Reaumur commited on
Commit
0fe4d8c
·
verified ·
1 Parent(s): 6590044

Upload 3 files

Browse files
Files changed (4) hide show
  1. .gitattributes +1 -0
  2. app.py +45 -0
  3. model.keras +3 -0
  4. requirement.txt +7 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ model.keras filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import tensorflow as tf
4
+ import numpy as np
5
+ from keras.preprocessing.image import img_to_array
6
+ import os
7
+
8
+
9
+ @st.cache_resource
10
+ def load_model():
11
+ model_path = "model.keras" # Update with the absolute file path
12
+ return tf.keras.models.load_model(model_path)
13
+
14
+ model = load_model()
15
+
16
+ def prepare_image(img):
17
+ img = img.resize((220, 220))
18
+ img_array = img_to_array(img)
19
+ img_array = np.expand_dims(img_array, axis=0)
20
+
21
+ prediction = model.predict(img_array)
22
+ predicted_class = "Smoking" if prediction > 0.5 else "Not Smoking"
23
+
24
+ return predicted_class, prediction[0]
25
+
26
+ def run():
27
+ st.title("Smoking or Not Smoking Detection")
28
+ img_file = st.file_uploader("Choose an Image", type=["jpg", "png"])
29
+
30
+ if img_file is not None:
31
+ img = Image.open(img_file).resize((250, 250))
32
+ st.image(img, use_column_width=False)
33
+
34
+ # Create the directory if it doesn't exist
35
+ upload_dir = './upload_images/'
36
+ os.makedirs(upload_dir, exist_ok=True)
37
+
38
+ save_image_path = os.path.join(upload_dir, img_file.name)
39
+ with open(save_image_path, "wb") as f:
40
+ f.write(img_file.getbuffer())
41
+
42
+ predicted_class, score = prepare_image(img)
43
+ st.success(f"**Predicted : {predicted_class}, Score: {score}**")
44
+
45
+ run()
model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fb76f07b54d985b3898621c5c782311d50aac3849f00ca79f55c325eabca10a
3
+ size 402347000
requirement.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ requests==2.29.0
2
+ streamlit
3
+ numpy
4
+ Pillow
5
+ flask
6
+ keras
7
+ tensorflow