Spaces:
Runtime error
Runtime error
jhj0517
commited on
Commit
·
0f36b51
1
Parent(s):
8ab6ed9
Add loading video predictor
Browse files- modules/sam_inference.py +25 -7
modules/sam_inference.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
2 |
-
from sam2.build_sam import build_sam2
|
3 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
4 |
from typing import Dict, List, Optional
|
5 |
import torch
|
@@ -46,7 +46,8 @@ class SamInference:
|
|
46 |
self.image_predictor = None
|
47 |
self.video_predictor = None
|
48 |
|
49 |
-
def load_model(self
|
|
|
50 |
config = CONFIGS[self.model_type]
|
51 |
filename, url = AVAILABLE_MODELS[self.model_type]
|
52 |
model_path = os.path.join(self.model_dir, filename)
|
@@ -56,6 +57,17 @@ class SamInference:
|
|
56 |
download_sam_model_url(self.model_type)
|
57 |
logger.info(f"Applying configs to model..")
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
try:
|
60 |
self.model = build_sam2(
|
61 |
config_file=config,
|
@@ -63,8 +75,8 @@ class SamInference:
|
|
63 |
device=self.device
|
64 |
)
|
65 |
except Exception as e:
|
66 |
-
logger.exception("Error while
|
67 |
-
raise f"Error while
|
68 |
|
69 |
def generate_mask(self,
|
70 |
image: np.ndarray,
|
@@ -81,7 +93,7 @@ class SamInference:
|
|
81 |
generated_masks = self.mask_generator.generate(image)
|
82 |
except Exception as e:
|
83 |
logger.exception("Error while auto generating masks")
|
84 |
-
raise f"Error while auto generating masks: {e}"
|
85 |
return generated_masks
|
86 |
|
87 |
def predict_image(self,
|
@@ -106,9 +118,13 @@ class SamInference:
|
|
106 |
)
|
107 |
except Exception as e:
|
108 |
logger.exception("Error while predicting image with prompt")
|
109 |
-
raise f"Error while predicting image with prompt: {e}"
|
110 |
return masks, scores, logits
|
111 |
|
|
|
|
|
|
|
|
|
112 |
def divide_layer(self,
|
113 |
image_input: np.ndarray,
|
114 |
image_prompt_input_data: Dict,
|
@@ -119,6 +135,7 @@ class SamInference:
|
|
119 |
output_file_name = f"result-{timestamp}.psd"
|
120 |
output_path = os.path.join(self.output_dir, "psd", output_file_name)
|
121 |
|
|
|
122 |
hparams = {
|
123 |
'points_per_side': int(params[0]),
|
124 |
'points_per_batch': int(params[1]),
|
@@ -171,8 +188,9 @@ class SamInference:
|
|
171 |
save_psd_with_masks(image, generated_masks, output_path)
|
172 |
mask_combined_image = create_mask_combined_images(image, generated_masks)
|
173 |
gallery = create_mask_gallery(image, generated_masks)
|
|
|
174 |
|
175 |
-
return
|
176 |
|
177 |
@staticmethod
|
178 |
def format_to_auto_result(
|
|
|
1 |
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
2 |
+
from sam2.build_sam import build_sam2, build_sam2_video_predictor
|
3 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
4 |
from typing import Dict, List, Optional
|
5 |
import torch
|
|
|
46 |
self.image_predictor = None
|
47 |
self.video_predictor = None
|
48 |
|
49 |
+
def load_model(self,
|
50 |
+
load_video_predictor: bool = False):
|
51 |
config = CONFIGS[self.model_type]
|
52 |
filename, url = AVAILABLE_MODELS[self.model_type]
|
53 |
model_path = os.path.join(self.model_dir, filename)
|
|
|
57 |
download_sam_model_url(self.model_type)
|
58 |
logger.info(f"Applying configs to model..")
|
59 |
|
60 |
+
if load_video_predictor:
|
61 |
+
try:
|
62 |
+
self.model = build_sam2_video_predictor(
|
63 |
+
config_file=config,
|
64 |
+
ckpt_path=model_path,
|
65 |
+
device=self.device
|
66 |
+
)
|
67 |
+
except Exception as e:
|
68 |
+
logger.exception("Error while loading SAM2 model for video predictor")
|
69 |
+
raise f"Error while loading SAM2 model for video predictor!: {e}"
|
70 |
+
|
71 |
try:
|
72 |
self.model = build_sam2(
|
73 |
config_file=config,
|
|
|
75 |
device=self.device
|
76 |
)
|
77 |
except Exception as e:
|
78 |
+
logger.exception("Error while loading SAM2 model")
|
79 |
+
raise f"Error while loading SAM2 model!: {e}"
|
80 |
|
81 |
def generate_mask(self,
|
82 |
image: np.ndarray,
|
|
|
93 |
generated_masks = self.mask_generator.generate(image)
|
94 |
except Exception as e:
|
95 |
logger.exception("Error while auto generating masks")
|
96 |
+
raise f"Error while auto generating masks: str({e})"
|
97 |
return generated_masks
|
98 |
|
99 |
def predict_image(self,
|
|
|
118 |
)
|
119 |
except Exception as e:
|
120 |
logger.exception("Error while predicting image with prompt")
|
121 |
+
raise f"Error while predicting image with prompt: {str(e)}"
|
122 |
return masks, scores, logits
|
123 |
|
124 |
+
def predict_video(self,
|
125 |
+
video_input):
|
126 |
+
pass
|
127 |
+
|
128 |
def divide_layer(self,
|
129 |
image_input: np.ndarray,
|
130 |
image_prompt_input_data: Dict,
|
|
|
135 |
output_file_name = f"result-{timestamp}.psd"
|
136 |
output_path = os.path.join(self.output_dir, "psd", output_file_name)
|
137 |
|
138 |
+
# Pre-processed gradio components
|
139 |
hparams = {
|
140 |
'points_per_side': int(params[0]),
|
141 |
'points_per_batch': int(params[1]),
|
|
|
188 |
save_psd_with_masks(image, generated_masks, output_path)
|
189 |
mask_combined_image = create_mask_combined_images(image, generated_masks)
|
190 |
gallery = create_mask_gallery(image, generated_masks)
|
191 |
+
gallery = [mask_combined_image] + gallery
|
192 |
|
193 |
+
return gallery, output_path
|
194 |
|
195 |
@staticmethod
|
196 |
def format_to_auto_result(
|