File size: 5,878 Bytes
f195437
 
 
dfc0c1a
f195437
 
e00f944
 
60def5b
 
e00f944
3810a85
 
 
 
 
 
f195437
 
 
dfc0c1a
 
 
 
 
f195437
 
e00f944
f195437
 
 
 
e00f944
 
 
 
f195437
 
e00f944
 
 
 
 
 
f195437
 
 
 
 
 
 
 
e00f944
 
 
 
f195437
 
 
e00f944
 
 
 
 
f195437
 
 
 
 
 
 
 
 
 
e00f944
 
 
 
f195437
dfc0c1a
f195437
e00f944
 
 
f195437
dfc0c1a
 
 
 
 
 
f195437
dfc0c1a
 
 
 
 
 
f195437
dfc0c1a
 
 
f195437
dfc0c1a
f195437
 
60def5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00f944
 
 
 
 
 
f195437
 
 
 
 
 
 
 
 
 
 
 
 
e00f944
 
 
 
 
 
 
 
f195437
 
 
 
 
 
 
 
 
 
 
e00f944
f195437
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import cv2
import numpy as np
from typing import Dict, List
import colorsys
from pytoshop import layers
from pytoshop.enums import BlendMode
from pytoshop.core import PsdFile

from modules.constants import DEFAULT_COLOR, DEFAULT_PIXEL_SIZE


def decode_to_mask(seg: np.ndarray[np.bool_] | np.ndarray[np.uint8]) -> np.ndarray[np.uint8]:

    if isinstance(seg, np.ndarray) and seg.dtype == np.bool_:
        return seg.astype(np.uint8) * 255
    else:
        return seg.astype(np.uint8)


def generate_random_color():
    h = np.random.randint(0, 360)
    s = np.random.randint(70, 100) / 100
    v = np.random.randint(70, 100) / 100
    r, g, b = colorsys.hsv_to_rgb(h/360, s, v)
    return int(r * 255), int(g * 255), int(b * 255)


def create_base_layer(image: np.ndarray):
    rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
    return [rgba_image]


def create_mask_layers(
    image: np.ndarray,
    masks: List
):
    layer_list = []

    sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True)

    for info in sorted_masks:
        rle = info['segmentation']
        mask = decode_to_mask(rle)

        rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
        rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask)

        layer_list.append(rgba_image)

    return layer_list


def create_mask_gallery(
    image: np.ndarray,
    masks: List
):
    mask_array_list = []
    label_list = []

    sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True)

    for index, info in enumerate(sorted_masks):
        rle = info['segmentation']
        mask = decode_to_mask(rle)

        rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
        rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask)

        mask_array_list.append(rgba_image)
        label_list.append(f'Part {index}')

    return [[img, label] for img, label in zip(mask_array_list, label_list)]


def create_mask_combined_images(
    image: np.ndarray,
    masks: List
):
    final_result = np.zeros_like(image)
    used_colors = set()

    for info in masks:
        rle = info['segmentation']
        mask = decode_to_mask(rle)

        while True:
            color = generate_random_color()
            if color not in used_colors:
                used_colors.add(color)
                break

        colored_mask = np.zeros_like(image)
        colored_mask[mask > 0] = color

        blended = cv2.addWeighted(image, 0.3, colored_mask, 0.7, 0)
        final_result = np.where(mask[:, :, np.newaxis] > 0, blended, final_result)

    combined_image = np.where(final_result != 0, final_result, image)

    hsv = cv2.cvtColor(combined_image, cv2.COLOR_BGR2HSV)
    hsv[:, :, 1] = np.clip(hsv[:, :, 1] * 1.5, 0, 255)
    enhanced = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)

    return [enhanced, "Masked"]


def create_mask_pixelized_image(
    image: np.ndarray,
    masks: List,
    pixel_size: int = DEFAULT_PIXEL_SIZE
):
    final_result = image.copy()

    def pixelize(img: np.ndarray, mask: np.ndarray[np.uint8], pixel_size: int):
        h, w = img.shape[:2]
        temp = cv2.resize(img, (w // pixel_size, h // pixel_size), interpolation=cv2.INTER_LINEAR)

        pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)

        return np.where(mask[:, :, np.newaxis] > 0, pixelated, img)

    for info in masks:
        rle = info['segmentation']
        mask = decode_to_mask(rle)

        pixelated_segment = pixelize(final_result, mask, pixel_size)

        final_result = np.where(mask[:, :, np.newaxis] > 0, pixelated_segment, final_result)

    return final_result


def create_solid_color_mask_image(
    image: np.ndarray,
    masks: List,
    color_hex: str = DEFAULT_COLOR
):
    final_result = image.copy()

    def hex_to_bgr(hex_color: str):
        hex_color = hex_color.lstrip('#')
        rgb = tuple(int(hex_color[i:i + 2], 16) for i in (0, 2, 4))
        return rgb[::-1]

    color_bgr = hex_to_bgr(color_hex)

    for info in masks:
        rle = info['segmentation']
        mask = decode_to_mask(rle)

        solid_color_mask = np.full(image.shape, color_bgr, dtype=np.uint8)

        final_result = np.where(mask[:, :, np.newaxis] > 0, solid_color_mask, final_result)

    return final_result


def insert_psd_layer(
    psd: PsdFile,
    image_data: np.ndarray,
    layer_name: str,
    blending_mode: BlendMode
):
    channel_data = [layers.ChannelImageData(image=image_data[:, :, i], compression=1) for i in range(4)]

    layer_record = layers.LayerRecord(
        channels={-1: channel_data[3], 0: channel_data[0], 1: channel_data[1], 2: channel_data[2]},
        top=0, bottom=image_data.shape[0], left=0, right=image_data.shape[1],
        blend_mode=blending_mode,
        name=layer_name,
        opacity=255,
    )
    psd.layer_and_mask_info.layer_info.layer_records.append(layer_record)
    return psd


def save_psd(
    input_image_data: np.ndarray,
    layer_data: List,
    layer_names: List,
    blending_modes: List,
    output_path: str
):
    psd_file = PsdFile(num_channels=3, height=input_image_data.shape[0], width=input_image_data.shape[1])
    psd_file.layer_and_mask_info.layer_info.layer_records.clear()

    for index, layer in enumerate(layer_data):
        psd_file = insert_psd_layer(psd_file, layer, layer_names[index], blending_modes[index])

    with open(output_path, 'wb') as output_file:
        psd_file.write(output_file)


def save_psd_with_masks(
    image: np.ndarray,
    masks: List,
    output_path: str
):
    original_layer = create_base_layer(image)
    mask_layers = create_mask_layers(image, masks)
    names = [f'Part {i}' for i in range(len(mask_layers))]
    modes = [BlendMode.normal] * (len(mask_layers)+1)
    save_psd(image, original_layer+mask_layers, ['Original_Image']+names, modes, output_path)