Spaces:
Runtime error
Runtime error
File size: 2,555 Bytes
688976a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
import os
from modules.sam_inference import SamInference
from modules.model_downloader import DEFAULT_MODEL_TYPE
from modules.paths import OUTPUT_DIR
from modules.utils import open_folder
sam_inf = SamInference()
with gr.Blocks() as app:
with gr.Row():
with gr.Column(scale=5):
img_input = gr.Image(label="Input image here")
with gr.Column(scale=5):
dd_models = gr.Dropdown(label="Model", value=DEFAULT_MODEL_TYPE, choices=sam_inf.available_models)
nb_points_per_side = gr.Number(label="points_per_side ", value=64)
nb_points_per_batch = gr.Number(label="points_per_batch ", value=128)
sld_pred_iou_thresh = gr.Slider(label="pred_iou_thresh ", value=0.7, minimum=0, maximum=1)
sld_stability_score_thresh = gr.Slider(label="stability_score_thresh ", value=0.92, minimum=0,
maximum=1)
sld_stability_score_offset = gr.Slider(label="stability_score_offset ", value=0.7, minimum=0,
maximum=1)
nb_crop_n_layers = gr.Number(label="crop_n_layers ", value=1)
sld_box_nms_thresh = gr.Slider(label="box_nms_thresh ", value=0.7, minimum=0,
maximum=1)
nb_crop_n_points_downscale_factor = gr.Number(label="crop_n_points_downscale_factor ", value=2)
nb_min_mask_region_area = gr.Number(label="min_mask_region_area ", value=25)
cb_use_m2m = gr.Checkbox(label="use_m2m ", value=True)
with gr.Row():
btn_generate = gr.Button("GENERATE", variant="primary")
with gr.Row():
gallery_output = gr.Gallery(label="Output images will be shown here")
with gr.Column():
output_file = gr.File(label="Generated psd file", scale=8)
btn_open_folder = gr.Button("📁\nOpen PSD folder", scale=2)
params = [nb_points_per_side, nb_points_per_batch, sld_pred_iou_thresh, sld_stability_score_thresh,
sld_stability_score_offset,
nb_crop_n_layers, sld_box_nms_thresh, nb_crop_n_points_downscale_factor, nb_min_mask_region_area,
cb_use_m2m]
btn_generate.click(fn=sam_inf.generate_mask_app,
inputs=[img_input, dd_models] + params, outputs=[gallery_output, output_file])
btn_open_folder.click(fn=lambda: open_folder(os.path.join(OUTPUT_DIR)),
inputs=None, outputs=None)
app.queue().launch(inbrowser=True) |