Spaces:
Runtime error
Runtime error
jhj0517
commited on
Commit
·
0f36b51
1
Parent(s):
8ab6ed9
Add loading video predictor
Browse files- modules/sam_inference.py +25 -7
modules/sam_inference.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
| 2 |
-
from sam2.build_sam import build_sam2
|
| 3 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 4 |
from typing import Dict, List, Optional
|
| 5 |
import torch
|
|
@@ -46,7 +46,8 @@ class SamInference:
|
|
| 46 |
self.image_predictor = None
|
| 47 |
self.video_predictor = None
|
| 48 |
|
| 49 |
-
def load_model(self
|
|
|
|
| 50 |
config = CONFIGS[self.model_type]
|
| 51 |
filename, url = AVAILABLE_MODELS[self.model_type]
|
| 52 |
model_path = os.path.join(self.model_dir, filename)
|
|
@@ -56,6 +57,17 @@ class SamInference:
|
|
| 56 |
download_sam_model_url(self.model_type)
|
| 57 |
logger.info(f"Applying configs to model..")
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
try:
|
| 60 |
self.model = build_sam2(
|
| 61 |
config_file=config,
|
|
@@ -63,8 +75,8 @@ class SamInference:
|
|
| 63 |
device=self.device
|
| 64 |
)
|
| 65 |
except Exception as e:
|
| 66 |
-
logger.exception("Error while
|
| 67 |
-
raise f"Error while
|
| 68 |
|
| 69 |
def generate_mask(self,
|
| 70 |
image: np.ndarray,
|
|
@@ -81,7 +93,7 @@ class SamInference:
|
|
| 81 |
generated_masks = self.mask_generator.generate(image)
|
| 82 |
except Exception as e:
|
| 83 |
logger.exception("Error while auto generating masks")
|
| 84 |
-
raise f"Error while auto generating masks: {e}"
|
| 85 |
return generated_masks
|
| 86 |
|
| 87 |
def predict_image(self,
|
|
@@ -106,9 +118,13 @@ class SamInference:
|
|
| 106 |
)
|
| 107 |
except Exception as e:
|
| 108 |
logger.exception("Error while predicting image with prompt")
|
| 109 |
-
raise f"Error while predicting image with prompt: {e}"
|
| 110 |
return masks, scores, logits
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
def divide_layer(self,
|
| 113 |
image_input: np.ndarray,
|
| 114 |
image_prompt_input_data: Dict,
|
|
@@ -119,6 +135,7 @@ class SamInference:
|
|
| 119 |
output_file_name = f"result-{timestamp}.psd"
|
| 120 |
output_path = os.path.join(self.output_dir, "psd", output_file_name)
|
| 121 |
|
|
|
|
| 122 |
hparams = {
|
| 123 |
'points_per_side': int(params[0]),
|
| 124 |
'points_per_batch': int(params[1]),
|
|
@@ -171,8 +188,9 @@ class SamInference:
|
|
| 171 |
save_psd_with_masks(image, generated_masks, output_path)
|
| 172 |
mask_combined_image = create_mask_combined_images(image, generated_masks)
|
| 173 |
gallery = create_mask_gallery(image, generated_masks)
|
|
|
|
| 174 |
|
| 175 |
-
return
|
| 176 |
|
| 177 |
@staticmethod
|
| 178 |
def format_to_auto_result(
|
|
|
|
| 1 |
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
| 2 |
+
from sam2.build_sam import build_sam2, build_sam2_video_predictor
|
| 3 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 4 |
from typing import Dict, List, Optional
|
| 5 |
import torch
|
|
|
|
| 46 |
self.image_predictor = None
|
| 47 |
self.video_predictor = None
|
| 48 |
|
| 49 |
+
def load_model(self,
|
| 50 |
+
load_video_predictor: bool = False):
|
| 51 |
config = CONFIGS[self.model_type]
|
| 52 |
filename, url = AVAILABLE_MODELS[self.model_type]
|
| 53 |
model_path = os.path.join(self.model_dir, filename)
|
|
|
|
| 57 |
download_sam_model_url(self.model_type)
|
| 58 |
logger.info(f"Applying configs to model..")
|
| 59 |
|
| 60 |
+
if load_video_predictor:
|
| 61 |
+
try:
|
| 62 |
+
self.model = build_sam2_video_predictor(
|
| 63 |
+
config_file=config,
|
| 64 |
+
ckpt_path=model_path,
|
| 65 |
+
device=self.device
|
| 66 |
+
)
|
| 67 |
+
except Exception as e:
|
| 68 |
+
logger.exception("Error while loading SAM2 model for video predictor")
|
| 69 |
+
raise f"Error while loading SAM2 model for video predictor!: {e}"
|
| 70 |
+
|
| 71 |
try:
|
| 72 |
self.model = build_sam2(
|
| 73 |
config_file=config,
|
|
|
|
| 75 |
device=self.device
|
| 76 |
)
|
| 77 |
except Exception as e:
|
| 78 |
+
logger.exception("Error while loading SAM2 model")
|
| 79 |
+
raise f"Error while loading SAM2 model!: {e}"
|
| 80 |
|
| 81 |
def generate_mask(self,
|
| 82 |
image: np.ndarray,
|
|
|
|
| 93 |
generated_masks = self.mask_generator.generate(image)
|
| 94 |
except Exception as e:
|
| 95 |
logger.exception("Error while auto generating masks")
|
| 96 |
+
raise f"Error while auto generating masks: str({e})"
|
| 97 |
return generated_masks
|
| 98 |
|
| 99 |
def predict_image(self,
|
|
|
|
| 118 |
)
|
| 119 |
except Exception as e:
|
| 120 |
logger.exception("Error while predicting image with prompt")
|
| 121 |
+
raise f"Error while predicting image with prompt: {str(e)}"
|
| 122 |
return masks, scores, logits
|
| 123 |
|
| 124 |
+
def predict_video(self,
|
| 125 |
+
video_input):
|
| 126 |
+
pass
|
| 127 |
+
|
| 128 |
def divide_layer(self,
|
| 129 |
image_input: np.ndarray,
|
| 130 |
image_prompt_input_data: Dict,
|
|
|
|
| 135 |
output_file_name = f"result-{timestamp}.psd"
|
| 136 |
output_path = os.path.join(self.output_dir, "psd", output_file_name)
|
| 137 |
|
| 138 |
+
# Pre-processed gradio components
|
| 139 |
hparams = {
|
| 140 |
'points_per_side': int(params[0]),
|
| 141 |
'points_per_batch': int(params[1]),
|
|
|
|
| 188 |
save_psd_with_masks(image, generated_masks, output_path)
|
| 189 |
mask_combined_image = create_mask_combined_images(image, generated_masks)
|
| 190 |
gallery = create_mask_gallery(image, generated_masks)
|
| 191 |
+
gallery = [mask_combined_image] + gallery
|
| 192 |
|
| 193 |
+
return gallery, output_path
|
| 194 |
|
| 195 |
@staticmethod
|
| 196 |
def format_to_auto_result(
|