import gradio as gr import os from modules.sam_inference import SamInference from modules.model_downloader import DEFAULT_MODEL_TYPE from modules.paths import OUTPUT_DIR from modules.utils import open_folder class App: def __init__(self, args = None): self.app = gr.Blocks() self.args = args self.sam_inf = SamInference() def launch(self): with self.app: with gr.Row(): with gr.Column(scale=5): with gr.Tabs() as tabs_sources: with gr.TabItem("Image Input"): img_input = gr.Image(label="Input image here") with gr.TabItem("Video Input"): vid_input = gr.Image(label="Input video here") with gr.Column(scale=5): dd_models = gr.Dropdown(label="Model", value=DEFAULT_MODEL_TYPE, choices=self.sam_inf.available_models) with gr.Accordion("Mask Parameters", open=False) as mask_hparams: nb_points_per_side = gr.Number(label="points_per_side ", value=64, interactive=True) nb_points_per_batch = gr.Number(label="points_per_batch ", value=128, interactive=True) sld_pred_iou_thresh = gr.Slider(label="pred_iou_thresh ", value=0.7, minimum=0, maximum=1, interactive=True) sld_stability_score_thresh = gr.Slider(label="stability_score_thresh ", value=0.92, minimum=0, maximum=1, interactive=True) sld_stability_score_offset = gr.Slider(label="stability_score_offset ", value=0.7, minimum=0, maximum=1) nb_crop_n_layers = gr.Number(label="crop_n_layers ", value=1) sld_box_nms_thresh = gr.Slider(label="box_nms_thresh ", value=0.7, minimum=0, maximum=1) nb_crop_n_points_downscale_factor = gr.Number(label="crop_n_points_downscale_factor ", value=2) nb_min_mask_region_area = gr.Number(label="min_mask_region_area ", value=25) cb_use_m2m = gr.Checkbox(label="use_m2m ", value=True) with gr.Row(): btn_generate = gr.Button("GENERATE", variant="primary") with gr.Row(): gallery_output = gr.Gallery(label="Output images will be shown here") with gr.Column(): output_file = gr.File(label="Generated psd file", scale=9) btn_open_folder = gr.Button("📁\nOpen PSD folder", scale=1) sources = [img_input or vid_input] model_params = [dd_models] auto_mask_hparams = [nb_points_per_side, nb_points_per_batch, sld_pred_iou_thresh, sld_stability_score_thresh, sld_stability_score_offset, nb_crop_n_layers, sld_box_nms_thresh, nb_crop_n_points_downscale_factor, nb_min_mask_region_area, cb_use_m2m] btn_generate.click(fn=self.sam_inf.generate_mask_app, inputs=sources + model_params + auto_mask_hparams, outputs=[gallery_output, output_file]) btn_open_folder.click(fn=lambda: open_folder(os.path.join(OUTPUT_DIR)), inputs=None, outputs=None) self.app.queue().launch(inbrowser=True) if __name__ == "__main__": app = App() app.launch()