary = f"This is an {len(relevant_objects)}-item scene including: {', '.join(relevant_objects)}."
25
  return summary
26
 
@@ -34,38 +31,30 @@ def text_to_speech(text):
34
  # Mock GPS navigation function
35
  def get_distance_to_object(address):
36
  st.write(f"Calculating distance to address: {address}")
37
- # Simulated output
38
  return "5 km", "15 mins"
39
 
40
  # Streamlit app main function
41
  def main():
42
  st.title("Context-Aware Object Detection App")
43
 
44
- # Step 1: Capture Image from Camera
45
  captured_image = st.camera_input("Take a picture")
46
 
47
  if captured_image is not None:
48
- # Open the captured image
49
  image = Image.open(captured_image)
50
  st.image(image, caption="Captured Image", use_column_width=True)
51
 
52
- # Step 2: Detect Objects
53
  detected_objects = detect_objects(image)
54
  st.write(f"Detected Objects: {detected_objects}")
55
 
56
- # Step 3: Filter Relevant Objects
57
  setting = st.selectbox("Select Setting", ["indoor", "outdoor"], index=0)
58
  relevant_objects = filter_relevant_objects(detected_objects, setting)
59
  st.write(f"Relevant Objects: {relevant_objects}")
60
 
61
- # Step 4: Generate Summary
62
  summary = generate_summary(relevant_objects)
63
  st.write(f"Summary: {summary}")
64
 
65
- # Step 5: Convert Summary to Speech
66
  text_to_speech(summary)
67
 
68
- # Step 6: GPS Navigation (simulated)
69
  address = st.text_input("Enter Object's Address", "1600 Amphitheatre Parkway, Mountain View, CA")
70
  if st.button("Get Distance to Object"):
71
  distance, duration = get_distance_to_object(address)
@@ -73,3 +62,4 @@ def main():
73
 
74
  if __name__ == "__main__":
75
  main()
 
 
6
  # Mock object detection function
7
  def detect_objects(image):
8
  st.write("Detecting objects in the image...")
 
9
  return ["table", "chair", "lamp"]
10
 
11
  # Mock context-aware filter function
12
  def filter_relevant_objects(detected_objects, setting):
13
  st.write(f"Filtering relevant objects for setting: {setting}")
 
14
  if setting == "indoor":
15
  return [obj for obj in detected_objects if obj in ["table", "lamp"]]
16
  return detected_objects
 
18
  # Mock summarization function
19
  def generate_summary(relevant_objects):
20
  st.write("Generating summary for relevant objects...")
 
21
  summary = f"This is an {len(relevant_objects)}-item scene including: {', '.join(relevant_objects)}."
22
  return summary
23
 
 
31
  # Mock GPS navigation function
32
  def get_distance_to_object(address):
33
  st.write(f"Calculating distance to address: {address}")
 
34
  return "5 km", "15 mins"
35
 
36
  # Streamlit app main function
37
  def main():
38
  st.title("Context-Aware Object Detection App")
39
 
 
40
  captured_image = st.camera_input("Take a picture")
41
 
42
  if captured_image is not None:
 
43
  image = Image.open(captured_image)
44
  st.image(image, caption="Captured Image", use_column_width=True)
45
 
 
46
  detected_objects = detect_objects(image)
47
  st.write(f"Detected Objects: {detected_objects}")
48
 
 
49
  setting = st.selectbox("Select Setting", ["indoor", "outdoor"], index=0)
50
  relevant_objects = filter_relevant_objects(detected_objects, setting)
51
  st.write(f"Relevant Objects: {relevant_objects}")
52
 
 
53
  summary = generate_summary(relevant_objects)
54
  st.write(f"Summary: {summary}")
55
 
 
56
  text_to_speech(summary)
57
 
 
58
  address = st.text_input("Enter Object's Address", "1600 Amphitheatre Parkway, Mountain View, CA")
59
  if st.button("Get Distance to Object"):
60
  distance, duration = get_distance_to_object(address)
 
62
 
63
  if __name__ == "__main__":
64
  main()
65
+