File size: 13,960 Bytes
f5ba9ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import os

import numpy as np
import torch
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor


# the PNG palette for DAVIS 2017 dataset
DAVIS_PALETTE = b"\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0  \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00  \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80  @\xa0 @ \xa0@\xa0\xa0@  \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0"


def load_ann_png(path):
    """Load a PNG file as a mask and its palette."""
    mask = Image.open(path)
    palette = mask.getpalette()
    mask = np.array(mask).astype(np.uint8)
    return mask, palette


def save_ann_png(path, mask, palette):
    """Save a mask as a PNG file with the given palette."""
    assert mask.dtype == np.uint8
    assert mask.ndim == 2
    output_mask = Image.fromarray(mask)
    output_mask.putpalette(palette)
    output_mask.save(path)


def get_per_obj_mask(mask):
    """Split a mask into per-object masks."""
    object_ids = np.unique(mask)
    object_ids = object_ids[object_ids > 0].tolist()
    per_obj_mask = {object_id: (mask == object_id) for object_id in object_ids}
    return per_obj_mask


def put_per_obj_mask(per_obj_mask, height, width):
    """Combine per-object masks into a single mask."""
    mask = np.zeros((height, width), dtype=np.uint8)
    object_ids = sorted(per_obj_mask)[::-1]
    for object_id in object_ids:
        object_mask = per_obj_mask[object_id]
        object_mask = object_mask.reshape(height, width)
        mask[object_mask] = object_id
    return mask


def load_masks_from_dir(input_mask_dir, video_name, frame_name, per_obj_png_file):
    """Load masks from a directory as a dict of per-object masks."""
    if not per_obj_png_file:
        input_mask_path = os.path.join(input_mask_dir, video_name, f"{frame_name}.png")
        input_mask, input_palette = load_ann_png(input_mask_path)
        per_obj_input_mask = get_per_obj_mask(input_mask)
    else:
        per_obj_input_mask = {}
        # each object is a directory in "{object_id:%03d}" format
        for object_name in os.listdir(os.path.join(input_mask_dir, video_name)):
            object_id = int(object_name)
            input_mask_path = os.path.join(
                input_mask_dir, video_name, object_name, f"{frame_name}.png"
            )
            input_mask, input_palette = load_ann_png(input_mask_path)
            per_obj_input_mask[object_id] = input_mask > 0

    return per_obj_input_mask, input_palette


def save_masks_to_dir(
    output_mask_dir,
    video_name,
    frame_name,
    per_obj_output_mask,
    height,
    width,
    per_obj_png_file,
    output_palette,
):
    """Save masks to a directory as PNG files."""
    os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
    if not per_obj_png_file:
        output_mask = put_per_obj_mask(per_obj_output_mask, height, width)
        output_mask_path = os.path.join(
            output_mask_dir, video_name, f"{frame_name}.png"
        )
        save_ann_png(output_mask_path, output_mask, output_palette)
    else:
        for object_id, object_mask in per_obj_output_mask.items():
            object_name = f"{object_id:03d}"
            os.makedirs(
                os.path.join(output_mask_dir, video_name, object_name),
                exist_ok=True,
            )
            output_mask = object_mask.reshape(height, width).astype(np.uint8)
            output_mask_path = os.path.join(
                output_mask_dir, video_name, object_name, f"{frame_name}.png"
            )
            save_ann_png(output_mask_path, output_mask, output_palette)


@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def vos_inference(
    predictor,
    base_video_dir,
    input_mask_dir,
    output_mask_dir,
    video_name,
    score_thresh=0.0,
    use_all_masks=False,
    per_obj_png_file=False,
):
    """Run VOS inference on a single video with the given predictor."""
    # load the video frames and initialize the inference state on this video
    video_dir = os.path.join(base_video_dir, video_name)
    frame_names = [
        os.path.splitext(p)[0]
        for p in os.listdir(video_dir)
        if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
    ]
    frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
    inference_state = predictor.init_state(
        video_path=video_dir, async_loading_frames=False
    )
    height = inference_state["video_height"]
    width = inference_state["video_width"]
    input_palette = None

    # fetch mask inputs from input_mask_dir (either only mask for the first frame, or all available masks)
    if not use_all_masks:
        # use only the first video's ground-truth mask as the input mask
        input_frame_inds = [0]
    else:
        # use all mask files available in the input_mask_dir as the input masks
        if not per_obj_png_file:
            input_frame_inds = [
                idx
                for idx, name in enumerate(frame_names)
                if os.path.exists(
                    os.path.join(input_mask_dir, video_name, f"{name}.png")
                )
            ]
        else:
            input_frame_inds = [
                idx
                for object_name in os.listdir(os.path.join(input_mask_dir, video_name))
                for idx, name in enumerate(frame_names)
                if os.path.exists(
                    os.path.join(input_mask_dir, video_name, object_name, f"{name}.png")
                )
            ]
        input_frame_inds = sorted(set(input_frame_inds))

    # add those input masks to SAM 2 inference state before propagation
    for input_frame_idx in input_frame_inds:
        per_obj_input_mask, input_palette = load_masks_from_dir(
            input_mask_dir=input_mask_dir,
            video_name=video_name,
            frame_name=frame_names[input_frame_idx],
            per_obj_png_file=per_obj_png_file,
        )
        for object_id, object_mask in per_obj_input_mask.items():
            predictor.add_new_mask(
                inference_state=inference_state,
                frame_idx=input_frame_idx,
                obj_id=object_id,
                mask=object_mask,
            )

    # run propagation throughout the video and collect the results in a dict
    os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
    output_palette = input_palette or DAVIS_PALETTE
    video_segments = {}  # video_segments contains the per-frame segmentation results
    for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
        inference_state
    ):
        per_obj_output_mask = {
            out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy()
            for i, out_obj_id in enumerate(out_obj_ids)
        }
        video_segments[out_frame_idx] = per_obj_output_mask

    # write the output masks as palette PNG files to output_mask_dir
    for out_frame_idx, per_obj_output_mask in video_segments.items():
        save_masks_to_dir(
            output_mask_dir=output_mask_dir,
            video_name=video_name,
            frame_name=frame_names[out_frame_idx],
            per_obj_output_mask=per_obj_output_mask,
            height=height,
            width=width,
            per_obj_png_file=per_obj_png_file,
            output_palette=output_palette,
        )


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--sam2_cfg",
        type=str,
        default="sam2_hiera_b+.yaml",
        help="SAM 2 model configuration file",
    )
    parser.add_argument(
        "--sam2_checkpoint",
        type=str,
        default="./checkpoints/sam2_hiera_b+.pt",
        help="path to the SAM 2 model checkpoint",
    )
    parser.add_argument(
        "--base_video_dir",
        type=str,
        required=True,
        help="directory containing videos (as JPEG files) to run VOS prediction on",
    )
    parser.add_argument(
        "--input_mask_dir",
        type=str,
        required=True,
        help="directory containing input masks (as PNG files) of each video",
    )
    parser.add_argument(
        "--video_list_file",
        type=str,
        default=None,
        help="text file containing the list of video names to run VOS prediction on",
    )
    parser.add_argument(
        "--output_mask_dir",
        type=str,
        required=True,
        help="directory to save the output masks (as PNG files)",
    )
    parser.add_argument(
        "--score_thresh",
        type=float,
        default=0.0,
        help="threshold for the output mask logits (default: 0.0)",
    )
    parser.add_argument(
        "--use_all_masks",
        action="store_true",
        help="whether to use all available PNG files in input_mask_dir "
        "(default without this flag: just the first PNG file as input to the SAM 2 model; "
        "usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)",
    )
    parser.add_argument(
        "--per_obj_png_file",
        action="store_true",
        help="whether use separate per-object PNG files for input and output masks "
        "(default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; "
        "note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)",
    )
    parser.add_argument(
        "--apply_postprocessing",
        action="store_true",
        help="whether to apply postprocessing (e.g. hole-filling) to the output masks "
        "(we don't apply such post-processing in the SAM 2 model evaluation)",
    )
    args = parser.parse_args()

    # if we use per-object PNG files, they could possibly overlap in inputs and outputs
    hydra_overrides_extra = [
        "++model.non_overlap_masks=" + ("false" if args.per_obj_png_file else "true")
    ]
    predictor = build_sam2_video_predictor(
        config_file=args.sam2_cfg,
        ckpt_path=args.sam2_checkpoint,
        apply_postprocessing=args.apply_postprocessing,
        hydra_overrides_extra=hydra_overrides_extra,
    )

    if args.use_all_masks:
        print("using all available masks in input_mask_dir as input to the SAM 2 model")
    else:
        print(
            "using only the first frame's mask in input_mask_dir as input to the SAM 2 model"
        )
    # if a video list file is provided, read the video names from the file
    # (otherwise, we use all subdirectories in base_video_dir)
    if args.video_list_file is not None:
        with open(args.video_list_file, "r") as f:
            video_names = [v.strip() for v in f.readlines()]
    else:
        video_names = [
            p
            for p in os.listdir(args.base_video_dir)
            if os.path.isdir(os.path.join(args.base_video_dir, p))
        ]
    print(f"running VOS prediction on {len(video_names)} videos:\n{video_names}")

    for n_video, video_name in enumerate(video_names):
        print(f"\n{n_video + 1}/{len(video_names)} - running on {video_name}")
        vos_inference(
            predictor=predictor,
            base_video_dir=args.base_video_dir,
            input_mask_dir=args.input_mask_dir,
            output_mask_dir=args.output_mask_dir,
            video_name=video_name,
            score_thresh=args.score_thresh,
            use_all_masks=args.use_all_masks,
            per_obj_png_file=args.per_obj_png_file,
        )

    print(
        f"completed VOS prediction on {len(video_names)} videos -- "
        f"output masks saved to {args.output_mask_dir}"
    )


if __name__ == "__main__":
    main()