sam2-playground / app.py
jhj0517
Add `cb_multimask_output`
0cb1388
raw
history blame
5.5 kB
import gradio as gr
from gradio_image_prompter import ImagePrompter
import os
import yaml
from modules.sam_inference import SamInference
from modules.model_downloader import DEFAULT_MODEL_TYPE
from modules.paths import (OUTPUT_DIR, SAM2_CONFIGS_DIR)
from modules.utils import open_folder
from modules.constants import (AUTOMATIC_MODE, BOX_PROMPT_MODE)
class App:
def __init__(self,
args=None):
self.app = gr.Blocks()
self.args = args
self.sam_inf = SamInference()
self.image_modes = [AUTOMATIC_MODE, BOX_PROMPT_MODE]
self.default_mode = AUTOMATIC_MODE
default_param_config_path = os.path.join(SAM2_CONFIGS_DIR, "default_hparams.yaml")
with open(default_param_config_path, 'r') as file:
self.hparams = yaml.safe_load(file)
@staticmethod
def on_mode_change(mode: str):
return [
gr.Image(visible=mode == AUTOMATIC_MODE),
ImagePrompter(visible=mode == BOX_PROMPT_MODE),
gr.Accordion(visible=mode == AUTOMATIC_MODE),
]
def launch(self):
_mask_hparams = self.hparams["mask_hparams"]
with self.app:
with gr.Row():
with gr.Column(scale=5):
img_input = gr.Image(label="Input image here")
img_input_prompter = ImagePrompter(label="Prompt image with Box & Point", type='pil',
visible=self.default_mode == BOX_PROMPT_MODE)
with gr.Column(scale=5):
dd_input_modes = gr.Dropdown(label="Image Input Mode", value=self.default_mode,
choices=self.image_modes)
dd_models = gr.Dropdown(label="Model", value=DEFAULT_MODEL_TYPE,
choices=self.sam_inf.available_models)
with gr.Accordion("Mask Parameters", open=False) as acc_mask_hparams:
nb_points_per_side = gr.Number(label="points_per_side ", value=_mask_hparams["points_per_side"],
interactive=True)
nb_points_per_batch = gr.Number(label="points_per_batch ", value=_mask_hparams["points_per_batch"],
interactive=True)
sld_pred_iou_thresh = gr.Slider(label="pred_iou_thresh ", value=_mask_hparams["pred_iou_thresh"],
minimum=0, maximum=1, interactive=True)
sld_stability_score_thresh = gr.Slider(label="stability_score_thresh ", value=_mask_hparams["stability_score_thresh"],
minimum=0, maximum=1, interactive=True)
sld_stability_score_offset = gr.Slider(label="stability_score_offset ", value=_mask_hparams["stability_score_offset"],
minimum=0, maximum=1)
nb_crop_n_layers = gr.Number(label="crop_n_layers ", value=_mask_hparams["crop_n_layers"],)
sld_box_nms_thresh = gr.Slider(label="box_nms_thresh ", value=_mask_hparams["box_nms_thresh"],
minimum=0, maximum=1)
nb_crop_n_points_downscale_factor = gr.Number(label="crop_n_points_downscale_factor ",
value=_mask_hparams["crop_n_points_downscale_factor"],)
nb_min_mask_region_area = gr.Number(label="min_mask_region_area ", value=_mask_hparams["min_mask_region_area"],)
cb_use_m2m = gr.Checkbox(label="use_m2m ", value=_mask_hparams["use_m2m"])
cb_multimask_output = gr.Checkbox(label="multimask_output", value=_mask_hparams["multimask_output"])
with gr.Row():
btn_generate = gr.Button("GENERATE", variant="primary")
with gr.Row():
gallery_output = gr.Gallery(label="Output images will be shown here")
with gr.Column():
output_file = gr.File(label="Generated psd file", scale=9)
btn_open_folder = gr.Button("📁\nOpen PSD folder", scale=1)
sources = [img_input, img_input_prompter, dd_input_modes]
model_params = [dd_models]
mask_hparams = [nb_points_per_side, nb_points_per_batch, sld_pred_iou_thresh,
sld_stability_score_thresh, sld_stability_score_offset, nb_crop_n_layers,
sld_box_nms_thresh, nb_crop_n_points_downscale_factor, nb_min_mask_region_area,
cb_use_m2m, cb_multimask_output]
btn_generate.click(fn=self.sam_inf.divide_layer,
inputs=sources + model_params + mask_hparams, outputs=[gallery_output, output_file])
btn_open_folder.click(fn=lambda: open_folder(os.path.join(OUTPUT_DIR)),
inputs=None, outputs=None)
dd_input_modes.change(fn=self.on_mode_change,
inputs=[dd_input_modes],
outputs=[img_input, img_input_prompter, acc_mask_hparams])
self.app.queue().launch(inbrowser=True)
if __name__ == "__main__":
app = App()
app.launch()