File size: 6,066 Bytes
cfa5142
 
 
2c719e3
cfa5142
 
 
 
 
 
d3e66e1
cfa5142
 
 
 
2c719e3
cfa5142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60434a4
cfa5142
 
 
 
 
 
 
60434a4
cfa5142
60434a4
cfa5142
 
 
 
 
 
 
 
60434a4
8d52a7d
cfa5142
2c719e3
 
 
 
 
 
 
 
 
 
87a101a
 
 
 
 
cfa5142
2c719e3
 
 
 
 
8d52a7d
cfa5142
 
2c719e3
 
cfa5142
87a101a
 
 
 
 
 
 
2c719e3
 
 
 
 
 
 
 
 
 
 
 
002d880
 
 
 
 
 
 
 
 
 
 
 
 
 
2c719e3
 
 
 
 
 
002d880
2c719e3
 
 
 
16bf670
2c719e3
16bf670
2c719e3
16bf670
2c719e3
 
 
002d880
2c719e3
16bf670
8d52a7d
2c719e3
 
 
cfa5142
16bf670
 
 
 
 
 
 
002d880
 
 
16bf670
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from typing import Dict, List
import torch
import os
from datetime import datetime
import numpy as np

from modules.model_downloader import (
    AVAILABLE_MODELS, DEFAULT_MODEL_TYPE, OUTPUT_DIR,
    is_sam_exist,
    download_sam_model_url
)
from modules.paths import SAM2_CONFIGS_DIR, MODELS_DIR
from modules.constants import BOX_PROMPT_MODE, AUTOMATIC_MODE
from modules.mask_utils import (
    save_psd_with_masks,
    create_mask_combined_images,
    create_mask_gallery
)

CONFIGS = {
    "sam2_hiera_tiny": os.path.join(SAM2_CONFIGS_DIR, "sam2_hiera_t.yaml"),
    "sam2_hiera_small": os.path.join(SAM2_CONFIGS_DIR, "sam2_hiera_s.yaml"),
    "sam2_hiera_base_plus": os.path.join(SAM2_CONFIGS_DIR, "sam2_hiera_b+.yaml"),
    "sam2_hiera_large": os.path.join(SAM2_CONFIGS_DIR, "sam2_hiera_l.yaml"),
}


class SamInference:
    def __init__(self,
                 model_dir: str = MODELS_DIR,
                 output_dir: str = OUTPUT_DIR
                 ):
        self.model = None
        self.available_models = list(AVAILABLE_MODELS.keys())
        self.model_type = DEFAULT_MODEL_TYPE
        self.model_dir = model_dir
        self.output_dir = output_dir
        self.model_path = os.path.join(self.model_dir, AVAILABLE_MODELS[DEFAULT_MODEL_TYPE][0])
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.mask_generator = None
        self.image_predictor = None
        self.video_predictor = None

    def load_model(self):
        config = CONFIGS[self.model_type]
        filename, url = AVAILABLE_MODELS[self.model_type]
        model_path = os.path.join(self.model_dir, filename)

        if not is_sam_exist(self.model_type):
            print(f"\nNo SAM2 model found, downloading {self.model_type} model...")
            download_sam_model_url(self.model_type)
        print("\nApplying configs to model..")

        try:
            self.model = build_sam2(
                config_file=config,
                ckpt_path=model_path,
                device=self.device
            )
        except Exception as e:
            print(f"Error while Loading SAM2 model! {e}")

    def generate_mask(self,
                      image: np.ndarray,
                      model_type: str,
                      **params):
        if self.model is None or self.model_type != model_type:
            self.model_type = model_type
            self.load_model()
        self.mask_generator = SAM2AutomaticMaskGenerator(
            model=self.model,
            **params
        )
        try:
            generated_masks = self.mask_generator.generate(image)
        except Exception as e:
            raise f"Error while auto generating masks: {e}"
        return generated_masks

    def predict_image(self,
                      image: np.ndarray,
                      model_type: str,
                      box: np.ndarray,
                      **params):
        if self.model is None or self.model_type != model_type:
            self.model_type = model_type
            self.load_model()
        self.image_predictor = SAM2ImagePredictor(sam_model=self.model)
        self.image_predictor.set_image(image)

        try:
            masks, scores, logits = self.image_predictor.predict(
                box=box,
                multimask_output=params["multimask_output"],
            )
        except Exception as e:
            raise f"Error while predicting image with prompt: {e}"
        return masks, scores, logits

    def divide_layer(self,
                     image_input: np.ndarray,
                     image_prompt_input_data: Dict,
                     input_mode: str,
                     model_type: str,
                     *params):
        timestamp = datetime.now().strftime("%m%d%H%M%S")
        output_file_name = f"result-{timestamp}.psd"
        output_path = os.path.join(self.output_dir, "psd", output_file_name)

        hparams = {
            'points_per_side': int(params[0]),
            'points_per_batch': int(params[1]),
            'pred_iou_thresh': float(params[2]),
            'stability_score_thresh': float(params[3]),
            'stability_score_offset': float(params[4]),
            'crop_n_layers': int(params[5]),
            'box_nms_thresh': float(params[6]),
            'crop_n_points_downscale_factor': int(params[7]),
            'min_mask_region_area': int(params[8]),
            'use_m2m': bool(params[9]),
            'multimask_output': bool(params[10])
        }

        if input_mode == AUTOMATIC_MODE:
            image = image_input

            generated_masks = self.generate_mask(
                image=image,
                model_type=model_type,
                **hparams
            )

        elif input_mode == BOX_PROMPT_MODE:
            image = image_prompt_input_data["image"]
            image = np.array(image.convert("RGB"))
            box = image_prompt_input_data["points"]
            box = np.array([[x1, y1, x2, y2] for x1, y1, _, x2, y2, _ in box])

            predicted_masks, scores, logits = self.predict_image(
                image=image,
                model_type=model_type,
                box=box,
                multimask_output=hparams["multimask_output"]
            )
            generated_masks = self.format_to_auto_result(predicted_masks)

        save_psd_with_masks(image, generated_masks, output_path)
        mask_combined_image = create_mask_combined_images(image, generated_masks)
        gallery = create_mask_gallery(image, generated_masks)

        return [mask_combined_image] + gallery, output_path

    @staticmethod
    def format_to_auto_result(
        masks: np.ndarray
    ):
        place_holder = 0
        if len(masks) == 1:
            return [{"segmentation": mask, "area": place_holder} for mask in masks]
        result = [{"segmentation": mask[0], "area": place_holder} for mask in masks]
        return result