File size: 12,284 Bytes
64b615e
688976a
e8bad6c
bb21642
688976a
97f1bae
688976a
10d86f5
688976a
 
64b615e
688976a
06525bf
e1db3fe
64b615e
688976a
2e0064d
 
 
64b615e
2e0064d
10d86f5
 
 
 
64b615e
 
 
 
e8bad6c
4d105da
06525bf
 
 
 
cf94415
 
e1db3fe
e8bad6c
bb21642
 
 
e1db3fe
bb21642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c89e57a
 
 
 
 
 
 
 
06525bf
 
 
 
 
 
 
 
 
 
62a455e
 
06525bf
a6933f9
06525bf
 
a6933f9
2e0064d
a6933f9
 
 
 
 
06525bf
2e0064d
a6933f9
 
 
 
2e0064d
a6933f9
cf94415
e8bad6c
a6933f9
10d86f5
 
a6933f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0d1c62
a6933f9
 
 
 
 
06525bf
 
a8fcc23
06525bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6933f9
 
 
 
e1db3fe
a6933f9
e1db3fe
62a455e
a6933f9
06525bf
 
 
 
 
a6933f9
 
 
 
06525bf
 
 
 
 
62a455e
 
06525bf
 
 
62a455e
e56e825
62a455e
e0d1c62
a6933f9
64b615e
 
 
 
2e0064d
 
 
64b615e
 
 
 
 
 
 
e5d2146
64b615e
10d86f5
64b615e
 
 
a6933f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import gradio as gr
from gradio_image_prompter import ImagePrompter
from typing import List, Dict, Optional, Union
import os
import yaml

from modules.html_constants import (HEADER, DEFAULT_THEME, CSS)
from modules.sam_inference import SamInference
from modules.model_downloader import DEFAULT_MODEL_TYPE
from modules.paths import (OUTPUT_DIR, OUTPUT_PSD_DIR, SAM2_CONFIGS_DIR, TEMP_DIR, OUTPUT_FILTER_DIR, MODELS_DIR)
from modules.utils import open_folder
from modules.constants import (AUTOMATIC_MODE, BOX_PROMPT_MODE, PIXELIZE_FILTER, COLOR_FILTER, DEFAULT_COLOR,
                               DEFAULT_PIXEL_SIZE, SOUND_FILE_EXT, IMAGE_FILE_EXT, VIDEO_FILE_EXT)
from modules.video_utils import get_frames_from_dir


class App:
    def __init__(self,
                 args: argparse.Namespace):
        self.args = args
        self.demo = gr.Blocks(
            theme=self.args.theme,
            css=CSS
        )
        self.sam_inf = SamInference(
            model_dir=self.args.model_dir,
            output_dir=self.args.output_dir
        )
        self.image_modes = [AUTOMATIC_MODE, BOX_PROMPT_MODE]
        self.default_mode = BOX_PROMPT_MODE
        self.filter_modes = [PIXELIZE_FILTER, COLOR_FILTER]
        self.default_filter = PIXELIZE_FILTER
        self.default_color = DEFAULT_COLOR
        self.default_pixel_size = DEFAULT_PIXEL_SIZE
        default_hparam_config_path = os.path.join(SAM2_CONFIGS_DIR, "default_hparams.yaml")
        with open(default_hparam_config_path, 'r') as file:
            self.default_hparams = yaml.safe_load(file)

    def mask_parameters(self,
                        hparams: Optional[Dict] = None):
        if hparams is None:
            hparams = self.default_hparams["mask_hparams"]
        mask_components = [
            gr.Number(label="points_per_side ", value=hparams["points_per_side"], interactive=True),
            gr.Number(label="points_per_batch ", value=hparams["points_per_batch"], interactive=True),
            gr.Slider(label="pred_iou_thresh ", value=hparams["pred_iou_thresh"], minimum=0, maximum=1,
                      interactive=True),
            gr.Slider(label="stability_score_thresh ", value=hparams["stability_score_thresh"], minimum=0,
                      maximum=1, interactive=True),
            gr.Slider(label="stability_score_offset ", value=hparams["stability_score_offset"], minimum=0,
                      maximum=1),
            gr.Number(label="crop_n_layers ", value=hparams["crop_n_layers"]),
            gr.Slider(label="box_nms_thresh ", value=hparams["box_nms_thresh"], minimum=0, maximum=1),
            gr.Number(label="crop_n_points_downscale_factor ", value=hparams["crop_n_points_downscale_factor"]),
            gr.Number(label="min_mask_region_area ", value=hparams["min_mask_region_area"]),
            gr.Checkbox(label="use_m2m ", value=hparams["use_m2m"])
        ]
        return mask_components

    @staticmethod
    def on_mode_change(mode: str):
        return [
            gr.Image(visible=mode == AUTOMATIC_MODE),
            ImagePrompter(visible=mode == BOX_PROMPT_MODE),
            gr.Accordion(visible=mode == AUTOMATIC_MODE),
        ]

    @staticmethod
    def on_filter_mode_change(mode: str):
        return [
            gr.ColorPicker(visible=mode == COLOR_FILTER),
            gr.Number(visible=mode == PIXELIZE_FILTER)
        ]

    def on_video_model_change(self,
                              model_type: str,
                              vid_input: str):
        self.sam_inf.init_video_inference_state(vid_input=vid_input, model_type=model_type)
        frames = get_frames_from_dir(vid_dir=TEMP_DIR)
        initial_frame, max_frame_index = frames[0], (len(frames)-1)
        return [
            ImagePrompter(label="Prompt image with Box & Point", value=initial_frame),
            gr.Slider(label="Frame Index", value=0, interactive=True, step=1, minimum=0, maximum=max_frame_index)
        ]

    @staticmethod
    def on_frame_change(frame_idx: int):
        temp_dir = TEMP_DIR
        frames = get_frames_from_dir(vid_dir=temp_dir)
        selected_frame = frames[frame_idx]
        return ImagePrompter(label=f"Prompt image with Box & Point", value=selected_frame)

    @staticmethod
    def on_prompt_change(prompt: Dict):
        image, points = prompt["image"], prompt["points"]
        return gr.Image(label="Preview", value=image)

    def launch(self):
        _mask_hparams = self.default_hparams["mask_hparams"]

        with self.demo:
            md_header = gr.Markdown(HEADER, elem_id="md_header")

            with gr.Tabs():
                with gr.TabItem("Layer Divider"):
                    with gr.Row():
                        with gr.Column(scale=5):
                            img_input = gr.Image(label="Input image here", visible=self.default_mode == AUTOMATIC_MODE)
                            img_input_prompter = ImagePrompter(label="Prompt image with Box & Point", type='pil',
                                                               visible=self.default_mode == BOX_PROMPT_MODE)

                        with gr.Column(scale=5):
                            dd_input_modes = gr.Dropdown(label="Image Input Mode", value=self.default_mode,
                                                         choices=self.image_modes)
                            dd_models = gr.Dropdown(label="Model", value=DEFAULT_MODEL_TYPE,
                                                    choices=self.sam_inf.available_models)

                            with gr.Accordion("Mask Parameters", open=False, visible=self.default_mode == AUTOMATIC_MODE) as acc_mask_hparams:
                                mask_hparams_component = self.mask_parameters(_mask_hparams)

                            cb_multimask_output = gr.Checkbox(label="multimask_output", value=_mask_hparams["multimask_output"])

                    with gr.Row():
                        btn_generate = gr.Button("GENERATE", variant="primary")
                    with gr.Row():
                        gallery_output = gr.Gallery(label="Output images will be shown here")
                        with gr.Column():
                            output_file = gr.File(label="Generated psd file", scale=9)
                            btn_open_folder = gr.Button("📁\nOpen PSD folder", scale=1)

                    sources = [img_input, img_input_prompter, dd_input_modes]
                    model_params = [dd_models]
                    mask_hparams = mask_hparams_component + [cb_multimask_output]
                    input_params = sources + model_params + mask_hparams

                    btn_generate.click(fn=self.sam_inf.divide_layer,
                                       inputs=input_params, outputs=[gallery_output, output_file])
                    btn_open_folder.click(fn=lambda: open_folder(OUTPUT_PSD_DIR),
                                          inputs=None, outputs=None)
                    dd_input_modes.change(fn=self.on_mode_change,
                                          inputs=[dd_input_modes],
                                          outputs=[img_input, img_input_prompter, acc_mask_hparams])

                with gr.TabItem("Pixelize Filter"):
                    with gr.Column():
                        file_vid_input = gr.File(label="Input Video", file_types=IMAGE_FILE_EXT + VIDEO_FILE_EXT)
                        with gr.Row(equal_height=True):
                            with gr.Column(scale=9):
                                with gr.Row():
                                    vid_frame_prompter = ImagePrompter(label="Prompt image with Box & Point", type='pil',
                                                                       interactive=True, scale=5)
                                    img_preview = gr.Image(label="Preview", interactive=False, scale=5)

                                sld_frame_selector = gr.Slider(label="Frame Index", interactive=False)

                            with gr.Column(scale=1):
                                dd_models = gr.Dropdown(label="Model", value=DEFAULT_MODEL_TYPE,
                                                        choices=self.sam_inf.available_models)
                                dd_filter_mode = gr.Dropdown(label="Filter Modes", interactive=True,
                                                             value=self.default_filter,
                                                             choices=self.filter_modes)
                                cp_color_picker = gr.ColorPicker(label="Solid Color", interactive=True,
                                                                 visible=self.default_filter == COLOR_FILTER,
                                                                 value=self.default_color)
                                nb_pixel_size = gr.Number(label="Pixel Size", interactive=True, minimum=1,
                                                          visible=self.default_filter == PIXELIZE_FILTER,
                                                          value=self.default_pixel_size)
                                btn_generate_preview = gr.Button("GENERATE PREVIEW")

                    with gr.Row():
                        btn_generate = gr.Button("GENERATE", variant="primary")
                    with gr.Row():
                        vid_output = gr.Video(label="Output")
                        with gr.Column():
                            output_file = gr.File(label="Downloadable Output File", scale=9)
                            btn_open_folder = gr.Button("📁\nOpen Output folder", scale=1)

                    file_vid_input.change(fn=self.on_video_model_change,
                                          inputs=[dd_models, file_vid_input],
                                          outputs=[vid_frame_prompter, sld_frame_selector])
                    dd_models.change(fn=self.on_video_model_change,
                                     inputs=[dd_models, file_vid_input],
                                     outputs=[vid_frame_prompter, sld_frame_selector])
                    sld_frame_selector.change(fn=self.on_frame_change,
                                              inputs=[sld_frame_selector],
                                              outputs=[vid_frame_prompter],)
                    dd_filter_mode.change(fn=self.on_filter_mode_change,
                                          inputs=[dd_filter_mode],
                                          outputs=[cp_color_picker,
                                                   nb_pixel_size])

                    preview_params = [vid_frame_prompter, dd_filter_mode, sld_frame_selector, nb_pixel_size,
                                      cp_color_picker]
                    btn_generate_preview.click(fn=self.sam_inf.add_filter_to_preview,
                                               inputs=preview_params,
                                               outputs=[img_preview])
                    btn_generate.click(fn=self.sam_inf.create_filtered_video,
                                       inputs=preview_params,
                                       outputs=[vid_output, output_file])
                    btn_open_folder.click(fn=lambda: open_folder(OUTPUT_FILTER_DIR), inputs=None, outputs=None)

        self.demo.queue().launch(
            inbrowser=self.args.inbrowser,
            share=self.args.share
        )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_dir', type=str, default=MODELS_DIR,
                        help='Model directory for segment-anything-2')
    parser.add_argument('--output_dir', type=str, default=OUTPUT_DIR,
                        help='Output directory for the results')
    parser.add_argument('--inbrowser', type=bool, default=True, nargs='?', const=True,
                        help='Whether to automatically start Gradio app or not')
    parser.add_argument('--share', type=bool, default=False, nargs='?', const=True,
                        help='Whether to create a public link for the app or not')
    parser.add_argument('--theme', type=str, default=DEFAULT_THEME, help='Gradio Blocks theme')
    args = parser.parse_args()

    demo = App(args=args)
    demo.launch()