Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- app.py +34 -34
- prediction.py +152 -152
- requirements.txt +6 -7
app.py
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
import joblib
|
5 |
-
|
6 |
-
from eda import eda_page
|
7 |
-
from prediction import model_page
|
8 |
-
|
9 |
-
#Load data
|
10 |
-
data = pd.read_csv("fraud_test.csv")
|
11 |
-
|
12 |
-
st.header('Milestone 2')
|
13 |
-
st.write("""
|
14 |
-
Created by Reski Hidayat - HCK015 """)
|
15 |
-
|
16 |
-
st.write("This program is made to predict Credit Card Fraud using Model Classification.")
|
17 |
-
st.write("Dataset `fraud_test`")
|
18 |
-
data
|
19 |
-
|
20 |
-
def main():
|
21 |
-
# Define menu options
|
22 |
-
menu_options = ["Data Analysis", "Model Prediction"]
|
23 |
-
|
24 |
-
# Create sidebar menu
|
25 |
-
selected_option = st.sidebar.radio("Menu", menu_options)
|
26 |
-
|
27 |
-
# Display selected page
|
28 |
-
if selected_option == "Data Analysis":
|
29 |
-
eda_page()
|
30 |
-
elif selected_option == "Model Prediction":
|
31 |
-
model_page()
|
32 |
-
|
33 |
-
|
34 |
-
if __name__ == "__main__":
|
35 |
main()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import joblib
|
5 |
+
|
6 |
+
from eda import eda_page
|
7 |
+
from prediction import model_page
|
8 |
+
|
9 |
+
#Load data
|
10 |
+
data = pd.read_csv("fraud_test.csv")
|
11 |
+
|
12 |
+
st.header('Milestone 2')
|
13 |
+
st.write("""
|
14 |
+
Created by Reski Hidayat - HCK015 """)
|
15 |
+
|
16 |
+
st.write("This program is made to predict Credit Card Fraud using Model Classification.")
|
17 |
+
st.write("Dataset `fraud_test`")
|
18 |
+
data
|
19 |
+
|
20 |
+
def main():
|
21 |
+
# Define menu options
|
22 |
+
menu_options = ["Data Analysis", "Model Prediction"]
|
23 |
+
|
24 |
+
# Create sidebar menu
|
25 |
+
selected_option = st.sidebar.radio("Menu", menu_options)
|
26 |
+
|
27 |
+
# Display selected page
|
28 |
+
if selected_option == "Data Analysis":
|
29 |
+
eda_page()
|
30 |
+
elif selected_option == "Model Prediction":
|
31 |
+
model_page()
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == "__main__":
|
35 |
main()
|
prediction.py
CHANGED
@@ -1,153 +1,153 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
import joblib
|
5 |
-
|
6 |
-
# Library Random Data
|
7 |
-
from scipy.stats import randint
|
8 |
-
|
9 |
-
from datetime import datetime, timedelta
|
10 |
-
from sklearn.utils import shuffle
|
11 |
-
|
12 |
-
def model_page():
|
13 |
-
st.title("Model Prediction of Credit Card Fault")
|
14 |
-
st.write("The model predicts whether the customer's transaction is fraud or not")
|
15 |
-
st.sidebar.header('User Input Features')
|
16 |
-
|
17 |
-
input_data = user_input()
|
18 |
-
|
19 |
-
st.subheader('User Input')
|
20 |
-
st.write(input_data)
|
21 |
-
|
22 |
-
# Load the model using a context manager to ensure the file is closed
|
23 |
-
with open("XGB_best_model.pkl", "rb") as f:
|
24 |
-
load_model = joblib.load(f)
|
25 |
-
|
26 |
-
prediction = load_model.predict(input_data)
|
27 |
-
|
28 |
-
if prediction == 1:
|
29 |
-
prediction = 'The Transaction is Fraud'
|
30 |
-
else:
|
31 |
-
prediction = 'The Transaction is Legit'
|
32 |
-
|
33 |
-
st.write('Based on user input, the model predicted: ')
|
34 |
-
st.write(prediction)
|
35 |
-
|
36 |
-
def user_input(num_rows=1):
|
37 |
-
data = generate_data(num_rows)
|
38 |
-
return data
|
39 |
-
|
40 |
-
def generate_data(num_rows=555719):
|
41 |
-
trans_date_trans_time = st.sidebar.date_input("Transaction Date", value=datetime.now(), min_value=datetime.now() - timedelta(days=365), max_value=datetime.now())
|
42 |
-
trans_date_trans_time = [trans_date_trans_time for _ in range(num_rows)]
|
43 |
-
|
44 |
-
cc_num = st.sidebar.number_input("Credit Card Number", value=500000, min_value=100000, max_value=999999)
|
45 |
-
cc_num = [cc_num for _ in range(num_rows)]
|
46 |
-
|
47 |
-
merchant = st.sidebar.selectbox("Merchant", ['Merchant1', 'Merchant2', 'Merchant3'])
|
48 |
-
merchant = [merchant for _ in range(num_rows)]
|
49 |
-
|
50 |
-
category = st.sidebar.selectbox("Category", ['Personal', 'Childcare', 'Food', 'Transportation'])
|
51 |
-
category = [category for _ in range(num_rows)]
|
52 |
-
|
53 |
-
amt = st.sidebar.number_input("Amount", value=500, min_value=0, max_value=
|
54 |
-
amt = [amt for _ in range(num_rows)]
|
55 |
-
|
56 |
-
first = st.sidebar.text_input("First Name")
|
57 |
-
first = [first for _ in range(num_rows)]
|
58 |
-
|
59 |
-
last = st.sidebar.text_input("Last Name")
|
60 |
-
last = [last for _ in range(num_rows)]
|
61 |
-
|
62 |
-
gender = st.sidebar.selectbox("Gender", ['Male', 'Female'])
|
63 |
-
gender = [gender for _ in range(num_rows)]
|
64 |
-
|
65 |
-
street = st.sidebar.text_input("Street")
|
66 |
-
street = [street for _ in range(num_rows)]
|
67 |
-
|
68 |
-
city = st.sidebar.text_input("City")
|
69 |
-
city = [city for _ in range(num_rows)]
|
70 |
-
|
71 |
-
state = st.sidebar.selectbox("State", ['NY', 'CA', 'IL', 'TX'])
|
72 |
-
state = [state for _ in range(num_rows)]
|
73 |
-
|
74 |
-
zip_code = st.sidebar.text_input("Zip Code")
|
75 |
-
zip_code = [zip_code for _ in range(num_rows)]
|
76 |
-
|
77 |
-
lat = st.sidebar.number_input("Latitude", value=40.7128, min_value=-90., max_value=90.)
|
78 |
-
lat = [lat for _ in range(num_rows)]
|
79 |
-
|
80 |
-
long_ = st.sidebar.number_input("Longitude", value=-74.0060, min_value=-180., max_value=180.)
|
81 |
-
long_ = [long_ for _ in range(num_rows)]
|
82 |
-
|
83 |
-
city_pop = st.sidebar.number_input("City Population", value=10000, min_value=10000, max_value=1000000)
|
84 |
-
city_pop = [city_pop for _ in range(num_rows)]
|
85 |
-
|
86 |
-
job = st.sidebar.selectbox("Job", ['Software Engineer', 'Doctor', 'Lawyer', 'Teacher'])
|
87 |
-
job = [job for _ in range(num_rows)]
|
88 |
-
|
89 |
-
dob = st.sidebar.date_input("Date of Birth", value=datetime.now() - timedelta(days=365*70), min_value=datetime.now() - timedelta(days=365*100), max_value=datetime.now())
|
90 |
-
dob = [dob for _ in range(num_rows)]
|
91 |
-
|
92 |
-
trans_num = np.arange(1, num_rows + 1)
|
93 |
-
|
94 |
-
unix_time = st.sidebar.number_input("Unix Time", value=int(datetime.now().timestamp()), min_value=0, max_value=int(datetime.now().timestamp()))
|
95 |
-
unix_time = [unix_time for _ in range(num_rows)]
|
96 |
-
|
97 |
-
merch_lat = st.sidebar.number_input("Merchant Latitude", value=40.7128, min_value=-90., max_value=90.)
|
98 |
-
merch_lat = [merch_lat for _ in range(num_rows)]
|
99 |
-
|
100 |
-
merch_long = st.sidebar.number_input("Merchant Longitude", value=-74.0060, min_value=-180., max_value=180.)
|
101 |
-
merch_long = [merch_long for _ in range(num_rows)]
|
102 |
-
|
103 |
-
age = st.sidebar.number_input("Age", value=30, min_value=18, max_value=80)
|
104 |
-
age = [age for _ in range(num_rows)]
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
data = {
|
109 |
-
'Trans_date_trans_time': trans_date_trans_time,
|
110 |
-
'Cc_num': cc_num,
|
111 |
-
'Merchant': merchant,
|
112 |
-
'Category': category,
|
113 |
-
'Amt': amt,
|
114 |
-
'First': first,
|
115 |
-
'Last': last,
|
116 |
-
'Gender': gender,
|
117 |
-
'Street': street,
|
118 |
-
'City': city,
|
119 |
-
'State': state,
|
120 |
-
'Zip': zip_code,
|
121 |
-
'Lat': lat,
|
122 |
-
'Long': long_,
|
123 |
-
'City_pop': city_pop,
|
124 |
-
'Job': job,
|
125 |
-
'Dob': dob,
|
126 |
-
'Trans_num': trans_num,
|
127 |
-
'Unix_time': unix_time,
|
128 |
-
'Merch_lat': merch_lat,
|
129 |
-
'Merch_long': merch_long,
|
130 |
-
'age': age,
|
131 |
-
'category': category,
|
132 |
-
'amt': amt,
|
133 |
-
'state': state,
|
134 |
-
'job': job
|
135 |
-
}
|
136 |
-
|
137 |
-
# Create a Pandas DataFrame
|
138 |
-
df = pd.DataFrame(data)
|
139 |
-
|
140 |
-
return df
|
141 |
-
|
142 |
-
# def main():
|
143 |
-
# st.title("Credit Card Transaction Data")
|
144 |
-
# st.write("This app generates random credit card transaction data.")
|
145 |
-
|
146 |
-
# num_rows = st.slider("Number of rows", 100, 100000, 555719)
|
147 |
-
|
148 |
-
# df = generate_data(num_rows)
|
149 |
-
|
150 |
-
# st.write(df)
|
151 |
-
|
152 |
-
# if __name__ == "__main__":
|
153 |
# main()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import joblib
|
5 |
+
|
6 |
+
# Library Random Data
|
7 |
+
from scipy.stats import randint
|
8 |
+
|
9 |
+
from datetime import datetime, timedelta
|
10 |
+
from sklearn.utils import shuffle
|
11 |
+
|
12 |
+
def model_page():
|
13 |
+
st.title("Model Prediction of Credit Card Fault")
|
14 |
+
st.write("The model predicts whether the customer's transaction is fraud or not")
|
15 |
+
st.sidebar.header('User Input Features')
|
16 |
+
|
17 |
+
input_data = user_input()
|
18 |
+
|
19 |
+
st.subheader('User Input')
|
20 |
+
st.write(input_data)
|
21 |
+
|
22 |
+
# Load the model using a context manager to ensure the file is closed
|
23 |
+
with open("XGB_best_model.pkl", "rb") as f:
|
24 |
+
load_model = joblib.load(f)
|
25 |
+
|
26 |
+
prediction = load_model.predict(input_data)
|
27 |
+
|
28 |
+
if prediction == 1:
|
29 |
+
prediction = 'The Transaction is Fraud'
|
30 |
+
else:
|
31 |
+
prediction = 'The Transaction is Legit'
|
32 |
+
|
33 |
+
st.write('Based on user input, the model predicted: ')
|
34 |
+
st.write(prediction)
|
35 |
+
|
36 |
+
def user_input(num_rows=1):
|
37 |
+
data = generate_data(num_rows)
|
38 |
+
return data
|
39 |
+
|
40 |
+
def generate_data(num_rows=555719):
|
41 |
+
trans_date_trans_time = st.sidebar.date_input("Transaction Date", value=datetime.now(), min_value=datetime.now() - timedelta(days=365), max_value=datetime.now())
|
42 |
+
trans_date_trans_time = [trans_date_trans_time for _ in range(num_rows)]
|
43 |
+
|
44 |
+
cc_num = st.sidebar.number_input("Credit Card Number", value=500000, min_value=100000, max_value=999999)
|
45 |
+
cc_num = [cc_num for _ in range(num_rows)]
|
46 |
+
|
47 |
+
merchant = st.sidebar.selectbox("Merchant", ['Merchant1', 'Merchant2', 'Merchant3'])
|
48 |
+
merchant = [merchant for _ in range(num_rows)]
|
49 |
+
|
50 |
+
category = st.sidebar.selectbox("Category", ['Personal', 'Childcare', 'Food', 'Transportation'])
|
51 |
+
category = [category for _ in range(num_rows)]
|
52 |
+
|
53 |
+
amt = st.sidebar.number_input("Amount", value=500, min_value=0, max_value=100000)
|
54 |
+
amt = [amt for _ in range(num_rows)]
|
55 |
+
|
56 |
+
first = st.sidebar.text_input("First Name")
|
57 |
+
first = [first for _ in range(num_rows)]
|
58 |
+
|
59 |
+
last = st.sidebar.text_input("Last Name")
|
60 |
+
last = [last for _ in range(num_rows)]
|
61 |
+
|
62 |
+
gender = st.sidebar.selectbox("Gender", ['Male', 'Female'])
|
63 |
+
gender = [gender for _ in range(num_rows)]
|
64 |
+
|
65 |
+
street = st.sidebar.text_input("Street")
|
66 |
+
street = [street for _ in range(num_rows)]
|
67 |
+
|
68 |
+
city = st.sidebar.text_input("City")
|
69 |
+
city = [city for _ in range(num_rows)]
|
70 |
+
|
71 |
+
state = st.sidebar.selectbox("State", ['NY', 'CA', 'IL', 'TX'])
|
72 |
+
state = [state for _ in range(num_rows)]
|
73 |
+
|
74 |
+
zip_code = st.sidebar.text_input("Zip Code")
|
75 |
+
zip_code = [zip_code for _ in range(num_rows)]
|
76 |
+
|
77 |
+
lat = st.sidebar.number_input("Latitude", value=40.7128, min_value=-90., max_value=90.)
|
78 |
+
lat = [lat for _ in range(num_rows)]
|
79 |
+
|
80 |
+
long_ = st.sidebar.number_input("Longitude", value=-74.0060, min_value=-180., max_value=180.)
|
81 |
+
long_ = [long_ for _ in range(num_rows)]
|
82 |
+
|
83 |
+
city_pop = st.sidebar.number_input("City Population", value=10000, min_value=10000, max_value=1000000)
|
84 |
+
city_pop = [city_pop for _ in range(num_rows)]
|
85 |
+
|
86 |
+
job = st.sidebar.selectbox("Job", ['Software Engineer', 'Doctor', 'Lawyer', 'Teacher'])
|
87 |
+
job = [job for _ in range(num_rows)]
|
88 |
+
|
89 |
+
dob = st.sidebar.date_input("Date of Birth", value=datetime.now() - timedelta(days=365*70), min_value=datetime.now() - timedelta(days=365*100), max_value=datetime.now())
|
90 |
+
dob = [dob for _ in range(num_rows)]
|
91 |
+
|
92 |
+
trans_num = np.arange(1, num_rows + 1)
|
93 |
+
|
94 |
+
unix_time = st.sidebar.number_input("Unix Time", value=int(datetime.now().timestamp()), min_value=0, max_value=int(datetime.now().timestamp()))
|
95 |
+
unix_time = [unix_time for _ in range(num_rows)]
|
96 |
+
|
97 |
+
merch_lat = st.sidebar.number_input("Merchant Latitude", value=40.7128, min_value=-90., max_value=90.)
|
98 |
+
merch_lat = [merch_lat for _ in range(num_rows)]
|
99 |
+
|
100 |
+
merch_long = st.sidebar.number_input("Merchant Longitude", value=-74.0060, min_value=-180., max_value=180.)
|
101 |
+
merch_long = [merch_long for _ in range(num_rows)]
|
102 |
+
|
103 |
+
age = st.sidebar.number_input("Age", value=30, min_value=18, max_value=80)
|
104 |
+
age = [age for _ in range(num_rows)]
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
data = {
|
109 |
+
'Trans_date_trans_time': trans_date_trans_time,
|
110 |
+
'Cc_num': cc_num,
|
111 |
+
'Merchant': merchant,
|
112 |
+
'Category': category,
|
113 |
+
'Amt': amt,
|
114 |
+
'First': first,
|
115 |
+
'Last': last,
|
116 |
+
'Gender': gender,
|
117 |
+
'Street': street,
|
118 |
+
'City': city,
|
119 |
+
'State': state,
|
120 |
+
'Zip': zip_code,
|
121 |
+
'Lat': lat,
|
122 |
+
'Long': long_,
|
123 |
+
'City_pop': city_pop,
|
124 |
+
'Job': job,
|
125 |
+
'Dob': dob,
|
126 |
+
'Trans_num': trans_num,
|
127 |
+
'Unix_time': unix_time,
|
128 |
+
'Merch_lat': merch_lat,
|
129 |
+
'Merch_long': merch_long,
|
130 |
+
'age': age,
|
131 |
+
'category': category,
|
132 |
+
'amt': amt,
|
133 |
+
'state': state,
|
134 |
+
'job': job
|
135 |
+
}
|
136 |
+
|
137 |
+
# Create a Pandas DataFrame
|
138 |
+
df = pd.DataFrame(data)
|
139 |
+
|
140 |
+
return df
|
141 |
+
|
142 |
+
# def main():
|
143 |
+
# st.title("Credit Card Transaction Data")
|
144 |
+
# st.write("This app generates random credit card transaction data.")
|
145 |
+
|
146 |
+
# num_rows = st.slider("Number of rows", 100, 100000, 555719)
|
147 |
+
|
148 |
+
# df = generate_data(num_rows)
|
149 |
+
|
150 |
+
# st.write(df)
|
151 |
+
|
152 |
+
# if __name__ == "__main__":
|
153 |
# main()
|
requirements.txt
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
-
scikit-learn
|
2 |
-
pandas
|
3 |
-
matplotlib
|
4 |
-
joblib
|
5 |
-
transformers
|
6 |
-
seaborn
|
7 |
-
numpy
|
|
|
1 |
+
scikit-learn
|
2 |
+
pandas
|
3 |
+
matplotlib
|
4 |
+
joblib
|
5 |
+
transformers
|
6 |
+
seaborn
|
|