import cv2
import numpy as np
from typing import Dict, List
import colorsys
from pytoshop import layers
from pytoshop.enums import BlendMode
from pytoshop.core import PsdFile


def decode_to_mask(seg: np.ndarray[np.bool_] | np.ndarray[np.uint8]) -> np.ndarray[np.uint8]:

    if isinstance(seg, np.ndarray) and seg.dtype == np.bool_:
        return seg.astype(np.uint8) * 255
    else:
        return seg.astype(np.uint8)


def generate_random_color():
    h = np.random.randint(0, 360)
    s = np.random.randint(70, 100) / 100
    v = np.random.randint(70, 100) / 100
    r, g, b = colorsys.hsv_to_rgb(h/360, s, v)
    return int(r * 255), int(g * 255), int(b * 255)


def create_base_layer(image: np.ndarray):
    rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
    return [rgba_image]


def create_mask_layers(
    image: np.ndarray,
    masks: List
):
    layer_list = []

    sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True)

    for info in sorted_masks:
        rle = info['segmentation']
        mask = decode_to_mask(rle)

        rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
        rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask)

        layer_list.append(rgba_image)

    return layer_list


def create_mask_gallery(
    image: np.ndarray,
    masks: List
):
    mask_array_list = []
    label_list = []

    sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True)

    for index, info in enumerate(sorted_masks):
        rle = info['segmentation']
        mask = decode_to_mask(rle)

        rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
        rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask)

        mask_array_list.append(rgba_image)
        label_list.append(f'Part {index}')

    return [[img, label] for img, label in zip(mask_array_list, label_list)]


def create_mask_combined_images(
    image: np.ndarray,
    masks: List
):
    final_result = np.zeros_like(image)
    used_colors = set()

    for info in masks:
        rle = info['segmentation']
        mask = decode_to_mask(rle)

        while True:
            color = generate_random_color()
            if color not in used_colors:
                used_colors.add(color)
                break

        colored_mask = np.zeros_like(image)
        colored_mask[mask > 0] = color

        blended = cv2.addWeighted(image, 0.3, colored_mask, 0.7, 0)
        final_result = np.where(mask[:, :, np.newaxis] > 0, blended, final_result)

    combined_image = np.where(final_result != 0, final_result, image)

    hsv = cv2.cvtColor(combined_image, cv2.COLOR_BGR2HSV)
    hsv[:, :, 1] = np.clip(hsv[:, :, 1] * 1.5, 0, 255)
    enhanced = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)

    return [enhanced, "Masked"]


def insert_psd_layer(
    psd: PsdFile,
    image_data: np.ndarray,
    layer_name: str,
    blending_mode: BlendMode
):
    channel_data = [layers.ChannelImageData(image=image_data[:, :, i], compression=1) for i in range(4)]

    layer_record = layers.LayerRecord(
        channels={-1: channel_data[3], 0: channel_data[0], 1: channel_data[1], 2: channel_data[2]},
        top=0, bottom=image_data.shape[0], left=0, right=image_data.shape[1],
        blend_mode=blending_mode,
        name=layer_name,
        opacity=255,
    )
    psd.layer_and_mask_info.layer_info.layer_records.append(layer_record)
    return psd


def save_psd(
    input_image_data: np.ndarray,
    layer_data: List,
    layer_names: List,
    blending_modes: List,
    output_path: str
):
    psd_file = PsdFile(num_channels=3, height=input_image_data.shape[0], width=input_image_data.shape[1])
    psd_file.layer_and_mask_info.layer_info.layer_records.clear()

    for index, layer in enumerate(layer_data):
        psd_file = insert_psd_layer(psd_file, layer, layer_names[index], blending_modes[index])

    with open(output_path, 'wb') as output_file:
        psd_file.write(output_file)


def save_psd_with_masks(
    image: np.ndarray,
    masks: List,
    output_path: str
):
    original_layer = create_base_layer(image)
    mask_layers = create_mask_layers(image, masks)
    names = [f'Part {i}' for i in range(len(mask_layers))]
    modes = [BlendMode.normal] * (len(mask_layers)+1)
    save_psd(image, original_layer+mask_layers, ['Original_Image']+names, modes, output_path)