sam2-playground / modules /sam_inference.py
jhj0517
Add `invert_mask` parameter to the functions
1b5d47b
raw
history blame
23.1 kB
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from sam2.build_sam import build_sam2, build_sam2_video_predictor
from sam2.sam2_image_predictor import SAM2ImagePredictor
from typing import Dict, List, Optional, Tuple, Any
import torch
import os
from datetime import datetime
import numpy as np
import gradio as gr
from modules.model_downloader import (
AVAILABLE_MODELS, DEFAULT_MODEL_TYPE,
is_sam_exist,
download_sam_model_url
)
from modules.paths import (MODELS_DIR, TEMP_OUT_DIR, TEMP_DIR, MODEL_CONFIGS, OUTPUT_DIR)
from modules.constants import (BOX_PROMPT_MODE, AUTOMATIC_MODE, COLOR_FILTER, PIXELIZE_FILTER, IMAGE_FILE_EXT)
from modules.mask_utils import (
invert_masks,
save_psd_with_masks,
create_mask_combined_images,
create_mask_gallery,
create_mask_pixelized_image,
create_solid_color_mask_image
)
from modules.video_utils import (get_frames_from_dir, create_video_from_frames, get_video_info, extract_frames,
extract_sound, clean_temp_dir, clean_files_with_extension)
from modules.utils import save_image
from modules.logger_util import get_logger
logger = get_logger()
class SamInference:
def __init__(self,
model_dir: str = MODELS_DIR,
output_dir: str = OUTPUT_DIR
):
self.model = None
self.available_models = list(AVAILABLE_MODELS.keys())
self.current_model_type = DEFAULT_MODEL_TYPE
self.model_dir = model_dir
self.output_dir = output_dir
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.dtype = torch.float16 if torch.cuda.is_available() else torch.bfloat16
self.mask_generator = None
self.image_predictor = None
self.video_predictor = None
self.video_inference_state = None
self.video_info = None
def load_model(self,
model_type: Optional[str] = None,
load_video_predictor: bool = False):
"""
Load the model from the model directory. If the model is not found, download it from the URL.
Args:
model_type (str): The model type to load.
load_video_predictor (bool): Load the video predictor model.
"""
if model_type is None:
model_type = DEFAULT_MODEL_TYPE
config_path = MODEL_CONFIGS[model_type]
config_dir, config_name = os.path.split(config_path)
filename, url = AVAILABLE_MODELS[model_type]
model_path = os.path.join(self.model_dir, filename)
if not is_sam_exist(model_dir=self.model_dir, model_type=model_type):
logger.info(f"No SAM2 model found, downloading {model_type} model...")
download_sam_model_url(model_dir=self.model_dir, model_type=model_type)
logger.info(f"Applying configs to {model_type} model..")
if load_video_predictor:
try:
self.model = None
self.video_predictor = build_sam2_video_predictor(
config_file=config_name,
ckpt_path=model_path,
device=self.device
)
return
except Exception as e:
logger.exception("Error while loading SAM2 model for video predictor")
try:
self.video_predictor = None
self.model = build_sam2(
config_file=config_name,
ckpt_path=model_path,
device=self.device
)
except Exception as e:
logger.exception("Error while loading SAM2 model")
raise RuntimeError(f"Failed to load model") from e
def init_video_inference_state(self,
vid_input: str,
model_type: Optional[str] = None):
"""
Initialize the video inference state for the video predictor.
Args:
vid_input (str): The video frames directory.
model_type (str): The model type to load.
"""
if model_type is None:
model_type = self.current_model_type
if self.video_predictor is None or model_type != self.current_model_type:
self.current_model_type = model_type
self.load_model(model_type=model_type, load_video_predictor=True)
self.video_info = get_video_info(vid_input)
frames_temp_dir = TEMP_DIR
clean_temp_dir(frames_temp_dir)
extract_frames(vid_input, frames_temp_dir)
if self.video_info.has_sound:
extract_sound(vid_input, frames_temp_dir)
if self.video_inference_state is not None:
self.video_predictor.reset_state(self.video_inference_state)
self.video_inference_state = None
self.video_inference_state = self.video_predictor.init_state(video_path=frames_temp_dir)
def generate_mask(self,
image: np.ndarray,
model_type: str,
invert_mask: bool = False,
**params) -> List[Dict[str, Any]]:
"""
Generate masks with Automatic segmentation. Default hyperparameters are in './configs/default_hparams.yaml.'
Args:
image (np.ndarray): The input image.
model_type (str): The model type to load.
invert_mask (bool): Invert the mask output - used for background masking.
**params: The hyperparameters for the mask generator.
Returns:
List[Dict[str, Any]]: The auto-generated mask data.
"""
if self.model is None or self.current_model_type != model_type:
self.current_model_type = model_type
self.load_model(model_type=model_type)
self.mask_generator = SAM2AutomaticMaskGenerator(
model=self.model,
**params
)
try:
generated_masks = self.mask_generator.generate(image)
except Exception as e:
logger.exception(f"Error while auto generating masks : {e}")
raise RuntimeError(f"Failed to generate masks") from e
if invert_mask:
generated_masks = [{'segmentation': invert_masks(mask['segmentation']),
'area': mask['area']} for mask in generated_masks]
return generated_masks
def predict_image(self,
image: np.ndarray,
model_type: str,
box: Optional[np.ndarray] = None,
point_coords: Optional[np.ndarray] = None,
point_labels: Optional[np.ndarray] = None,
invert_mask: bool = False,
**params) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Predict image with prompt data.
Args:
image (np.ndarray): The input image.
model_type (str): The model type to load.
box (np.ndarray): The box prompt data.
point_coords (np.ndarray): The point coordinates prompt data.
point_labels (np.ndarray): The point labels prompt data.
invert_mask (bool): Invert the mask output - used for background masking.
**params: The hyperparameters for the mask generator.
Returns:
np.ndarray: The predicted masks output in CxHxW format.
np.ndarray: Array of scores for each mask.
np.ndarray: Array of logits in CxHxW format.
"""
if self.model is None or self.current_model_type != model_type:
self.current_model_type = model_type
self.load_model(model_type=model_type)
self.image_predictor = SAM2ImagePredictor(sam_model=self.model)
self.image_predictor.set_image(image)
try:
masks, scores, logits = self.image_predictor.predict(
box=box,
point_coords=point_coords,
point_labels=point_labels,
multimask_output=params["multimask_output"],
)
except Exception as e:
logger.exception(f"Error while predicting image with prompt: {str(e)}")
raise RuntimeError(f"Failed to predict image with prompt") from e
if invert_mask:
masks = invert_masks(masks)
return masks, scores, logits
def add_prediction_to_frame(self,
frame_idx: int,
obj_id: int,
inference_state: Optional[Dict] = None,
points: Optional[np.ndarray] = None,
labels: Optional[np.ndarray] = None,
box: Optional[np.ndarray] = None) -> Tuple[int, int, torch.Tensor]:
"""
Add prediction to the current video inference state. inference state must be initialized before calling this method.
Args:
frame_idx (int): The frame index of the video.
obj_id (int): The object id for the frame.
inference_state (Dict): The inference state for the video predictor.
points (np.ndarray): The point coordinates prompt data.
labels (np.ndarray): The point labels prompt data.
box (np.ndarray): The box prompt data.
Returns:
int: The frame index of the corresponding prediction.
int: The object id of the corresponding prediction.
torch.Tensor: The mask logits output in CxHxW format.
"""
if (self.video_predictor is None or
inference_state is None and self.video_inference_state is None):
logger.exception("Error while predicting frame from video, load video predictor first")
if inference_state is None:
inference_state = self.video_inference_state
try:
out_frame_idx, out_obj_ids, out_mask_logits = self.video_predictor.add_new_points_or_box(
inference_state=inference_state,
frame_idx=frame_idx,
obj_id=obj_id,
points=points,
labels=labels,
box=box
)
except Exception as e:
logger.exception(f"Error while predicting frame with prompt: {str(e)}")
raise RuntimeError(f"Failed to predicting frame with prompt") from e
return out_frame_idx, out_obj_ids, out_mask_logits
def propagate_in_video(self,
inference_state: Optional[Dict] = None,):
"""
Propagate in the video with the tracked predictions for each frame. Currently only supports
single frame tracking.
Args:
inference_state (Dict): The inference state for the video predictor. Use self.video_inference_state if None.
Returns:
Dict: The video segments with the image and mask data. It has frame index as each key and each key has
"image" and "mask" data. "image" key contains the path of the original image file and "mask" key contains
the np.ndarray mask output.
"""
if inference_state is None and self.video_inference_state is None:
logger.exception("Error while propagating in video, load video predictor first")
if inference_state is None:
inference_state = self.video_inference_state
video_segments = {}
try:
generator = self.video_predictor.propagate_in_video(
inference_state=inference_state,
start_frame_idx=0
)
images = get_frames_from_dir(vid_dir=TEMP_DIR, as_numpy=True)
with torch.autocast(device_type=self.device, dtype=self.dtype):
for out_frame_idx, out_obj_ids, out_mask_logits in generator:
mask = (out_mask_logits[0] > 0.0).cpu().numpy()
video_segments[out_frame_idx] = {
"image": images[out_frame_idx],
"mask": mask
}
except Exception as e:
logger.exception(f"Error while propagating in video: {str(e)}")
raise RuntimeError(f"Failed to propagate in video") from e
return video_segments
def add_filter_to_preview(self,
image_prompt_input_data: Dict,
filter_mode: str,
frame_idx: int,
pixel_size: Optional[int] = None,
color_hex: Optional[str] = None,
invert_mask: bool = False
):
"""
Add filter to the preview image with the prompt data. Specially made for gradio app.
It adds prediction tracking to the self.video_inference_state and returns the filtered image.
Args:
image_prompt_input_data (Dict): The image prompt data.
filter_mode (str): The filter mode to apply. ["Solid Color", "Pixelize"]
frame_idx (int): The frame index of the video.
pixel_size (int): The pixel size for the pixelize filter.
color_hex (str): The color hex code for the solid color filter.
invert_mask (bool): Invert the mask output - used for background masking.
Returns:
np.ndarray: The filtered image output.
"""
if self.video_predictor is None or self.video_inference_state is None:
logger.exception("Error while adding filter to preview, load video predictor first")
raise f"Error while adding filter to preview"
if not image_prompt_input_data["points"]:
error_message = ("No prompt data provided. If this is an incorrect flag, "
"Please press the eraser button (on the image prompter) and add your prompts again.")
logger.error(error_message)
raise gr.Error(error_message, duration=20)
image, prompt = image_prompt_input_data["image"], image_prompt_input_data["points"]
image = np.array(image.convert("RGB"))
point_labels, point_coords, box = self.handle_prompt_data(prompt)
obj_id = frame_idx
self.video_predictor.reset_state(self.video_inference_state)
idx, scores, logits = self.add_prediction_to_frame(
frame_idx=frame_idx,
obj_id=obj_id,
inference_state=self.video_inference_state,
points=point_coords,
labels=point_labels,
box=box
)
masks = (logits[0] > 0.0).cpu().numpy()
if invert_mask:
masks = invert_masks(masks)
generated_masks = self.format_to_auto_result(masks)
if filter_mode == COLOR_FILTER:
image = create_solid_color_mask_image(image, generated_masks, color_hex)
elif filter_mode == PIXELIZE_FILTER:
image = create_mask_pixelized_image(image, generated_masks, pixel_size)
return image
def create_filtered_video(self,
image_prompt_input_data: Dict,
filter_mode: str,
frame_idx: int,
pixel_size: Optional[int] = None,
color_hex: Optional[str] = None,
invert_mask: bool = False
):
"""
Create a whole filtered video with video_inference_state. Currently only one frame tracking is supported.
This needs FFmpeg to run. Returns two output path because of the gradio app.
Args:
image_prompt_input_data (Dict): The image prompt data.
filter_mode (str): The filter mode to apply. ["Solid Color", "Pixelize"]
frame_idx (int): The frame index of the video.
pixel_size (int): The pixel size for the pixelize filter.
color_hex (str): The color hex code for the solid color filter.
invert_mask (bool): Invert the mask output - used for background masking.
Returns:
str: The output video path.
str: The output video path.
"""
if self.video_predictor is None or self.video_inference_state is None:
logger.exception("Error while adding filter to preview, load video predictor first")
raise RuntimeError("Error while adding filter to preview")
if not image_prompt_input_data["points"]:
error_message = ("No prompt data provided. If this is an incorrect flag, "
"Please press the eraser button (on the image prompter) and add your prompts again.")
logger.error(error_message)
raise gr.Error(error_message, duration=20)
output_dir = os.path.join(self.output_dir, "filter")
clean_files_with_extension(TEMP_OUT_DIR, IMAGE_FILE_EXT)
self.video_predictor.reset_state(self.video_inference_state)
prompt_frame_image, prompt = image_prompt_input_data["image"], image_prompt_input_data["points"]
point_labels, point_coords, box = self.handle_prompt_data(prompt)
obj_id = frame_idx
idx, scores, logits = self.add_prediction_to_frame(
frame_idx=frame_idx,
obj_id=obj_id,
inference_state=self.video_inference_state,
points=point_coords,
labels=point_labels,
box=box,
)
video_segments = self.propagate_in_video(inference_state=self.video_inference_state)
for frame_index, info in video_segments.items():
orig_image, masks = info["image"], info["mask"]
if invert_mask:
masks = invert_masks(masks)
masks = self.format_to_auto_result(masks)
if filter_mode == COLOR_FILTER:
filtered_image = create_solid_color_mask_image(orig_image, masks, color_hex)
elif filter_mode == PIXELIZE_FILTER:
filtered_image = create_mask_pixelized_image(orig_image, masks, pixel_size)
save_image(image=filtered_image, output_dir=TEMP_OUT_DIR)
if len(video_segments) == 1:
out_image = save_image(image=filtered_image, output_dir=output_dir)
return None, out_image
out_video = create_video_from_frames(
frames_dir=TEMP_OUT_DIR,
frame_rate=self.video_info.frame_rate,
output_dir=output_dir,
)
return out_video, out_video
def divide_layer(self,
image_input: np.ndarray,
image_prompt_input_data: Dict,
input_mode: str,
model_type: str,
invert_mask: bool = False,
*params):
"""
Divide the layer with the given prompt data and save psd file.
Args:
image_input (np.ndarray): The input image.
image_prompt_input_data (Dict): The image prompt data.
input_mode (str): The input mode for the image prompt data. ["Automatic", "Box Prompt"]
model_type (str): The model type to load.
invert_mask (bool): Invert the mask output.
*params: The hyperparameters for the mask generator.
Returns:
List[np.ndarray]: List of images by predicted masks.
str: The output path of the psd file.
"""
timestamp = datetime.now().strftime("%m%d%H%M%S")
output_file_name = f"result-{timestamp}.psd"
output_path = os.path.join(self.output_dir, "psd", output_file_name)
# Pre-processed gradio components
hparams = {
'points_per_side': int(params[0]),
'points_per_batch': int(params[1]),
'pred_iou_thresh': float(params[2]),
'stability_score_thresh': float(params[3]),
'stability_score_offset': float(params[4]),
'crop_n_layers': int(params[5]),
'box_nms_thresh': float(params[6]),
'crop_n_points_downscale_factor': int(params[7]),
'min_mask_region_area': int(params[8]),
'use_m2m': bool(params[9]),
'multimask_output': bool(params[10])
}
if input_mode == AUTOMATIC_MODE:
image = image_input
generated_masks = self.generate_mask(
image=image,
model_type=model_type,
invert_mask=invert_mask,
**hparams
)
elif input_mode == BOX_PROMPT_MODE:
image = image_prompt_input_data["image"]
image = np.array(image.convert("RGB"))
prompt = image_prompt_input_data["points"]
if len(prompt) == 0:
return [image], []
point_labels, point_coords, box = self.handle_prompt_data(prompt)
predicted_masks, scores, logits = self.predict_image(
image=image,
model_type=model_type,
box=box,
point_coords=point_coords,
point_labels=point_labels,
multimask_output=hparams["multimask_output"],
invert_mask=invert_mask
)
generated_masks = self.format_to_auto_result(predicted_masks)
save_psd_with_masks(image, generated_masks, output_path)
mask_combined_image = create_mask_combined_images(image, generated_masks)
gallery = create_mask_gallery(image, generated_masks)
gallery = [mask_combined_image] + gallery
return gallery, output_path
@staticmethod
def format_to_auto_result(
masks: np.ndarray
):
"""Format the masks to auto result format for convenience."""
place_holder = 0
if len(masks.shape) <= 3:
masks = np.expand_dims(masks, axis=0)
result = [{"segmentation": mask[0], "area": place_holder} for mask in masks]
return result
@staticmethod
def handle_prompt_data(
prompt_data: List
):
"""
Handle data from ImageInputPrompter.
Args:
prompt_data (Dict): A dictionary containing the 'prompt' key with a list of prompts.
Returns:
point_labels (List): list of points labels.
point_coords (List): list of points coords.
box (List): list of box datas.
"""
point_labels, point_coords, box = [], [], []
for x1, y1, left_click_indicator, x2, y2, point_indicator in prompt_data:
is_point = point_indicator == 4.0
if is_point:
point_labels.append(left_click_indicator)
point_coords.append([x1, y1])
else:
box.append([x1, y1, x2, y2])
point_labels = np.array(point_labels) if point_labels else None
point_coords = np.array(point_coords) if point_coords else None
box = np.array(box) if box else None
return point_labels, point_coords, box